实变函数第三章习题解答
实变函数论课后答案第三章1
实变函数论课后答案第三章1第三章第一节习题1.证明:若E 有界,则m E *<∞.证明:若n E R ⊂有界,则存在一个开区间(){}120,,;n M n E R I x x x M x M ⊂=-<<.(0M >充分大)使M E I ⊂.故()()()111inf ;2n nn n m n n i m E I E I I M M M ∞∞*===⎧⎫=⊂≤=--=<+∞⎨⎬⎩⎭∑∏.2.证明任何可数点集的外测度都是零.证:设{}12,,,n E a a a =是n R 中的任一可数集.由于单点集的外测度为零,故{}{}{}()12111,,,00n i i i i i m E m a a a m a m a ∞∞∞****===⎛⎫==≤== ⎪⎝⎭∑∑.3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要0m E μ*≤≤,就有1E E ⊂,使1m E μ*=.证明:因为E 有界,设[],E a b ⊂(,a b 有限), 令()(),f x m E a x b *=∅<<,则()()()()[]()()0,,f a m E m f b m a b E m E ****=∅=∅===. 考虑x x x +∆与,不妨设a x x x b ≤≤+∆≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +∆=+∆=+∆⎡⎡⎣⎣.可知())()[](),,f x x m a x E m x x x E **+∆≤++∆⎡⎣()[]()(),f x m x x x f x x *≤++∆=+∆.对0x ∆<,类似得到()()f x f x x x ≤+∆+∆. 故总有()(),f x x f x x a x b +∆-≤∆<<.这说明()f x 在[],a b 上连续,由中介值定理知 (),a b ξ∃∈,使得()f c ξ=. 令[)1,E a E ξ=,则()11,m E f c E E ξ*==⊂. 若0μ=,则取11,0E E m E *=∅⊂=. 若1m E μ*=,取11,E E m E m E **==. 证毕.4.证明如果()f x 是[],a b 上的连续函数,则2R 中的点集()(){},;,x y a x b y f x ≤≤=的外测度为零.证明:n N ∀∈,将[],a b n 等分,即取分点012n x x x x b <<<<=,1,i i b ax x n---=1,2,i n =.因为()f x 在有界闭区间[],a b 连续,从而一致连续,故()0,0εδδε∀>∃=>,使当[]'"'",,,x x x x a b δ-<∈时()()()'"16f x f x b a ε-<-.所以存在()00N N ε=>,使n N ≥时()4b a nδ-<. 令()()()()()()()()22,;,1616ni i i i i b a b a I x y x x x f x y f x n n b a b a εε⎧⎫--⎪⎪=-<<+-<<+⎨⎬--⎪⎪⎩⎭.则()n i I 均为开区间,()()()482n i b a I n b a nεε-=⋅=-,且 ()(){}()1,,;,ni i i i i A x y x x x y f x I +∀=≤≤=⊂.事实上,()(), ,i x f x A ∀∈1,i i x x x +≤≤()12i i i b a b a x x x x n nδ+--∴-≤-=<< 从而()()()16i f x f x b a ε-<-.故()()22i i b a b a x x x n n---<<+ ()()()()()1616i i f x f x f x b a b a εε-<<+--即()(),n i x f x I ∈ 而()(){}0,;,n n i i Ax y a x b y f x I =≤≤=⊂()0122nnni i i n m A I nnεεε*==+∴≤==⋅≤∑∑由ε的任意性,则0m A *=.若[],a b 无界。
实变函数第三章习题参考解答
实变函数第三章习题参考解答1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测集.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测. 3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 (注:若),(i i i I βα=,则 ⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E 可测⇔R '∈∀α,E α可测.(由P54.19题的直接推论). 证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E a f a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个闭区间上也可测.证明:N k ∈∀,),(]21,21[11b a b b b a E k k k ⊆---+=++,)(x f 在k E 上可测,记 ),(*b a E =,则k k E E ∞==1.又因为R '∈∀α,})(|{})(|{*1αα>=>∞=x f x E x f x E k k .由每个})(|{α>x f x E k 的可测性,得})(|{*α>x f x E 可测.所以)(x f 在),(*b a E =可测. 令},{0b a E =,],[b a E =即E E E *=. })(|{})(|{*})(|{0ααα>>=>x f x E x f x E x f x E故})(|{α>x f x E 可测,从而)(x f 在E 上可测.],[βα=E 7.设f 是E 上的可测函数,证明: (i )对R '上的任意开集O ,)(1O f-是可测集; (ii) 对R '中的任何开集F ,)(1F f-是可测集;(iii )对R '中的任何δG 型集或σF 型集M ,)(1M f-是可测集.证:(i )当O 时R '中有界开集时,由第一章定理11(P.30),O 是至多可数个互不相交的开区间i i i )},{(βα的并,即),(i i iO βα =. })(|{)],[()],([)(111i i ii i ii i ix f E f f O f βααβαβα<<===---由f 在E 上哦可测性,知:每个})(|{i i x f x E βα<<可测,从而)(1O f-可测.若O 是R '的误解开集,N n ∈∀,记],[n n E n -=,则n n E O O =是R '中有界开集,且n n O O ∞==1,故][][)(11111n n n O f O f O f-∞=∞=--== .故由)(1n O f-得可测性,知)(1O f -可测.(ii) 设F 是R '中的任一闭集,记F R O -'=是R '中开集.)()(11F R fO f-'=--=)()(11F fR f---',即)()()(111O fR fF f----'= .由)(1O f-与)(1R f '-得可测性,知,)(1F f-可测.(iii )设G ,F 分别为R '中δG 型集和σF 型集.即,存在开集列∞=1}{k k G ,闭集列∞=1}{k k F 使得k k G G ∞==1k k F F ∞==1,从而,][)(111k k G f G f-∞=-= 且][)(111k k F f F f-∞=-= .由)(1k G f -与)(1k F f -的可测性,知)(1G f-与)(1F f -均可测.8.证明:E 上两个可测函数的和仍是可测函数.证明:设)(x f ,)(x g 是E 上的两个可测函数,令})(|{0±∞=-=x g x E E E ,R a '∈∀)}(})(|{})()(|{00x g a x f x E a x g x f x E ->=>+=)()(|{01X g a r x f x E i i ->>∞= =i i r x f x E >∞=)(|{[01}])(|{0i r a x g x E ->.由)(x f ,)(x g 在E 可测,知)(x f ,)(x g 在0E 可测. 从而N i ∈∀,}])(|{0i r x f x E >与}])(|{0i r a x g x E ->可测. 故})()(|{0a x g x f x E >+可测.又因})(|{±∞=x g x E })()(|{a x g x f x E >+ 是零测集,故可测.从而g f +在E 上可测. 9.证明:若)(x f 是1E 及2E 上的非负可测函数,则f 也是21E E 上的非负可测函数.证明:因为)(x f 是1E 及2E 上的非负可测函数,则R a '∈∀,})(|{1a x f x E >与})(|{2a x f x E >均可测.于是,记21E E E =,则=>})(|{a x f x E })(|{1a x f x E >})(|{2a x f x E > 可测.从而)(x f 在21E E E =上非负可测.10.设E 是nR 中有界可测集,f 是E 上几乎处处有限的可测函数,证明:0>∀ε,存在闭集E F ⊂,使得ε<-)(F E m ,而在F 上)(x f 有界.证明:(法一)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在证)(x f 在F 上有界.如果)(x f 在F 无界,即0>∀M ,F x m ∈∃使得M x f m >|)(|.特别的,当11=M 时,F x ∈∃1有11|)(|M x f >;当}2,1|)(m ax {|2+=x f M ,F x ∈∃2,使得22|)(|M x f >;; 当},1|)(m ax {|k x f M k +=时,F x k ∈∃,使得k k M x f >|)(|,从而,得F 中互异点列F x k ⊂}{,使得N k >∀,k x f k >|)(|,即+∞=∞→|)(|lim k k x f .另一方面,因为F 为有界,且F x k k ⊂∞=1}{,故∞=1}{k k x 有一收敛子列∞=1}{k k x ,不妨设0lim x x k n k =∞→,则F x ∈0,又因为)(x f 在0x 连续.对1=ε,N k ∈∃0,0k k ≥∀时,恒有1|)(||)(||)(||)(|000<-≤-x f x f x f x f k k n n ,即)(|1|)(|0x f x f k n +≤.取N k ∈*,|)(|1*0x f k +>,则*|)(|*k x f kn ≤,但由*k n x 得定义,有***|)(|k n x f k n k≥>,这是一矛盾.从而)(x f 在F 有界.证明:(法二)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在用有限覆盖定理证:)(x f 在F 上有界.F x ∈∀0,因为)(x f 在0x 连续.所以对1=ε,00>∃x δ使得F x O x x ),(00δ∈∀,恒有:1|)()(||)()(|00<-<-x f x f x f x f ,即1|)(||)(|0+<x f x f .从而),(000x Fx x O F δ∈⊂ .因为F 是有界闭集,故由有限覆盖定理,存在)1(0x ,)2(0x ,, F x k ∈)(0,N k ∈,使得),()(0)(01i x i ki x O F δ=⊂ .取}11|({|)(0k i x f nax M i ≤≤+=,则F x ∈∀,有),(0)(x i o x O x δ∈,M x f x f i ≤+≤1|)(|)(|)(0.从而)(x f 在F 有界.11.设}{n f 是E 上的可测函数序列,证明:如果0>∀ε,都有+∞<>∑∞=}|)(|{1εx f xmE n n ,则必有0)(lim =∞→x f n n ][,E e a .证:0>∀ε,因为+∞<>∑∞=}|)(|{1εx f xmE n n ,故0}|)(|{lim1=>∑∞=∞→εx f xmE n n N .又因为})1|)(|{(}0)(|{11kx f x E x f x E n N n N k n >=→/∞=∞=∞=故})]1|)(|{([}0)(|{11kx f x E m x f x mE n N n N k n >=→/∞=∞=∞=}]1|)(|{[lim }1)(|{lim 11k x f x E m k x f x E m n N n N k n N k >=>≤∞=∞→∞=∞→∞=∑∑∑∑∑∞=∞=∞→∞==>≤110}]1|)(|{limk n Nn N k k x f x mE ,故0)(lim =∞→x f n n ][,E e a12.证明:如果)(x f 是n R 上的连续函数,则)(x f 在n R 的任何可测自己E 上都可测. 证明:(1)先证:)(x f 在n R 上可测.令n R E =,R a '∈∀,因为)),((})(|{1+∞=>-a fa x f x E .现在证:)),((1+∞-a f是一个开集.事实上,)),((10+∞∈∀-a fx ,),[)(0+∞∈a x f ,取2)(0ax f -=ε.因为)(x f 在0x 连续,则对于02)(0>-=ax f ε,0>∃δ,使),(0δx O x ∈∀时,ε<-|)()(|0x f x f ,即 ))(,)(()(00εε+-∈x f x f x f =-+--=)2)()(,.2)()((0000ax f x f a x f x f)2)()(,.2)()((0000ax f x f a x f x f -+--),()2)()(,.2)((000+∞⊂-++=a a x f x f a x f ,故)],[(),(10+∞⊂-a f x O δ,从而)],[(1+∞-a f 为开集,可测.即,)(x f 在n R 上可测.(2)再证:nR E ⊆∀可测,f 在E 可测.事实上,这是P59性质2的直接结果.14.设}{n f ,}{n h 是E 上的两个可测函数序列,且f f n ⇒,h h n ⇒,h f ,(都是E 上的有限函数)证明: (i )h f ,是E 上可测函数 (ii )对于任意实数α ,β,h f h f n n βαβα+⇒+若+∞<mE ,则还有(iii )h f h f n n ⋅⇒⋅若+∞<mE ,且n h ,h 在E 上几乎处处不等于0,则(iv )hfh f n n ⇒.证明:(i )因为f f n ⇒,n f 是可测函数列,由Riesz 定理,}{n f 有一个子列}{k n f ,使得f f k n ⇒ ][,E e a .再由P62性质4,f 是在E 可测,同理,h 在E 可测.(ii )先证:当f f n ⇒时,R '∈∀α,有f f n αα⇒.事实上,当0=α时,0>∀ε,∅=≥-}|{εααf f x E n .所以∅=≥-∞→}|{lim εααf f x mE n n .当0≠α时,因为}||||{}||{αεεαα≥-=≥-f f x E f f x E n n ,故 }||||{}||{lim αεεαα≥-=≥-∞→f f x E f f x mE n n n 0}||||{lim =≥-=∞→αεf f x mE n n .从而f f n αα⇒.再证:h f h f n n βαβα+⇒+. 事实上,0>∀ε,⊆≥-+-⊆≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x E h f h f x E n n n n }2|)|{}2||{εββεαα≥-≥-h h x E f f x E n n .≤≥-+-≤≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x mE h f h f x mE n n n n)(0}2|)|{}2||{∞→→≥-+≥-n h h x mE f f x mE n n εββεαα. 0}|)()({lim =≥+-+∞→εβαααh f f f x mE n n所以:h f h f n n βαβα+⇒+. (iii )现在证:h f h f n n ⋅⇒⋅.先证:f f n ⇒,必有22f f n ⇒.事实上,若0}|{lim 022≠≥-∞→εf f x mE n n (对于某个00>ε).因为+∞<mE ,而N n ∈∀,mE f f x E n ≤≥-≤}|{0022ε,则∞=≥-1022}|{{n n f f x mE ε是有界无穷数列.故存在}{n f 的子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE k n k ε.事实上,如果每个}{n f 的收敛子列}{k n f 都0}|{lim 022=≥-∞→εf f x mE k n k .故0>∀δ,N ∈∃N 时,恒有),0(}|{022δεU f f x mE kn ∈≥-.倘若不然,∃无穷个∞=1}{k m k f ,使得 ),0(],0[}|{022δεU mE f f x mE k m -∈≥-.即∞=≥-1022}}|{{k m f f x mE kε是有界无穷点列,它有一收敛子列.不妨设这收敛子列就是它本身.因为N k ∈∀,δ≥-|}{22f f x mE kn ,故0}|{lim 022=≥-∞→εf f x mE k n k .故 .}|{lim *022δε≥=≥-∞→l f f x mE k m k 这与}{k n f 得每个收敛子列都为零极限矛盾,从而0>∀δ,N ∈∃N ,使得N n ≥∀时,有δε<≥-}|{022f f x mE n .即0}|{lim 022=≥-∞→εf f x mE n k ,这与.0}|{lim 022≠≥≥-∞→εεf f x mE k m k 矛盾.所以 }{n f 有子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE kn k ε.另一方面:因为f f n ⇒,所以f f k n ⇒.故由Riesz 定理}{n f 有一子列}{k n f ',有f f k n →' ][,E e a ,从而22f f kn →' ][,E e a .故.0}|{lim 022=≥-∞→εf f xmE km k 这与l f f x mE k m k =≥-'∞→}|{lim 022ε矛盾.从而,.0}|{lim 022=≥-∞→εf f x mE k n k 最后证:h f h f n n ⋅⇒⋅. 事实上,])()[(4122n n n n n n h f h f h f --+=⋅h f h f h f ⋅=--+⇒])()[(4122. 习题14(iii )引理例1,设)(x f ,)2,1)(( =n x f n 都是E 上的可测函数列且+∞<mE ,如果f f n ⇒,则22f f n ⇒.证明:设f f n ⇒,若22f f n ⇒/,即0>∃0ε使得.0}|{lim 022=/≥-∞→εf f x mE k n k 即0>∃0δ,N ∈∀N ,N n N ≥∃,有0022}|{1δε≥≥-f f x mE n . 特别的,当1=N 时,N n ≥∃1,有00022}|{1δε≥≥-f f x mE n ;当11+=n N 时,N n ≥∃2,有0022}|{2δε≥≥-f f x mE n ; 当12+=n N 时,N n ≥∃3,有0022}|{3δε≥≥-f f x mE n这样继续下去,得}{n f 的一子列∞=1}{k n k f 使得N k ∈∀,+∞<≤≥-≤mE f f x mE kn }|{0220εδ,即∞=≥-1022}|{{k n f f x mE kε是一个有界的无穷数列,有一收敛子列∞='≥-1022}|{{k n ff x mE k ε,0}|{{lim 0022>≥=≥-'∞→δεl f f x mE kn k .另一方面,因为f f n ⇒,所以f f k n ⇒',由Riesz 定理,∞=1}{k n k f 必有一子列∞=1}{k m k f 使得f f k m ⇒ ][,E e a .所以22f f km ⇒ ][,E e a .从而22f f km ⇒.即0}|{lim 022=≥-∞→εf f x mE k m k ,这与0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k 矛盾. 例2,设f f n ⇒,h h n ⇒,则h f h f n n ⋅⇒⋅证:因为h f h f h f h f h f h f n n n n n n ⋅=--+⇒--+=⋅])()[(41])()[(412222。
实变函数习题与解答(电子科大) (2)
由 f 在 E 上的可测性知,每个 E{x | α i < f ( x) < 可测. 若O是 的无解开集时,对于 ∀n ∈
∞
β i } 可测,从而 f −1 (O)
,记 E n = [ − n, n] ,则 On =
O ∩ En 是
中有界开集,并且 O = ∪ On ,故
n =1
f
再由 f
故, E{ x | f ( x ) > α } 是可测集,从而 f ( x ) 在 E 上可测. 7. 设 f 是 E 上的可测函数,证明: (1)对 (2)对 (3)对 上的任意开集 O , f 中的任何开集 F , f
−1 −1
(O) 是可测集; ( F ) 是可测集;
−1
中的任何 Gδ 型集或 Fσ 型集 M , f
证明 设 f ( x ) 和 g ( x ) 是 E 上的两个可测函数,令
E 0 = E − E{x | g ( x) = ±∞}
并且对于 ∀a ∈ , 因为
E0 {x | f ( x) + g ( x) > a} = E0 {x | f ( x) > a − g ( x)}
= ∪ E0 {x | f ( x) > ri > a − g ( x)}
f
由f
−1
−1
(G ) = ∩ f −1 [G k ] 且 f
k =1
∞
−1
( F ) = ∪ f −1 [ Fk ] .
k =1 −1
(G k ) 与 f
−1
( Fk ) 的可测性知, f
−1
(G ) 与 f
( F ) 均可测.
8. 证明: E 上两个可测函数的和仍是可测函数.
实变函数(曹广福)1到5章答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数答案(陕师大).
习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A = c c C B A )( =)(C B A c = )()(C A B A c = )()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c = , 于是有cB A ⊂, 可得.∅=B A 反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则cB A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max{21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+,从而kc x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E A E A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义::[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证::[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证::(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证::A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ. 习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:cP b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c≤=,故c b a F 2],[=.4.证明:c n=C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E E F E E F E E E F E F ====,()\()()()\c c c EF F EF F E F F F E F ===.所以\\()()\E F E EF E F F ==.(2) 因为()\()()()(\)(\),c c c c E F G EF G EFG E G FG E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n n n n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c cE f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥.4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数? 6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n n A A 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <. 11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求bE E E E ,,,'.解 E =∅;[0,1][0,1]bE E E '===⨯。
实变函数引论参考答案_曹怀信_陕师大版第一到第四章
习题1.11.证明下列集合等式. (1) ;(2) ()()()C B C A C B A \\\ =;(3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (c C B A A =)()( c c C B A A B A =c C A B A )()( =)(\)(C A B A = .(2) c C B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \c C B A A =c c C B A )( =)(C B A c =)()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要[条 是:.A B ⊂(2) c c c c B A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ⊂, 可得.∅=B A 反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与c B A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c = , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x ∉ 但,B A x ∈ 与c C A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =.3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A 证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意∞=∈1,n n A x 存在N 使得,N A x ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1 ∞=∞→⊂n n n nA A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ; (2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有 ⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得n c x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E (2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有n c x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E 另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<,由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k k c k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有k c x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有k x f x f n 1|)()(|00<-. 取},m ax {21N N N =, 则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有 [] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ; 综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E 5.证明集列极限的下列性质.(1) c n n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____; (2) c n n c n n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ; (4) ()n n n n A E A E ∞→∞→=lim \\lim . 证明 (1) c n n n n m c m n c n m m c n n m m c n n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ . (2) c n n n n n m c m c n m m c n n m m c n n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m n n m c m c m n n m m n n A E A E A E A E c n n m m n c n m m n n m c m A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n n m n n m A E A E . (4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n n m n n m c m m n n A E A E A E A E c n nm m n c n m m n n m c m A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n n m n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且(1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim . 习题1.21.建立区间)1,0(与]1,0[之间的一一对应.解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =, 则(0,1)E D =,[0,1]F D =. 定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩ 则φ为(0,1)[0,1]→之间的一个一一对应. 2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,.解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b a φ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,.解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a c d φ→为: ;();(1,2.)d c bc ad x x D b a b a d c b a x c x a n φ--⎧+∈⎪--⎪--⎪=+=+=⎨可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R .证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ. 6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数.证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+. 则,A E D B F D ==. 定义: :A B φ→为: 2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩ 可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以 A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集. 证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集. 证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q 所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q . 其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=. 其中)0(≥i E i 无限且不交. 4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_0000>==--+→→+x f x f x f x f x x x x . 于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=, 从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x d x E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(d y D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x d x ≤∈}:)3,{(,故a E ≤. 习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么?答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[.2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明:(1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得 )()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→. 又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即 )),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明:(1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c 2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射. (3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==;(2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E E F EE F E E F E E E F E F ====, ()\()()()\c c c E F F E F F E F F F E F ===.所以\\()()\E F E E F E F F ==.(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ==== 所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== . 证明 (1)1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======. (2) 1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======. 3.证明:22[][][]cc E f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2c g x <, 于是 ()()()()f x g x f g x c +=+<, 故()x E f g c ∉+≥. 所以()()()22c c E f g c E f E g +≥⊂≥≥. 4.证明:n R 中的一切有理点之集n Q 与全体自然数之集对等. 证明 因为0Q =ℵ,所以0Q Q Q Q n =⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集.证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][Q ][Q 0 ∞==n n x x 显然,Q~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x = 7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记 },R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][R ][R 0 ∞==n n x x 显然,R ~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==0n n A A 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R c B A B ===9.证明:A B B A \~\,则B A ~.证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <. 证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =. 证明同上.。
曹广福版实变函数第三章习题解答
第三章习题参考解答1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测.3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 (注:若),(i i i I βα=,则 ⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E可测⇔R '∈∀α,E α可测.(由P54.19题的直接推论).证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E af a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个闭区间上也可测.证明:N k ∈∀,),(]21,21[11b a b b b a E k k k ⊆---+=++,)(x f 在k E 上可测,记 ),(*b a E =,则k k E E ∞==1.又因为R '∈∀α,})(|{})(|{*1αα>=>∞=x f x E x f x E k k .由每个})(|{α>x f x E k 的可测性,得})(|{*α>x f x E 可测.所以)(x f 在),(*b a E =可测.令},{0b a E =,],[b a E =即E E E *=.})(|{})(|{*})(|{0ααα>>=>x f x E x f x E x f x E故})(|{α>x f x E 可测,从而)(x f 在E 上可测.],[βα=E7.设f 是E 上的可测函数,证明: (i )对R '上的任意开集O ,)(1O f -是可测集; (ii) 对R '中的任何开集F ,)(1F f-是可测集;(iii )对R '中的任何δG 型集或σF 型集M ,)(1M f-是可测集.证:(i )当O 时R '中有界开集时,由第一章定理11(P.30),O 是至多可数个互不相交的开区间i i i )},{(βα的并,即),(i i iO βα =.})(|{)],[()],([)(111i i ii i ii i ix f E f f O fβααβαβα<<===---由f 在E 上哦可测性,知:每个})(|{i i x f x E βα<<可测,从而)(1O f-可测.若O 是R '的误解开集,N n ∈∀,记],[n n E n -=,则n n E O O =是R '中有界开集,且n n O O ∞==1,故][][)(11111n n n O f O f O f-∞=∞=--== .故由)(1n O f-得可测性,知)(1O f -可测.(ii) 设F 是R '中的任一闭集,记F R O -'=是R '中开集.)()(11F R f O f-'=--=)()(11F f R f ---',即)()()(111O f R f F f----'= .由)(1O f-与)(1R f '-得可测性,知,)(1F f -可测.(iii )设G ,F 分别为R '中δG 型集和σF 型集.即,存在开集列∞=1}{k k G ,闭集列∞=1}{k k F 使得k k G G ∞==1k k F F ∞==1,从而,][)(111k k G f G f-∞=-= 且][)(111k k F f F f-∞=-= .由)(1k G f -与)(1k F f -的可测性,知)(1G f -与)(1F f -均可测.8.证明:E 上两个可测函数的和仍是可测函数.证明:设)(x f ,)(x g 是E 上的两个可测函数,令})(|{0±∞=-=x g x E E E ,R a '∈∀ )}(})(|{})()(|{00x g a x f x E a x g x f x E ->=>+=)()(|{01X g a r x f x E i i ->>∞= =i i r x f x E >∞=)(|{[01}])(|{0i r a x g x E ->.由)(x f ,)(x g 在E 可测,知)(x f ,)(x g 在0E 可测. 从而N i ∈∀,}])(|{0i r x f x E >与}])(|{0i r a x g x E ->可测. 故})()(|{0a x g x f x E >+可测.又因})(|{±∞=x g x E })()(|{a x g x f x E >+ 是零测集,故可测.从而g f +在E 上可测. 9.证明:若)(x f 是1E 及2E 上的非负可测函数,则f 也是21E E 上的非负可测函数.证明:因为)(x f 是1E 及2E 上的非负可测函数,则R a '∈∀,})(|{1a x f x E >与})(|{2a x f x E >均可测.于是,记21E E E =,则=>})(|{a x f x E })(|{1a x f x E >})(|{2a x f x E > 可测.从而)(x f 在21E E E =上非负可测.10.设E 是nR 中有界可测集,f 是E 上几乎处处有限的可测函数,证明:0>∀ε,存在闭集E F ⊂,使得ε<-)(F E m ,而在F 上)(x f 有界.证明:(法一)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在证)(x f 在F 上有界.如果)(x f 在F 无界,即0>∀M ,F x m ∈∃使得M x f m >|)(|.特别的,当11=M 时, F x ∈∃1有11|)(|M x f >;当}2,1|)(ma x{|2+=x f M ,F x ∈∃2,使得22|)(|M x f >; ; 当},1|)(max{|k x f M k +=时,F x k ∈∃,使得k k M x f >|)(|,从而,得F 中互异点列F x k ⊂}{,使得N k >∀,k x f k >|)(|,即+∞=∞→|)(|lim k k x f .另一方面,因为F 为有界,且F x k k ⊂∞=1}{,故∞=1}{k k x 有一收敛子列∞=1}{k k x ,不妨设0lim x x k n k =∞→,则F x ∈0,又因为)(x f 在0x 连续.对1=ε,N k ∈∃0,0k k ≥∀时,恒有1|)(||)(||)(||)(|000<-≤-x f x f x f x f k k n n ,即)(|1|)(|0x f x f k n +≤.取N k ∈*, |)(|1*0x f k +>,则*|)(|*k x f kn ≤,但由*kn x 得定义,有***|)(|k n x f k n k≥>,这是一矛盾.从而)(x f 在F 有界.证明:(法二)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在用有限覆盖定理证:)(x f 在F 上有界.F x ∈∀0,因为)(x f 在0x 连续.所以对1=ε,00>∃x δ使得F x O x x ),(00δ∈∀,恒有:1|)()(||)()(|00<-<-x f x f x f x f ,即1|)(||)(|0+<x f x f .从而),(000x Fx x O F δ∈⊂ .因为F 是有界闭集,故由有限覆盖定理,存在)1(0x ,)2(0x ,, F x k ∈)(0,N k ∈,使得),()(0)(01i x i ki x O F δ=⊂ .取}11|({|)(0k i x f nax M i ≤≤+=,则F x ∈∀,有),(0)(x i o x O x δ∈,M x f x f i ≤+≤1|)(|)(|)(0.从而)(x f 在F 有界.11.设}{n f 是E 上的可测函数序列,证明:如果0>∀ε,都有+∞<>∑∞=}|)(|{1εx f xmE n n ,则必有0)(lim =∞→x f n n ][,E e a .证:0>∀ε,因为+∞<>∑∞=}|)(|{1εx f xmE n n ,故0}|)(|{lim 1=>∑∞=∞→εx f x mE n n N . 又因为})1|)(|{(}0)(|{11kx f x E x f x E n N n N k n >=→/∞=∞=∞=故})]1|)(|{([}0)(|{11kx f x E m x f x mE n N n N k n >=→/∞=∞=∞=}]1|)(|{[lim }1)(|{lim 11k x f x E m k x f x E m n N n N k n N k >=>≤∞=∞→∞=∞→∞=∑∑∑∑∑∞=∞=∞→∞==>≤110}]1|)(|{lim k n Nn N k k x f x mE ,故0)(lim =∞→x f n n ][,E e a12.证明:如果)(x f 是nR 上的连续函数,则)(x f 在nR 的任何可测自己E 上都可测. 证明:(1)先证:)(x f 在nR 上可测.令nR E =,R a '∈∀,因为)),((})(|{1+∞=>-a fa x f x E .现在证:)),((1+∞-a f 是一个开集.事实上,)),((10+∞∈∀-a fx ,),[)(0+∞∈a x f ,取2)(0ax f -=ε.因为)(x f 在0x 连续,则对于02)(0>-=ax f ε,0>∃δ,使),(0δx O x ∈∀时,ε<-|)()(|0x f x f ,即 ))(,)(()(00εε+-∈x f x f x f =-+--=)2)()(,.2)()((0000ax f x f a x f x f )2)()(,.2)()((0000ax f x f a x f x f -+--),()2)()(,.2)((000+∞⊂-++=a a x f x f a x f ,故)],[(),(10+∞⊂-a f x O δ,从而)],[(1+∞-a f 为开集,可测.即,)(x f 在n R 上可测.(2)再证:nR E ⊆∀可测,f 在E 可测.事实上,这是P59性质2的直接结果.14.设}{n f ,}{n h 是E 上的两个可测函数序列,且f f n ⇒,h h n ⇒,h f ,(都是E 上的有限函数)证明: (i )h f ,是E 上可测函数(ii )对于任意实数α ,β,h f h f n n βαβα+⇒+若+∞<mE ,则还有(iii )h f h f n n ⋅⇒⋅若+∞<mE ,且n h ,h 在E 上几乎处处不等于0,则(iv )hf h f n n ⇒.证明:(i )因为f f n ⇒,n f 是可测函数列,由Riesz 定理,}{n f 有一个子列}{k n f ,使得f f k n ⇒ ][,E e a .再由P62性质4,f 是在E 可测,同理,h 在E 可测.(ii )先证:当f f n ⇒时,R '∈∀α,有f f n αα⇒.事实上,当0=α时,0>∀ε,∅=≥-}|{εααf f x E n .所以∅=≥-∞→}|{lim εααf f x mE n n .当0≠α时,因为}||||{}||{αεεαα≥-=≥-f f x E f f x E n n ,故 }||||{}||{lim αεεαα≥-=≥-∞→f f x E f f x mE n n n 0}||||{lim =≥-=∞→αεf f x mE n n .从而f f n αα⇒.再证:h f h f n n βαβα+⇒+. 事实上,0>∀ε,⊆≥-+-⊆≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x E h f h f x E n n n n}2|)|{}2||{εββεαα≥-≥-h h x E f f x E n n .≤≥-+-≤≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x mE h f h f x mE n n n n)(0}2|)|{}2||{∞→→≥-+≥-n h h x mE f f x mE n n εββεαα. 0}|)()({lim =≥+-+∞→εβαααh f f f x mE n n所以:h f h f n n βαβα+⇒+. (iii )现在证:h f h f n n ⋅⇒⋅. 先证:f f n ⇒,必有22f f n ⇒.事实上,若0}|{lim 022≠≥-∞→εf f x mE n n (对于某个00>ε).因为+∞<mE ,而N n ∈∀,mE f f x E n ≤≥-≤}|{0022ε,则∞=≥-1022}|{{n n f f x mE ε是有界无穷数列.故存在}{n f 的子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE k n k ε.事实上,如果每个}{n f 的收敛子列}{k n f 都0}|{lim 022=≥-∞→εf f x mE k n k .故0>∀δ,N ∈∃N 时,恒有),0(}|{022δεU f f x mE kn ∈≥-.倘若不然,∃无穷个∞=1}{k m k f ,使得 ),0(],0[}|{022δεU mE f f x mE km -∈≥-.即∞=≥-1022}}|{{k m f f x mE k ε是有界无穷点列,它有一收敛子列.不妨设这收敛子列就是它本身.因为N k ∈∀,δ≥-|}{22f f x mE kn ,故0}|{lim 022=≥-∞→εf f x mE k n k .故 .}|{lim *022δε≥=≥-∞→l f f x mE k m k 这与}{k n f 得每个收敛子列都为零极限矛盾,从而0>∀δ,N ∈∃N ,使得N n ≥∀时,有δε<≥-}|{022f f x mE n .即0}|{lim 022=≥-∞→εf f x mE n k ,这与.0}|{lim 022≠≥≥-∞→εεf f x mE k m k 矛盾.所以 }{n f 有子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE kn k ε.另一方面:因为f f n ⇒,所以f f k n ⇒.故由Riesz 定理}{n f 有一子列}{k n f ',有f f k n →' ][,E e a ,从而22f f kn →'][,E e a .故.0}|{lim 022=≥-∞→εf f x mE km k 这与l f f x mE k m k =≥-'∞→}|{lim 022ε矛盾.从而,.0}|{lim 022=≥-∞→εf f x mE k n k 最后证:h f h f n n ⋅⇒⋅. 事实上,])()[(4122n n n n n n h f h f h f --+=⋅h f h f h f ⋅=--+⇒])()[(4122. 习题14(iii )引理例1,设)(x f ,)2,1)(( =n x f n 都是E 上的可测函数列且+∞<mE ,如果f f n ⇒,则22f f n ⇒.证明:设f f n ⇒,若22f f n ⇒/,即0>∃0ε使得.0}|{lim 022=/≥-∞→εff x mE k n k 即0>∃0δ,N ∈∀N ,N n N ≥∃,有0022}|{1δε≥≥-f f x mE n . 特别的,当1=N 时,N n ≥∃1,有00022}|{1δε≥≥-f f x mE n ;当11+=n N 时,N n ≥∃2,有0022}|{2δε≥≥-f f x mE n ;当12+=n N 时,N n ≥∃3,有0022}|{3δε≥≥-f f x mE n这样继续下去,得}{n f 的一子列∞=1}{k n k f 使得N k ∈∀,+∞<≤≥-≤mE f f x mE kn }|{0220εδ,即∞=≥-1022}|{{k n f f x mE kε是一个有界的无穷数列,有一收敛子列∞='≥-1022}|{{k n f f x mE k ε,0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k .另一方面,因为f f n ⇒,所以f f k n ⇒',由Ri e s z 定理,∞=1}{k n k f 必有一子列∞=1}{k m k f 使得f f k m ⇒ ][,E e a .所以22f f km ⇒ ][,E e a .从而22f f km ⇒.即0}|{lim 022=≥-∞→εf f x mE k m k ,这与0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k 矛盾. 例2,设f f n ⇒,h h n ⇒,则h f h f n n ⋅⇒⋅ 证:因为h f h f h f h f h f h f n n n n n n ⋅=--+⇒--+=⋅])()[(41])()[(41222215.设}{n f 是E 上的可测函数,+∞<mE ,则当f f n ⇒且f 是有限函数时,对于Np ∈∀,有(i )p p n f f ||||⇒(ii )对于E 上的任意可测函数h ,有p p n h f h f ||||-⇒-证:先证:当f f n ⇒,有||||f f n ⇒,对于o >∀ε,因为f f f f n n -≤-||||,故}|)()(|{}||{εε≥-⊃≥-x f x f x E f f x E n n所以≤≥-≤}|)()(|{0εx f x f x E n 0}|)()(|{→≥-εx f x f x mE n故0}|)(||)(|{lim =≥-∞→εx f x f x mE n n ,从而||||f f n ⇒. (i )N p ∈∀,ppn f f ||||⇒当2=p 时,||||f f n ⇒,由14题(iii )有22||||||||||||f f f f f f n n n =⋅⇒⋅=.假设kkn f f ||||⇒,又因为||||f f n ⇒,所以111||||||||||||++=⇒⋅=k k n k n k n f f f f f f .故N p ∈∀,ppn f f ||||⇒.(ii)因为0>∀ε,0}|(|{lim }|)()(|{lim =≥-=≥---∞→∞→εεf f x mE h f h f x mE n n n n所以当f f n ⇒时,对任何可测函数h ,有h f h f n -⇒-.再由前面的证明:||||h f h f n -⇒-.再由(i )的结论,p p n h f h f ||||-⇒-.。
实变函数(程其襄版)第一至四章课后习题答案
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。
实变泛函第三章答案
3.2 设(X,ρ)为距离空间,试证ρ(x,y )是关于x,y 的连续函数。
解:要证ρ(x,y )是关于x,y 的连续函数,即证当x →x 0,y →y 0时,ρ(x,y)→ρ(x 0,y 0). 显然,当x →x 0,对∀ε有ρ(x,x 0,)<ε2,同时,当y →y 0, ∀ε有ρ(y,y 0)<ε2. ρ(x,y )−ρ(x 0,y 0)≤ρ(x,x 0,)+ρ(x 0,,y)≤ρ(x,x 0,)+ρ(x 0,y 0)+ρ(x 0,,y )−ρ(x 0,y 0) =ρ(x,x 0,)+ρ(y,y 0)≤ε2+ ε2=ε. 即ρ(x,y )−ρ(x 0,y 0)≤ε,即ρ(x,y)→ρ(x 0,y 0).3.4设(X,ρ)为距离空间,定义ρ1(x,y)=ρ(x,y )1+ρ(x,y ), 证明ρ1也是X 上的一个距离空间。
证明:因为ρ是X 上的一个距离,ρ(x,y )≥0,ρ(x,x )=0。
ρ(x,z )+ρ(y,z )≥ρ(x,y ). 所以,ρ1(x,y )=ρ(x,y )1+ρ(x,y )≥0,ρ1(x,x )=ρ(x,x )1+ρ(x,x )=0.最后只需证(X,ρ1)满足三角不等式。
ρ1(x,z )+ρ1(z,y )=ρ(x,z )1+ρ(x,z )+ρ(z,y )1+ρ(z,y )>ρ(x,z )1+ρ(x,z )+ρ(z,y )+ρ(z,y )1+ρ(z,y )+ρ(x,z )=ρ(x,z )+ρ(z,y )1+ρ(z,y )+ρ(x,z )≥ρ1(x,y ).所以(X,ρ1)是一个距离空间。
3.6 设X 为距离空间,G ⊂X,则G 在X 中稠密⇔G =X .证明:⇒:G 在X 中稠密,则X ⊂GX 和X 为距离空间,则G ⊂X ,即G =X 。
⇐: =X ,则X ⊂,显然G 在X 中稠密。
即命题成立。
3.9 设X 为完备的距离空间,X 1为X 的稠密子集,若离X 1≠X ,且按照X 上的距离,把X 1看做独立的距离空间,则X 1不完备,并由此证明闭区间[a,b]上的Rieman 可积函数全体按照距离ρ(x,y )=∫|x (t )−y (t )|dt ba是一个不完备的距离空间。
实变函数论课后答案第三章3
使得 则从 ,
是至多可数集,从而知也是至多可数集,从而有 (P54习题2)
(,,) 令,我们来证明是完备集 1)是闭集:,存在, 则,推出, 若,则,,为至多可数集, ,充分大时,, ()
实变函数论课后答案第三版
1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。
证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。
实变函数第三章习题答案
*
知,对
c ( f ( a ), f ( b )) ( 0 , m E ), [ a , b ], 使得 f ( ) m ([ a , ] E ) c .
*
即 E 0 [ a , ] E E , 使得 m E 0 c .
n
lim mE ( f n f ) 0 .
又 f n ( x ) g n ( x ) a .e 于 E ,所以 mE ( f n g n ) 0 .
记 E 0 E ( f n g n ),则 mE 0 0 .
n 1
对 x E E 0 , 有 f n ( x ) g n ( x ),且
1
证明:(1“ ” ). 由于 f ( x ) 在 E 上可测,所以对 a R , E ( f a ) 可测 . 特别地,对 r Q , E ( f r ) 可测 .
1
( rn
{ rn }:
n 1
[ a
“ ” a R , 严格单增有理数列
rn a ( n ), 有 rn a , E ( f a ) E ( f r ). 且 n
于是 m ( lim E n ) 0 , 故 lim E n 可测,且 m ( lim E n ) 0 .
n n n
5 .证明: F 为 F 型集 CF 为 G 型集 .
证明: F 为 F 型集 F Fi ( I a , Fi闭 )
i I
CF C ( Fi ) CF i ( I a , CF i 开 ).
知, 子列 f n i ( x ) f ( x ) a .e 于 E .于是 mE ( f n i f ) 0 .
实变函数习题3思考题参考答案
k = 1, 2, ,使得开集类 A 的可数子开集类 B Ak U ( x k , k ) | k 1, 2, A 也覆
盖了集合 E ,也即
U (x
k 1 x E
k
, k ) E .从而有
x ) U (xk , k ) E , k 1
k 1 k 1
故 m* E 0 。
7. 证明: (1)Cantor 集 C 是一个可测集,且为一个零测集; (2)空间 R 上可测集类 M(R )的势为 2 ,其中 c 表示连续统势.
1
1
c
证明: (1) 设 Fn 表示构造 Cantor 集 C 的过程中, 第 n 步构造手续中所保留下来的 2 个 长度为 3
G G Ai G E i E i , i = 1, 2, , k .于是有 G (G Ai ) 。故而
i 1
k
m G m (G Ai ) m (G Ai ) m * (G Ai ) m * ( E i ) ,
i 1 i 1 i 1 i 1
k
k
k
k
由于 G 是包含集 E 的任意一个开集,故有
m * E inf m G m * ( E i ) ,
GE i 1
k
综上可得
k k m * Ei m * Ei 。 i 1 i 1
1 2
4.设 f ( x) 是闭区间 [ a, b] R 上的连续函数,令 G {( x, y )| a x b, y f ( x)} R 证明: m* G 0 。 证明:设 f ( x) 是闭区间 [ a, b] R 上的连续函数,并设
实变函数论课后答案第三版
1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。
证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C∅==(B A -是B 的子集,故()()ccAA C F A ∅=∈)又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅. 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x Aϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。
《实变函数》第三章_测度论
《实变函数》第三章_测度论第三章测度论(总授课时数 14学时)教学⽬的引进外测度定义,研究其性质,由此过渡到可测集本章要点要引导学⽣注意外测度与测度之间的重要差别,测度概念抽象,要与具体点集诸如⾯积体积等概念进⾏⽐较.§1、外测度教学⽬的1、掌握外测度的定义及其基本性质.2、理解区间及有理点集的外测度及其证明⽅法.本节要点外测度的定义及其基本性质. 本节难点外测度的定义. 授课时数 4学时——————————————————————————————⼀、引⾔(1) Riemann 积分回顾(分割定义域)||||01()()lim()nbiiaT i R f x dx f x ξ→==?∑?,1ii i xx x -?=-,1i i i x x ξ-≤≤积分与分割、介点集的取法⽆关。
⼏何意义(⾮负函数):函数图象下⽅图形的⾯积。
(2)新的积分(Lebesgue 积分,从分割值域⼊⼿)记1{:()}i i i E x y f x y -=≤<,1i i i y y ξ-≤<,则[,]1()()lim ni i a b i L f x dx mE δξ→==∑?问题:如何把长度,⾯积,体积概念推⼴? 达布上和与下和上积分(外包)(达布上和的极限)||||01()limnbiiaT i f x dx M x →==?∑?下积分(内填)达布下和的极限||||01()limnbiiaT i f x dx m x →==?∑?⼆、Lebesgue 外测度(外包)1.定义:设 nE R ?,称⾮负⼴义实数*({})R R ?±∞=11inf{||:,i i i i i m E I E I I ∞∞*===??∑为开区间}为E 的Lebesgue 外测度。
下确界:(1)ξ是数集S 的下界,即x S ?∈,x ξ≤(2)ξ是数集S 的最⼤下界,即0,,x S ε?>?∈使得x ξε≤+ 11inf{||:,i i i i i m E I E I I ∞∞*===??∑为开区间}0,ε?>?开区间列{},i I 使得1i i E I ∞=??且**1||i i m E I m E ε∞=≤≤+∑即:⽤⼀开区间列{}i I “近似”替换集合E例1 设E 是[0,1]中的全体有理数,试证明E 的外测度为0. 证明:由于E 为可数集,故不妨令123[0,1]{,,,}E Q r r r =?=0,ε?>作开区间11(,),1,2,3,22i i i i i I r r i εε++=-+=则1i i E I ∞=??且111||2i i i i I εε∞∞+====∑∑,从⽽*m E ε≤ ,再由ε的任意性知*0m E = 思考:1. 设E 是平⾯上的有理点全体,则E 的外测度为0提⽰:找⼀列包含有理点集的开区间112212((,),1,2,3,i i i i i i i I r r r r r r Q Q i =?-∈?=2.平⾯上的x 轴的外测度为0提⽰:找⼀列包含x 轴的开区间11(1,1)(,),1,2,3,22i i i i i i I r r r Z i εε++=-+?-∈= ,3. 对Lebesgue 外测度,我们⽤可数个开区间覆盖[0,1]中的有理数全体,是否这可数个开区间也覆盖[0,1](除可数个点外).注:对可数个开区间不⼀定有从左到右的⼀个排列(如Cantor 集的余集的构成区间) 2.Lebesgue 外测度的性质(1)⾮负性:0m E *≥,当E 为空集时,0m E *=(2)单调性:若A B ?,则m A m B **≤证明:能覆盖B 的开区间列也⼀定能覆盖A ,从⽽能覆盖B 的开区间列⽐能覆盖A 的开区间列要少,相应的下确界反⽽⼤。
《实变函数》第三章期末复习题解答
《实变函数》第三章期末复习题解答一、填空题1. 有界可测集和无界可测集统称为(可)测集2. 点集为可测集的充要条件是为(可)测集.3.任何开集,闭集都是(可)测集.4. 任何波雷尔集都是(可)测集5. 任何可测集必是一个波雷尔集与一个测度为零的可测集的(并集和差集)mE=,则的任何子集也可测且测度为(零).6. 如果0二、单选题1. 至少有一个内点的可测集的测度一定(A)零.A> B < C = D 以上答案都不对2. 中任何可测集都可表为至多可列个互不相交的有界可测集的(B)A交集 B 并集 C 交集的补集 D 并集的补集3. 设E是有限点集或可列点集,则mE=(A)A 0B 1C mD e4. 可列个外侧度为零的集合的并集的外侧度为(A)A 0B 1C 2D 不存在5. 若m E*(C)0,则E为可测集。
A> B < C = D ≠⊂.若(m B﹨A)=0,则mB(C)mA6. 设A和B均可测,且A BA> B < C = D ≠三、证明题或计算题1. .设都是中的点集,其中是可测集,并且.试证也是可测集.证因可测,,所以由卡拉皆屋独利条件,得因为. 所以. 由习题3中的第6题可知是可测集. 由此可知是可测集.2. 证明若为有界集,则 .证 因为 为有界集,故存在 中的长方体 ,使.由外测度的单调性,可知,但,所以.3. 设E ⊂[0,1],且mE =0.求mE 的值.解:令E 为[0,1]中所有有理数集合,则mE =0,但由于E =[0,1],故mE =m [0,1]=14. 证明[0,1]中的无理数集可测且测度为1.证明:设[0,1]中的有理数集为Q ,[0,1]中的无理数集为I ,则Q I φ=, 且[0,1]=QI .由于Q 为可测集,故Q 可测且侧度为0,又因为I =[0,1]- Q , 且[0,1]和Q 都是可测集,故I 可测.于是从[0,1]= Q I ,Q I φ=及测度的可加性得m [0,1]=mQ mI +,因此mI =1.5. 设12,S S 均为可测集,12S S ⊂,且1mS <+∞,则2(m S ﹨1S )=21mS mS - 证明:因为12S S ⊂,所以22(S S =﹨11)S S . 由题设条件1mS <+∞,于是21mS mS -=2(m S ﹨1S ).故2(m S ﹨1S )=21mS mS - 6.设12,,,,n E E E 是[0,1] 中的一列可测集,且对任意正整数k ,有k mE >1-1k. 求证 m (1n i i E =)=1.证明:由于[0,1](1,2,)i E i n ⊂=,所以1n i i E =[0,1]⊂,于是m (1n i i E =)≤m [0,1]=1. 另一方面,由于对任意自然数k ,有k mE >1-1k ,故1-1k<k mE ≤m (1n i i E =),1,2k =.因此,令k →∞,得 1≤m (1n i i E =).总之m (1n i i E =)=1.7.设12,,,n S S S 是互不相交的可测集,(1,2,)i i E E i n ⊂=.证明11()nni i i i m E m E **===∑.证明:由题设条件易知(1,2,)i E i n =互不相交.令T=1n i i E =,则T ∩i S =(1,2,)i E i n =.由于(1,2,)i E i n =是互不相交的可测集,故由推论3.2.1得1[()]ni i m TS *==1()ni i m TS *=∑,即 11()nni i i i m E m E **===∑。
实变函数第三章习题解答
第三章 作 业
1.证明:若E 有界,则m E ∗<+∞.
2.证明:可数点集的外测度为零.
3.证明:设E 是直线上一有界集,,则对任意小于的正数,恒有0m E ∗>m E ∗c E 的子集,使.
1m E c ∗=
4.证明:设是一些互不相交的可测集合,,,求证 . 12,,,n S S S i i E S ⊂1,2,,i n = 11()n n
i i i i m E m E ∗
∗===∑∪
5.若0m E ∗=,则E 可测.
6.证明康托尔(Cantor )集合的测度为零.
7.设且.若,q A B R ⊂m B ∗<+∞A 是可测集,证明
.
()()m A B mA m B m A B ∗∗∗=+−∪∩
8.证明:若E 可测,则对于任意0ε>,恒有开集及闭集,使, G F F E G ⊂⊂而(),()m G E m E F εε−<−<.
9.设,存在两列可测集{},使得且,则q E R ⊂,{}n n A B n n A E B ⊂⊂lim ()0n n n m B A →∞
−=E 可测.
10.设,证明成立不等式:,q A B R ⊂()()m A B m A B m A m B ∗∗∗+≤+∪∩∗.
11.设,若对任意的n E R ⊂0ε>,存在闭集,使得F E ⊂()m E F ε∗−<,证明E 是可测集.
12.证明:直线上所有可测集合作成的类μ的基数等于直线上的所有集合类的基数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章习题参考解答1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测集.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测.3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 (注:若),(i i i I βα=,则 ⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E 可测⇔R '∈∀α,E α可测.(由P54.19题的直接推论).证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E a f a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个闭区间上也可测.证明:N k ∈∀,),(]21,21[11b a b b b a E k k k ⊆---+=++,)(x f 在k E 上可测,记 ),(*b a E =,则k k E E ∞==1.又因为R '∈∀α,})(|{})(|{*1αα>=>∞=x f x E x f x E k k .由每个})(|{α>x f x E k 的可测性,得})(|{*α>x f x E 可测.所以)(x f 在),(*b a E =可测.令},{0b a E =,],[b a E =即E E E *=.})(|{})(|{*})(|{0ααα>>=>x f x E x f x E x f x E故})(|{α>x f x E 可测,从而)(x f 在E 上可测.],[βα=E7.设f 是E 上的可测函数,证明: (i )对R '上的任意开集O ,)(1O f -是可测集; (ii) 对R '中的任何开集F ,)(1F f-是可测集;(iii )对R '中的任何δG 型集或σF 型集M ,)(1M f-是可测集.证:(i )当O 时R '中有界开集时,由第一章定理11(P.30),O 是至多可数个互不相交的开区间i i i )},{(βα的并,即),(i i iO βα =.})(|{)],[()],([)(111i i ii i ii i ix f E f f O f βααβαβα<<===---由f 在E 上哦可测性,知:每个})(|{i i x f x E βα<<可测,从而)(1O f-可测.若O 是R '的误解开集,N n ∈∀,记],[n n E n -=,则n n E O O =是R '中有界开集,且n n O O ∞==1,故][][)(11111n n n O f O f O f-∞=∞=--== .故由)(1n O f-得可测性,知)(1O f -可测.(ii) 设F 是R '中的任一闭集,记F R O -'=是R '中开集.)()(11F R fO f-'=--=)()(11F fR f---',即)()()(111O fR fF f----'= .由)(1O f-与)(1R f '-得可测性,知,)(1F f-可测.(iii )设G ,F 分别为R '中δG 型集和σF 型集.即,存在开集列∞=1}{k k G ,闭集列∞=1}{k k F 使得k k G G ∞==1k k F F ∞==1,从而,][)(111k k G f G f-∞=-= 且][)(111k k F f F f-∞=-= .由)(1k G f -与)(1k F f -的可测性,知)(1G f-与)(1F f -均可测.8.证明:E 上两个可测函数的和仍是可测函数.证明:设)(x f ,)(x g 是E 上的两个可测函数,令})(|{0±∞=-=x g x E E E ,R a '∈∀)}(})(|{})()(|{00x g a x f x E a x g x f x E ->=>+=)()(|{01X g a r x f x E i i ->>∞= =i i r x f x E >∞=)(|{[01}])(|{0i r a x g x E ->.由)(x f ,)(x g 在E 可测,知)(x f ,)(x g 在0E 可测. 从而N i ∈∀,}])(|{0i r x f x E >与}])(|{0i r a x g x E ->可测. 故})()(|{0a x g x f x E >+可测.又因})(|{±∞=x g x E })()(|{a x g x f x E >+ 是零测集,故可测.从而g f +在E 上可测. 9.证明:若)(x f 是1E 及2E 上的非负可测函数,则f 也是21E E 上的非负可测函数.证明:因为)(x f 是1E 及2E 上的非负可测函数,则R a '∈∀,})(|{1a x f x E >与})(|{2a x f x E >均可测.于是,记21E E E =,则=>})(|{a x f x E })(|{1a x f x E >})(|{2a x f x E > 可测.从而)(x f 在21E E E =上非负可测.10.设E 是n R 中有界可测集,f 是E 上几乎处处有限的可测函数,证明:0>∀ε,存在闭集E F ⊂,使得ε<-)(F E m ,而在F 上)(x f 有界.证明:(法一)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在证)(x f 在F 上有界.如果)(x f 在F 无界,即0>∀M ,F x m ∈∃使得M x f m >|)(|.特别的,当11=M 时,F x ∈∃1有11|)(|M x f >;当}2,1|)(m ax {|2+=x f M ,F x ∈∃2,使得22|)(|M x f >;; 当},1|)(m ax {|k x f M k +=时,F x k ∈∃,使得k k M x f >|)(|,从而,得F 中互异点列F x k ⊂}{,使得N k >∀,k x f k >|)(|,即+∞=∞→|)(|lim k k x f .另一方面,因为F 为有界,且F x k k ⊂∞=1}{,故∞=1}{k k x 有一收敛子列∞=1}{k k x ,不妨设0lim x x k n k =∞→,则F x ∈0,又因为)(x f 在0x 连续.对1=ε,N k ∈∃0,0k k ≥∀时,恒有1|)(||)(||)(||)(|000<-≤-x f x f x f x f k k n n ,即)(|1|)(|0x f x f k n +≤.取N k ∈*,|)(|1*0x f k +>,则*|)(|*k x f kn ≤,但由*k n x 得定义,有***|)(|k n x f k n k≥>,这是一矛盾.从而)(x f 在F 有界.证明:(法二)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在用有限覆盖定理证:)(x f 在F 上有界.F x ∈∀0,因为)(x f 在0x 连续.所以对1=ε,00>∃x δ使得F x O x x ),(00δ∈∀,恒有:1|)()(||)()(|00<-<-x f x f x f x f ,即1|)(||)(|0+<x f x f .从而),(000x Fx x O F δ∈⊂ .因为F 是有界闭集,故由有限覆盖定理,存在)1(0x ,)2(0x ,, F x k ∈)(0,N k ∈,使得),()(0)(01i x i ki x O F δ=⊂ .取}11|({|)(0k i x f nax M i ≤≤+=,则F x ∈∀,有),(0)(x i o x O x δ∈,M x f x f i ≤+≤1|)(|)(|)(0.从而)(x f 在F 有界.11.设}{n f 是E 上的可测函数序列,证明:如果0>∀ε,都有+∞<>∑∞=}|)(|{1εx f xmE n n ,则必有0)(lim =∞→x f n n ][,E e a .证:0>∀ε,因为+∞<>∑∞=}|)(|{1εx f xmE n n ,故0}|)(|{lim1=>∑∞=∞→εx f xmE n n N .又因为})1|)(|{(}0)(|{11kx f x E x f x E n N n N k n >=→/∞=∞=∞=故})]1|)(|{([}0)(|{11kx f x E m x f x mE n N n N k n >=→/∞=∞=∞=}]1|)(|{[lim }1)(|{lim 11k x f x E m k x f x E m n N n N k n N k >=>≤∞=∞→∞=∞→∞=∑∑∑∑∑∞=∞=∞→∞==>≤110}]1|)(|{limk n Nn N k k x f x mE ,故0)(lim =∞→x f n n ][,E e a12.证明:如果)(x f 是n R 上的连续函数,则)(x f 在nR 的任何可测自己E 上都可测. 证明:(1)先证:)(x f 在nR 上可测.令nR E =,R a '∈∀,因为)),((})(|{1+∞=>-a fa x f x E .现在证:)),((1+∞-a f是一个开集.事实上,)),((10+∞∈∀-a fx ,),[)(0+∞∈a x f ,取2)(0ax f -=ε.因为)(x f 在0x 连续,则对于02)(0>-=ax f ε,0>∃δ,使),(0δx O x ∈∀时,ε<-|)()(|0x f x f ,即 ))(,)(()(00εε+-∈x f x f x f =-+--=)2)()(,.2)()((0000ax f x f a x f x f)2)()(,.2)()((0000ax f x f a x f x f -+--),()2)()(,.2)((000+∞⊂-++=a a x f x f a x f ,故)],[(),(10+∞⊂-a f x O δ,从而)],[(1+∞-a f 为开集,可测.即,)(x f 在n R 上可测.(2)再证:nR E ⊆∀可测,f 在E 可测.事实上,这是P59性质2的直接结果.14.设}{n f ,}{n h 是E 上的两个可测函数序列,且f f n ⇒,h h n ⇒,h f ,(都是E 上的有限函数)证明: (i )h f ,是E 上可测函数(ii )对于任意实数α ,β,h f h f n n βαβα+⇒+若+∞<mE ,则还有(iii )h f h f n n ⋅⇒⋅若+∞<mE ,且n h ,h 在E 上几乎处处不等于0,则(iv )hf h f n n ⇒.证明:(i )因为f f n ⇒,n f 是可测函数列,由Riesz 定理,}{n f 有一个子列}{k n f ,使得f f k n ⇒ ][,E e a .再由P62性质4,f 是在E 可测,同理,h 在E 可测.(ii )先证:当f f n ⇒时,R '∈∀α,有f f n αα⇒.事实上,当0=α时,0>∀ε,∅=≥-}|{εααf f x E n .所以∅=≥-∞→}|{lim εααf f x mE n n .当0≠α时,因为}||||{}||{αεεαα≥-=≥-f f x E f f x E n n ,故 }||||{}||{lim αεεαα≥-=≥-∞→f f x E f f x mE n n n 0}||||{lim =≥-=∞→αεf f x mE n n . 从而f f n αα⇒.再证:h f h f n n βαβα+⇒+. 事实上,0>∀ε,⊆≥-+-⊆≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x E h f h f x E n n n n }2|)|{}2||{εββεαα≥-≥-h h x E f f x E n n .≤≥-+-≤≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x mE h f h f x mE n n n n)(0}2|)|{}2||{∞→→≥-+≥-n h h x mE f f x mE n n εββεαα. 0}|)()({lim =≥+-+∞→εβαααh f f f x mE n n所以:h f h f n n βαβα+⇒+. (iii )现在证:h f h f n n ⋅⇒⋅.先证:f f n ⇒,必有22f f n ⇒.事实上,若0}|{lim 022≠≥-∞→εf f x mE n n (对于某个00>ε).因为+∞<mE ,而N n ∈∀,mE f f x E n ≤≥-≤}|{0022ε,则∞=≥-1022}|{{n n f f x mE ε是有界无穷数列.故存在}{n f 的子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE k n k ε.事实上,如果每个}{n f 的收敛子列}{k n f 都0}|{lim 022=≥-∞→εf f x mE k n k .故0>∀δ,N ∈∃N 时,恒有),0(}|{022δεU f f x mE kn ∈≥-.倘若不然,∃无穷个∞=1}{k m k f ,使得 ),0(],0[}|{022δεU mE f f x mE km -∈≥-.即∞=≥-1022}}|{{k m f f x mE k ε是有界无穷点列,它有一收敛子列.不妨设这收敛子列就是它本身.因为N k ∈∀,δ≥-|}{22f f x mE kn ,故0}|{lim 022=≥-∞→εf f x mE k n k .故 .}|{lim *022δε≥=≥-∞→l f f x mE k m k 这与}{k n f 得每个收敛子列都为零极限矛盾,从而0>∀δ,N ∈∃N ,使得N n ≥∀时,有δε<≥-}|{022f f x mE n .即0}|{lim 022=≥-∞→εf f x mE n k ,这与.0}|{lim 022≠≥≥-∞→εεf f x mE k m k 矛盾.所以 }{n f 有子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE kn k ε.另一方面:因为f f n ⇒,所以f f k n ⇒.故由Riesz 定理}{n f 有一子列}{k n f ',有f f k n →' ][,E e a ,从而22f f kn →'][,E e a .故.0}|{lim 022=≥-∞→εf f x mE km k 这与l f f x mE k m k =≥-'∞→}|{lim 022ε矛盾.从而,.0}|{lim 022=≥-∞→εf f x mE k n k 最后证:h f h f n n ⋅⇒⋅. 事实上,])()[(4122n n n n n n h f h f h f --+=⋅h f h f h f ⋅=--+⇒])()[(4122. 习题14(iii )引理例1,设)(x f ,)2,1)(( =n x f n 都是E 上的可测函数列且+∞<mE ,如果f f n ⇒,则22f f n ⇒.证明:设f f n ⇒,若22f f n ⇒/,即0>∃0ε使得.0}|{lim 022=/≥-∞→εf f x mE k n k 即0>∃0δ,N ∈∀N ,N n N ≥∃,有0022}|{1δε≥≥-f f x mE n . 特别的,当1=N 时,N n ≥∃1,有00022}|{1δε≥≥-f f x mE n ;当11+=n N 时,N n ≥∃2,有0022}|{2δε≥≥-f f x mE n ;当12+=n N 时,N n ≥∃3,有0022}|{3δε≥≥-f f x mE n这样继续下去,得}{n f 的一子列∞=1}{k n k f 使得N k ∈∀,+∞<≤≥-≤mE f f x mE kn }|{0220εδ,即∞=≥-1022}|{{k n f f x mE kε是一个有界的无穷数列,有一收敛子列∞='≥-1022}|{{k n ff x mE kε,0}|{{lim 0022>≥=≥-'∞→δεl f f x mE kn k .另一方面,因为f f n ⇒,所以f f k n ⇒',由Riesz 定理,∞=1}{k n k f 必有一子列∞=1}{k m k f 使得f f k m ⇒ ][,E e a .所以22f f km ⇒ ][,E e a .从而22f f km ⇒.即0}|{lim 022=≥-∞→εf f x mE k m k ,这与0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k 矛盾. 例2,设f f n ⇒,h h n ⇒,则h f h f n n ⋅⇒⋅ 证:因为h f h f h f h f h f h f n n n n n n ⋅=--+⇒--+=⋅])()[(41])()[(41222215.设}{n f 是E 上的可测函数,+∞<mE ,则当f f n ⇒且f 是有限函数时,对于Np ∈∀,有(i )pp n f f ||||⇒(ii )对于E 上的任意可测函数h ,有pp n h f h f ||||-⇒-证:先证:当f f n ⇒,有||||f f n ⇒,对于o >∀ε,因为f f f f n n -≤-||||,故}|)()(|{}||{εε≥-⊃≥-x f x f x E f f x E n n所以≤≥-≤}|)()(|{0εx f x f x E n 0}|)()(|{→≥-εx f x f x mE n故0}|)(||)(|{lim =≥-∞→εx f x f x mE n n ,从而||||f f n ⇒. (i )N p ∈∀,pp n f f ||||⇒当2=p 时,||||f f n ⇒,由14题(iii )有22||||||||||||f f f f f f n n n =⋅⇒⋅=.假设kk n f f ||||⇒,又因为||||f f n ⇒,所以111||||||||||||++=⇒⋅=k k n k n k n f f f f f f .故N p ∈∀,pp n f f ||||⇒.(ii)因为0>∀ε,0}|(|{lim }|)()(|{lim =≥-=≥---∞→∞→εεf f x mE h f h f x mE n n n n所以当f f n ⇒时,对任何可测函数h ,有h f h f n -⇒-.再由前面的证明:||||h f h f n -⇒-.再由(i )的结论,p p n h f h f ||||-⇒-.。