贝努利不等式在高考中的应用

合集下载

2018年高考数学:利用伯努利不等式巧解高考数学压轴题

2018年高考数学:利用伯努利不等式巧解高考数学压轴题

2018年高考数学:利用伯努利不等式巧解高考数学压轴题
我在最近几期分享了一些高考数学中可能用到的一些涉及到高数的知识,部分同学留言希望我分享一期关于不等式内容的,所以我本期要讲解的是高中数学选修系列4-5专题中的伯努利不等式(又译为贝努利)!
需要说明的是由于贝努利不等式的形式简单、变形及推理非常多,其应用十分广泛。

不过在这几年的高考中几乎在压轴题中绝迹,主要出现在较难的选择题中,不过出题形式比较隐蔽,即使出现学生也很难认出!
第一部分:伯努利不等式及其推广
为了方便有能力的同学自我拓展学习,我同时整理出了伯努利不等式的4种重要的推论:
第二部分:伯努利不等式在高考数学中的应用
我们先看下标准答案是如下解如下2001年全国卷理数第20题第(Ⅱ)问的:
由以上证明不难看出,要求学生熟练掌握排列组合及二项式的各项性质,难度比较大,现在我们用伯努利不等式来证明第(Ⅱ)问:同学们如有疑问请留言!。

高考数学 数列不等式放缩试题解析浙教版

高考数学 数列不等式放缩试题解析浙教版

1求证),1(221321N n n n C C C C n n nn nn ∈>⋅>++++- .简析 不等式左边=++++nn n n nC C C C 32112222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,原结论成立.2求证.12)1211()511)(311)(11(+>-++++n n简析 本题可以利用的有用结论主要有:法1利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn ⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n法2利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得 =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k 令12)1211()511)(311)(11(+-++++=n n T n 则13212221>+++==+n n n T T nn ,即}{,1n n n T T T ∴<+递增,有1321>=≥T T n ,得证!另证: 原不等式变形为 ,令 则,所以 。

即 是单调增函数(n=2,3,…),所以 。

故原不等式成立。

注:由此可得 加强命题.12332)1211()511)(311)(11(+≥-++++n n 并可改造成为探索性问题:求对任意1≥n 使12)1211()511)(311)(11(+≥-++++n k n 恒成立的正整数k的最大值;同理可得理科姊妹题的加强命题及其探索性结论,读者不妨一试!注: 1985年某某高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。

2015年高考文科数学复习:选修4-5不等式选讲(解析版)

2015年高考文科数学复习:选修4-5不等式选讲(解析版)

选修4-5 不等式选讲[考纲要求] (1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①|ax+b|≤|a|+|b|.②|a-b|≤|a -c|+|c-b|.③会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x -a|+|x-b|≥c.(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明。

①柯西不等式的向量形式:βαβα⋅≥⋅②③(此不等式通常称为平面三角不等式。

)(3)会用参数配方法讨论柯西不等式的一般情形:(4)会用向量递归方法讨论排序不等式。

(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。

(6)会用数学归纳法证明贝努利不等式(x>-1,x≠0,n 为大于1的正整数),了解当n 为大于1的实数时贝努利不等式也成立。

(7)会用上述不等式证明一些简单问题,能够利用平均值不等式,柯西不等式求一些特定函数的极值。

(8)了解证明不等式的基本方法:比较法,综合法,分析法,反证法,放缩法。

[知识点梳理]1.两个实数大小关系的基本事实a >b ⇔________;a =b ⇔________;a <b ⇔________.2.不等式的基本性质(1)对称性:如果a >b ,那么________;如果________,那么a >b .即a >b ⇔________.(2)传递性:如果a >b ,b >c ,那么________.(3)可加性:如果a >b ,那么____________.(4)可乘性:如果a >b ,c >0,那么________;如果a >b ,c <0,那么________.(5)乘方:如果a >b >0,那么a n ________b n (n ∈N ,n >1).(6)开方:如果a >b >0,那么n a ________n b (n ∈N ,n >1).3.绝对值三角不等式(1)性质1:|a +b |≤________.(2)性质2:|a |-|b |≤________.性质3:________≤|a -b |≤________.4.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集不等式 a >0 a =0a <0 |x |<a|x |>a(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法①|ax +b |≤c ⇔______________;②|ax +b |≥c ⇔______________.(3)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.5.基本不等式(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)定理(基本不等式):如果a ,b >0,那么a +b 2________ab ,当且仅当________时,等号成立.也可以表述为:两个________的算术平均________________它们的几何平均.(3)利用基本不等式求最值对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当________时,它们的积P 取得最________值;②如果它们的积P 是定值,则当且仅当________时,它们的和S 取得最________值.6.三个正数的算术—几何平均不等式(1)定理 如果a ,b ,c 均为正数,那么a +b +c 3________3abc ,当且仅当________时,等号成立. 即三个正数的算术平均____________它们的几何平均.(2)基本不等式的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均__________它们的几何平均,即a 1+a 2+…+a n n ________n a 1a 2…a n , 当且仅当________________时,等号成立.7.柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.8.证明不等式的方法(1)比较法①求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明________即可,这种方法称为求差比较法. ②求商比较法由a >b >0⇔a b>1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明________即可,这种方法称为求商比较法.(2)分析法从待证不等式出发,逐步寻求使它成立的____________,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法.(4)反证法的证明步骤第一步:作出与所证不等式________的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.(5)放缩法所谓放缩法,即要把所证不等式的一边适当地________________,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立.(6)数学归纳法设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.[考点题型剖析]题型一 含绝对值的不等式的解法【典型例题】例1-1解不等式|x +1|+|x -1|≥3.思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法.规范解答解 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x .[4分]∴-1-x +1-x =3,得x =-32. 同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =32. 从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.[8分]所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分] 方法二 当x ≤-1时,原不等式可化为-(x +1)-(x -1)≥3,解得:x ≤-32.[3分] 当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解.[6分]当x ≥1时,原不等式可以化为x +1+x -1≥3.所以x ≥32.[9分] 综上,可知原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.[10分] 方法三 将原不等式转化为|x +1|+|x -1|-3≥0.构造函数y =|x +1|+|x -1|-3,即y =⎩⎪⎨⎪⎧ -2x -3,x ≤-1;-1,-1<x <1;2x -3,x ≥1.[3分]作出函数的图象,如图所示:函数的零点是-32,32. 从图象可知,当x ≤-32或x ≥32时,y ≥0,[8分] 即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分] 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.例1-2(2012·课标全国)已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4.所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].思维升华 解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.例1-3 (2013·课标全国Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 审题破题 (1)可以通过分段讨论去绝对值;(2)在x ∈⎣⎡⎭⎫-a 2,12时去绝对值,利用函数最值求a 的范围. 解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧ -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.(2)∵a >-1,则-a 2<12, ∴f (x )=|2x -1|+|2x +a|当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=a +1, 即a +1≤x +3在x ∈⎣⎡⎭⎫-a 2,12上恒成立. ∴a +1≤-a 2+3,即a ≤43, ∴a 的取值范围为⎝⎛⎦⎤-1,43.【变式训练】1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是____.答案 (-∞,8]解析 ∵|x -5|+|x +3|=|5-x |+|x +3|≥|5-x +x +3|=8,∴(|x -5|+|x +3|)min =8,要使|x -5|+|x +3|<a 无解,只需a ≤8.2. (2013·江西)在实数范围内,不等式||x -2|-1|≤1的解集为________.答案 [0,4]解析 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0|x -2|≤2得0≤x ≤4. ∴不等式的解集为[0,4].3. (2012·山东)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.答案 2解析 ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2.4[2014·江西卷] x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.答案 [0,2]5.不等式|x +1||x +2|≥1的实数解为__________. 答案 ⎩⎨⎧⎭⎬⎫x |x ≤-32且x ≠-2. 解析 ∵|x +1||x +2|≥1,∴|x +1|≥|x +2|. ∴x 2+2x +1≥x 2+4x +4,∴2x +3≤0.∴x ≤-32且x ≠-2.6.已知函数f (x )=|x +1|+|x -2|-m .(1)当m =5时,求f (x )>0的解集;(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围.解 (1)由题设知|x +1|+|x -2|>5,不等式的解集是以下三个不等式组解集的并集:⎩⎪⎨⎪⎧ x ≥2,x +1+x -2>5或⎩⎪⎨⎪⎧ -1≤x <2,x +1-x +2>5或⎩⎪⎨⎪⎧ x <-1,-x -1-x +2>5, 解得函数f (x )的定义域为(-∞,-2)∪(3,+∞).(2)不等式f (x )≥2即|x +1|+|x -2|>m +2,∵x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,不等式|x +1|+|x -2|≥m +2解集是R ,∴m +2≤3,m 的取值范围是(-∞,1].7.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2. (2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5), 于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧ -2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5.综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].方法二 (1)同方法一.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].8.(2013·辽宁)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4. 当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解; 当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a . 由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎨⎧ a -12=1,a +12=2,于是a =3.9.[2011课标]选修4-5:不等式选讲 设函数()3f x x a x =-+,其中0a >。

高中数学著名不等式荟萃

高中数学著名不等式荟萃

著名不等式荟萃在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩。

下面择要介绍一些著名的不等式。

一、平均不等式(均值不等式)设a 1,a 2,…,a n 是 n 个实数,A =na ++a +a n 21 叫做这n 个实数的算术平均数。

当这 n 个实数非负时,G =n n 21a a a 叫做这 n 个非负数的几何平均数。

当这 n 个实数均为正数时,H =n 21a 1++a 1+a 1n 叫做这 n 个正数的调和平均数。

设a 1,a 2,…,a n 为 n 个正数时,对如下的平均不等式:H ≤G ≤A 当且仅当 a 1=a 2=…=a n 时等号成立。

平均不等式A ≥G 是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一。

设x 1,x 2,…,x n 是 n 个正的变数,则(1)当积 x 1x 2…x n =P 是定值时,和x 1+x 2+…+x n 有最小值,且(x 1+x 2+…+x n )min =(2)当和 x 1+x 2+…+x n =S 是定值时,积 x 1x 2…x n 有最大值,且(x 1x 2…x n )max =(12n x +x ++x n L )n =(S n)n 两者都是当且仅当 n 个变数彼此相等时,即 x 1=x 2=…=x n 时,才能取得最大值或最小值。

在 A ≥G 中,当n =2,3时,分别有12a +a 2,123a +a +a 3平均不等式 A ≥G 经常用到的几个特例是:(a 1+a 2+…+a n ) (11a +21a +…+n1a )≥n 2 当且仅当a 1=a 2=…=a n 时等号成立;a 1+1a 1≥2,当且仅当a 1=1时等号成立。

二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数a 1,a 2,…,a n ;b 1,b 2,…,b n ,有(a 1b 1+a 2b 2+…+a n b n )≤(a 12+a 22+…+a n 2) (b 12+b 22+…+b n 2)其中等号当且仅当11a b =22a b =…=n n a b 时成立。

高考数学高中数学知识点《贝努利不等式》

高考数学高中数学知识点《贝努利不等式》

专题3 贝努利不等式的几个推论及应用知识点:贝努利不等式就是其中的一个重要不等式。

在高中数学中有所应用,可作为教师的知识储备,在解决高中数学压轴题中具有指导作用。

一.概念()1nx +≥1nx + (x >1-,n 为正整数). 当n 为大于1的实数时贝努利不等式也成立. 二.推论1. (1) 设n N +∈,n >1,t >0,则有n t ≥1nt n -+, n t ≥()11n t +-, 当且仅当1t =时,取等号.(2)的证明可由恒等式1n t nt n -+-()()223412321n n n t t t t n t n ---⎡⎤=-++++-+-⎣⎦2 设a ,λ>0,n N +∈,n >1,则n a ≥()11n n n a n λλ---, 当且仅当a λ=时,取等号.证明 由(2)得,nn n a a λλ⎛⎫= ⎪⎝⎭≥1n a n n λλ⎛⎫⋅-+ ⎪⎝⎭=()11n n n a n λλ---,当且仅当a λ=时取等号.3 设a ,b >0,n N +∈,n >1,则1n n a b -≥()1na n b --, 1n n b a -≥1n n a b--, 当且仅当a b =时取等号. 证明 由(2)得,1nn n a a b b b -⎛⎫= ⎪⎝⎭≥1a b n n b ⎛⎫⋅-+ ⎪⎝⎭≥()1na n b --, 11nn n b b a b a -⎛⎫= ⎪⎝⎭≥11b n n b a ⎛⎫⋅-+ ⎪⎝⎭≥1n n a b --,当且仅当a b =时取等号. 4 . 设a ,b >0,n N +∈,n >1,则11n a n n-+, 当且仅当1a =时(6)取等号.证明na =≥1n +≤11n a n n-+.当且仅当1a =时取等号.三、经典题组题组11.已知m ,n 为正整数.(Ⅰ)用数学归纳法证明:当1x >-时,()1mx +≥1mx +;(Ⅱ)对于n ≥6,已知11132n n ⎛⎫-< ⎪+⎝⎭,求证:1132n mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,1,2,,m n =;(Ⅲ)求出满足等式()()3423n nnnn n ++++=+的所有正整数n .2.(算术—几何平均值不等式)设1a ,2a ,,n a 均为正数,n N +∈,n >1,则12na a a n+++1. 设x ,y >0,1x y +=,求证:3311x y x y ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭≥1254.2.设,0,1,2,,,i i a b i n k N +>=⋅⋅⋅∈,则1111212k k k n k k k n a a a b b b +++++⋅⋅⋅+≥11212()()k n k n a a a b b b +++⋅⋅⋅+++⋅⋅⋅+.1.设,,a b c 为正数,且满足1abc =.试证()()()333111a b c b c a c a b +++++≥32. 2.设1a ,2a ,,n a ,a ,b ,s 均为正数,1a +2a ++k a s =,,n k N +∈,,n k >1,求证:1ki =∑《大学数学在高考数学中漫步系列》专题1.极限与洛必达专题2.泰勒展开式的简析与应用专题3.贝努力不等式专题4.罗尔、拉格朗日中值定理专题5.对数平均数专题6.驻点、拐点、凹凸性1、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。

巧用贝努利不等式求解高考或竞赛试题

巧用贝努利不等式求解高考或竞赛试题
成立 .
— ■—T _ : +

_ > ) Hale Waihona Puke … J 0 1 ‘ 3
推论 2 : 设口 , >0 , n∈ N , n>1 , 贝 0 0 ≥n 2 5 l , 一( n一1 ) , 当且仅当 口= 时
取 等号 .
。 2… …・ ・0 <2・ 凡! 局 立.
【 ( 一 ) ] < ( ) , m = ・ , 2 , … , .
( 3 )由( 2 ) 知, 当 n≥ 6时 ,
∈ N ) , 即 证 明 不 等 式 吉 ・ 3 … … }<
志  ̄ / 2 n + 1 ( n ∈ N) , 即 证 明 不 等 式 午‘

恒成立, 求实数 c 的取值范
+ a2 a4 + … … +
√ an + 2
解: ( 1 ) 其 实 就 是 用 数 学 归 纳 法 证 明 贝 努 利不 等式 ( 证 明略 ) .
围; ② 求 证:

a2 a4 …
a2

… a 2n
< < √Z a + l 一 1.
2 0 1 3年 第 5期
河北理科 教 学研 究
问题 讨论
巧 用 贝 努 利 不等 式 求解 高 考 或 竞赛 试 题
湖北省 大 冶市 第一 中学 黄俊 峰 袁方程 4 3 5 1 0 0
《 湖北省普通高中数学教学实施指导意 见》 将《 新课 程标准》 中选修系列 4— 5 “ 不等 式选讲” 作为指定学生选修习 I 的专题 , 而贝 努利不等式就是其 中一个重要不等式 . 本文 主要探讨贝努利不等式及其推论在高考或竞
( - 一 ) + ( 一 ) “ …・ + 争… ( 一 ) < + ( ) + . . ・ + ( ) =

高考数学一轮复习 不等式选讲 第2课时 不等式的证明与柯西不等式课件 理(选修45)

高考数学一轮复习 不等式选讲 第2课时 不等式的证明与柯西不等式课件 理(选修45)

(2)放缩法的注意事项:
①舍去或加上一些项,如(a+12)2+34>(a+12)2;
②将分子或分母放大(缩小),如
1 k2
<
1 kk-1

1 k2
>
1 kk+1

1 k<
2 k+
k-1

1 k>
k+2 k+1 (k∈N*,k>1)
等.
③放大或缩小时注意要适当,必须目标明确,合情合
理,恰到好处,且不可放缩过大或过小,谨慎地添或减是放
则M,N的大小关系是( )
A.M<N
B.M>N
C.M=N • 答案 B
D.不确定
解析 由已知得0<ab<1, 故M-N=1+1 a+1+1 b-1+a a-1+b b =11- +aa+11- +bb=12+1a-1a+bb>0. 故M>N.
3.已知a,b,c是正实数,且a+b+c=1,则
题型二 三个正数的算术——几何平均不等式问题
• 例2 已知x∈R+,求函数y=x(1-x2)的最大值.
【思路】
利用平均值不等式abc≤(
a+b+c 3
)3(a>0,
b>0,c>0)求解.
【解析】 ∵y=x(1-x2),
∴y2=x2(1-x2)2=2x2(1-x2)(1-x2)·12. ∵2x2+(1-x2)+(1-x2)=2, ∴y2≤12(2x2+1-3x2+1-x2)3=247.
5.(2013·湖北)设x,y,z∈R,且满足:x2+y2+z2=1, x+2y+3z= 14,则x+y+z=________.
答案
3 14 7
解析 由柯西不等式,得(x2+y2+z2)(12+22+32)≥(x+

高考不等式选讲专题复习(经典)

高考不等式选讲专题复习(经典)

不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===•nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络§1 绝对值型不等式典例精析题型一解绝对值不等式【例1】设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>3;(2)若f(x)>a对x∈R恒成立,求实数a的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lga +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c2≥lg ac . 而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).(1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明: 设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22. 【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明. 【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54-4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k ; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++•+2b a a c a c b a ++++•+2c b ac a c c b ++++•=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4(当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1, 即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934⇒S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇。

第二节证明不等式的基本方法、数学归纳法证明不等式

第二节证明不等式的基本方法、数学归纳法证明不等式

(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a

高考数学几个重要不等式课件

高考数学几个重要不等式课件

5.排序不等式(排序原理)
设 a1≤a2≤…≤an,b1≤b2≤…≤bn 为两组实数,c1,c2,…, cn 是 b1 , b2 , … , bn 的 任 一 排 列 , 则 ____a_1_b_n+__a_2_b_n_-_1+___…__+__a_nb_1_______≤____a_1c_1_+__a_2_c_2+__…__+__a_n_c_n__ ≤_________a_1b_1_+__a_2_b_2+__…__+__a_n_b_n__________ , 当 且 仅 当 ___a_1=__a_2_=__…__=__a_n_或___b_1=__b_2_=__…__=__b_n___时,反序和等于顺序和, 此不等式简记为___反__序__和___≤___乱__序__和___≤___顺__序__和___.
考点自测 1.f(x)=2 x+3 1-x的最大值为( ) A.5 B.121313 C. 13 D.522
答案:B
2.已知关于 x 的不等式 2x+x-2 a≥7 在 x∈(a,+∞)上恒 成立,则实数 a 的最小值为__________.
答案:32
3.已知 x、y、z∈R,x2+y2+z2=1,则 x+2y+2z 的最大 值为__________.
点评:使用柯西不等式的一般形式求最值的关键是结合已知 条件构造两个适当的数组,变为柯西不等式的一般形式.
变式探究 2 (2014·大连模拟)若 a,b,c∈R+,且 a+b+c =6,求 2a+ 2b+1+ 2c+3的最大值.
解析:由柯西不等式得 ( 2a+ 2b+1+ 2c+3)2 =(1× 2a+1× 2b+1+1× 2c+3)2 ≤(12+12+12)(2a+2b+1+2c+3)=3(2×6+4)=48, ∴ 2a+ 2b+1+ 2c+3≤4 3. 当且仅当 2a=2b+1=2c+3 时,等号成立.即 a=83,b=163, c=76时, 2a+ 2b+1+ 2c+3有最大值 4 3.

关于不等式的证明及推广

关于不等式的证明及推广

百度文库- 让每个人平等地提升自我I关于不等式的证明及推广摘要在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。

初等代数中介绍了许多具体的但相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等数学中,可以利用的方法更加灵活技巧。

我们可以利用典型的柯西不等式的结论来证明类似的不等式;除此还可以利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;结合凸函数的性质,凸函数法也可以证明一类不等式;在正定的情况下,也可以用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也可以将定积分化为重积分,再证明所求的不等式。

由此我们可以看到,不等式的的求解证明方法并不唯一,但是初等数学里的不等式,都可以用高等数学的知识来解决,解答更为简洁。

所以,高等数学对初等数学的教学和学习具有重要的指导意义。

本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注重对一些著名不等式的论证、推广及应用的介绍。

本篇论文一共分为三章,其中第三章和第四章为正文部分。

第三章分两小节,第一节介绍了23种初等代数中不等式的证明方法。

而第二节则介绍了6种高等代数中不等式的证明方法。

第四章介绍了一些著名不等式的证明、推广和应用。

关键词:不等式证明方法百度文库- 让每个人平等地提升自我IIAbstractIn elementary algebra and advanced algebra,The inequality proof all holds the pivotalposition. In the elementary algebra introduced many concrete but has quite had mystical powers activeness and skill the proof method,For example the structure proof method, the comparison test, puts item by item shrinks research technique and so on the law; But in higher mathematics,We may a use method more nimble skill. We may use the model west the tan oak the inequality conclusion to prove the similar inequality; Eliminates this also to be possible to use the derivative, Differential theorem of mean, Taylor formula; integra intermediate value theorem And so on the related knowledge proves the inequality;Union convex function nature,The convex function law also may prove a kind of inequality; In is deciding in situation,Also may use the discriminant law; After grasped the definite integral to change into the multiple integral the content, Regarding some kind of inequality,Also may change into the definite integral the multiple integral, Again proved asks inequality. May see from this us to, Inequality solution proof method not only, But in elementary mathematics inequality, All may use the higher mathematics the knowledge to solve, answer is ,The higher mathematics has the important guiding sense to the elementary mathematics teaching and the study, Not only must grasp in the elementary mathematics each inequality proof method,Must grasp in the higher mathematics the inequality proof method, This article induced and summarized some solution proof inequalities methods and the skill,Has highlighted the inequality basic thought and the essential method, Is advantageous for understands each part of inner links well, Grasps the inequality from the overall the thinking method; Attention to some famous inequalities proofs.This paper altogether divides into three chapters, third chapter and fourth chapter is the main chapter minutes two sections, First section introduceds in 23 kind of elementary algebras the inequality proof method. But second then introduced in 6 kind of advanced algebras the inequality proof chapter introduced some famous inequalities proofs, the promotion and the application.Key word: Inequality proof method百度文库- 让每个人平等地提升自我III 目录摘要 (Ⅰ)Abstract (Ⅱ)第一章引言(绪论) (1)第二章文献综述 ·······················································································第三章不等式的证明方法 ·······································································初等代数中不等式的证明 ·····································································3.1.1比较法····················································································3.1.2分析法 ·······························································································3.1.3反证法·······························································································3.1.4数学归纳法 ························································································3.1.5换元法 ·······························································································3.1.6放缩法 ·······························································································3.1.7调整法 ·······························································································3.1.8构造法 ·······························································································3.1.9利用已知的不等式证明 ·······································································3.1.10利用一元二次方程的判别式证明 ·······················································3.1.11用几何特性或区域讨论 ·····································································3.1.12利用坐标和解析性证明 ·····································································3.1.13利用复数证明 ···················································································3.1.14参数法 ·····························································································3.1.15利用概率证明 ···················································································3.1.16利用向量证明 ···················································································3.1.17面积法 ·····························································································3.1.18化整法 ·····························································································百度文库- 让每个人平等地提升自我IV 3.1.19步差法 ·····························································································3.1.20通项公式法 ······················································································3.1.21转化成数列法 ···················································································3.1.22增量法 ·····························································································3.1.23裂项法 ·····························································································高等代数中不等式的证明 ·······································································3.2.1由函数的上、下限证明·····································································3.2.2由柯西不等式证明 ···········································································3.2.3由Taylor公式及余项证明·································································3.2.4由积分的性质证明 ···········································································3.2.5由中值定理证明···············································································3.2.6利用求函数的最值证明·····································································第四章几个著名不等式的证明、推广及其应用···································关于绝对值不等式 ·················································································4.1.1三角形不等式 ··················································································4.1.2三角形不等式的推广 ········································································4.1.3三角形不等式的应用 ········································································平均值不等式··························································································4.2.1算术平均数与几何平均数 ·································································4.2.2几个平均数的关系 ···········································································4.2.3平均值不等式的应用 ········································································贝努利不等式··························································································排序不等式······························································································柯西不等式······························································································4.5.1柯西不等式的定理和初等证明 ··························································4.5.2柯西不等式的推广 ···········································································百度文库- 让每个人平等地提升自我V 闵可夫斯基不等式 ·················································································赫尔德不等式··························································································契比雪夫不等式 ·····················································································琴生不等式······························································································艾尔多斯—莫迪尔不等式 ·····································································结论··············································································································致谢··············································································································参考文献······································································································附件··············································································································。

2几个重要不等式-拔高难度-讲义

2几个重要不等式-拔高难度-讲义

2022年职业考证-教师资格-幼儿教师资格证考试全真模拟易错、难点剖析AB卷(带答案)一.综合题(共15题)1.单选题某学校年终对全体教师进行考核。

根据《中华人民共和国教师法》的规定,下列说法正确的是()。

问题1选项A.考核包括教师的师德师风、业务水平、育人业绩和管理水平B.考核结果是教师受聘任教、普升工资、实施奖惩的唯一依据C.考核应当充分听取教师本人、其他教师以及学生家长的意见D.上级教育行政部门可以对该校教师考核工作进行指导与监督【答案】D【解析】【解析】:本题考查《中华人民共和国教师法》。

根据《中华人民共和国教师法》第二十二条规定:学校或者其他教育机构应当对教师的政治思想、业务水平、工作态度和工作成绩进行考核。

教育行政部门对教师的考核工作进行指导、监督。

故D说法正确。

ABC说法均不符合法律规定,故不选。

2.问答题为什么幼儿园教育内容要贴近幼儿的生活?【答案】幼儿的学是以无意学习为主,并且通过看似无意的生活学到了很多东西,可以说有生活就有幼儿的学习。

幼儿的学习还有一个突出的特点就是直接学习,其认识依赖于他们亲身所获得的直接经验。

儿童通过动作以及与具体事物的接触,在生活中尽情地活动和思考。

【解析】暂无解析。

3.单选题兰兰擅长绘画,小小年纪已经多次获奖,幼儿园在没有征得兰兰和她的家长同意的情况下,将兰兰在幼儿园课堂上创作的画拿给出版社出版。

该幼儿园的做法()。

问题1选项A.合法,幼儿园有权利处理幼儿课堂画作B.合法,任何人不得干涉幼儿园的决定C.不合法,幼儿园侵犯了兰兰的财产权D.不合法,幼儿园侵犯了兰兰的著作权【答案】D【解析】本题考查幼儿的权利及保护。

著作权,也称为版权,分为著作人格权与著作财产权。

其中著作人格权的内涵包括了公开发表权、姓名表示权及禁止他人以扭曲变更方式,利用著作损害著作人名誉的权利。

题干中幼儿园没有没有征得兰兰和她的家长同意的情况下,将兰兰在幼儿园课堂上创作的画拿给出版社出版,属于侵犯了兰兰的著作权,故本题选D。

新课标背景下的不等式及其应用.doc(新)

新课标背景下的不等式及其应用.doc(新)

新课标背景下的不等式及其应用数学与信息科学系数学与应用数学080401321 周宛真指导老师:赖春晖【摘要】本文简要介绍课标背景下不等式知识在高中数学知识体系中的地位。

并结合10年、11年的高考数学试卷,简析不等式思想在高考中的选拔作用。

【关键词】高中数学;不等式;课程标准;高考引言不等式是中学数学的主干内容之一, 它不仅是中学数学的基础知识,而且在中学数学中起着广泛的工具性作用。

不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

2004年秋季在广东、山东、海宁夏四省(区)率先进行的我国新一轮高中数学课程改革中,将部分不等式知识作为选学内容。

新课标的不等式内容与《大纲》的教学目标相比,在要求和处理上都有了变化。

本文立足于《普通高中数学课程标准(实验)》(一下简称《课标》)对不等式的定位,认真地思考概念、技能的要求,思考《课标》发生了那些定位上的变化,结合近两年的高考数学试题,分析不等式思想在高考体质中如何发挥选拔性作用。

1,不等式在中学数学中的地位1.1《课标》对不等式的定位由于《课标》对本章内容的定位是用不等式表示和研究客观事物的不等关系,因此,教科书特别强调构建实际问题情景,加强建立实际问题的不等式模型的过程.教科书以大量实际问题为例题,从而使学生在本章学习中能随时经历建立不等式模型的过程.这样的做法,既体现了“课标”精神,淡化求解和证明不等式的技巧,加强不等式的实际背景和应用;同时又体现了教科书的指导思想,即要加强“问题性”“思想性”,在从实际背景抽象出数学模型的过程中,使学生体会知识的形成过程.这是一个大的变化,是对我过中学数学课程中不等式内容以及对不等式教学现状思考的结果。

将不等式初步作上述定位,主要有三个依据:一、不等式的基本内容和结构。

高考数学(人教新课标文科)配套课件:选修4-5-2 不等式的证明与柯西不等式

高考数学(人教新课标文科)配套课件:选修4-5-2 不等式的证明与柯西不等式

当且仅当 2x2=1-x2=1-x2,即 x= 33时,取“=”,
∴y≤2
9
3.∴ymax=2
9
3 .
【答案】
23 9
思考题 2 设 a,b,c 为正实数,求证:a13+b13+c13+
abc≥2 3. 【证明】 因为 a,b,c 为正实数,
由平均不等式可得a13+b13+c13≥3 3 a13·b13·c13, 即a13+b13+c13≥a3bc.所以a13+b13+c13+abc≥a3bc+abc. 而a3bc+abc≥2 a3bc·abc≥2 3. 所以a13+b13+c13+abc≥2 3. 【答案】 略
第 2 课时 不等式的证明与柯西不等式
2015•考纲下载
1.了解证明不等式的基本方法:比较法、综合法、分析法、 放缩法、数学归纳法.
2.了解柯西不等式、排序不等式以及贝努利不等式. 3.能利用均值不等式求一些特定函数的最值.
请注意!
不等式的证明是中学数学的难点.柯西不等式只要求会简单 应用.
1.证明不等式的方法 (1)比较法; (2)综合法与分析法; (3)反证法、放缩法; (4)数学归纳法.
例 1 设 s= 1×2+ 2×3+ 3×4+…+ nn+1,求证: 12n(n+1)<s<12n(n+2).
【证明】 s> 1×1+ 2×2+ 3×3+…+ n×n=1+2 +3+…+n=12n(n+1),
s<1+2 2+2+2 3+3+2 4+…+n+2n+1 =12[3+5+7+…+(2n+1)]=12n(n+2). ∴12n(n+1)<s<12n(n+2). 【答案】 略
探究 1 放缩法是不等式证明的基本方法,在不等式证明中 几乎处处存在.

从贝努利不等式谈起

从贝努利不等式谈起

从贝努利不等式谈起
戴锡恩
【期刊名称】《数学教学通讯》
【年(卷),期】1985(000)004
【总页数】4页(P15-18)
【作者】戴锡恩
【作者单位】重庆市江北师范
【正文语种】中文
【中图分类】O173.1
【相关文献】
1.巧用贝努利不等式的变式证明三角不等式 [J], 王增强
2.从贝努利不等式到H(o)lder不等式的演变过程及应用 [J], 邢家省;王洪志
3.巧用贝努利不等式的变式解三角不等式 [J], 王增强
4.一道高考压轴题引发的系列思考——兼谈贝努利不等式 [J], 杨明正;
5.高中课标课程选修4-5《不等式选讲》教学参考(六) 贝努利不等式的几个推论及应用 [J], 赵思林;吴立宝
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贝努利不等式在高考中的应用贝努利不等式:对任意正整数n≥0,和任意实数x≥-1,有 成立; 如果n≥0且为偶数,则不等式对任意实数x 成立。

可以看到在n = 0,1,或x= 0时等号成立,而对任意正整数n≥2 和任意实数x ≥-1且x ≠0,有严格不等式: >1+nx 下面把伯努利不等式推广到实数幂形式:若m ≤0或m ≥ 1,有mx )1(+≥ 1 + mx ;若0 ≤ m ≤ 1,有mx )1(+≤ 1 + mx 证明方法如下:如果m=0,1,则结论是显然的如果m ≠0,1,作辅助函数mx x f )1()(+=-)1(mx + , 那么m x m x f m -+=-1')1()(, 则0)('=x f ⇔ x=0;下面分情况讨论: 1. 0 < m< 1,则对于x > 0,)('x f < 0;对于 − 1 < x < 0,)('x f > 0。

因此)(x f 在x = 0处取最大值0,故得 ≤ 1 + mx 。

2. m < 0或m > 1,则对于x > 0,)('x f > 0;对于 − 1 < x < 0,)('x f < 0。

因此)(x f 在x = 0处取最小值0,故得mx )1(+≥ 1 + mx《标准》所指的贝努利不等式是: (x>-1,n 为正整数). ① 注不等式①中的条件“n 为正整数”可推广为“n 为大于l 的实数”,推论1设n ∈N+,,n>l ,t>0,则有 ≥1+n(t 一1), ②当且仅当t=l 时,②取等号.②的证明可由恒等式[]1)2(.....32)1(14322-+-++-=-+----n t n t t t t n nt t n n n n③ 直接推出.易见,当且仅当t=1时,②取等号,因此当且仅当x=0时,①取等号.在①中令x+l=t ,则①可变为②或③,因此不等式①与②是等价的.因此不等式①与②都可以称为贝努利不等式. 推论2设λ,a >0,n ∈N+,n>1,则n n nn a n a λλ)1(1--≥-, ④当且仅当λ=a 时,④取等号.证明由②得,⎥⎦⎤⎢⎣⎡-+≥=)1(1)(λλλλan aa nn nnn n n a n λλ)1(1--=- 例题精讲1.(2007,湖北理5)已知p 和q 是两个不相等的正整数,且2q ≥,则 ( C ) A .0 B .1 C . D .解答:由于)1(1)1(1)1(.....)1()1()1(1132x x x x x x mm +-+-=+++++++++-所以[]132)1(....)1()1()1(1)1(1-+++++++++=+-m mx x x x x x 令1x n=,m 分别取p 和q ,则原式化为212111111111111lim lim 11111111111p pq q n n n n n n n n n n n n --∞∞⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++++⎢⎥ ⎪ ⎪ ⎪+- ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦=⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦→→ n x )1(+ nx x n+≥+1)1( mx )1(+111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→p q11p q --nx x n +≥+1)1( nt21111lim 11,lim 11,,lim 11,p n n n n n n -→∞→∞→∞⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以原式=111111pq+++=+++(分子、分母1的个数分别为p 个、q 个) 法二:根据贝努利不等式可知当0→x 时,mx )1(+ = 1 + mx ,故对于此题有当∞→n 有np np+=+1)11( n q n q +=+1)11(,所以q p nq n pnq n p n n n n q p n ==-+-+=-+-+∞→∞→∞→lim1111lim 1)11(1)11(lim2.(2007,湖北理21)已知m n ,为正整数,(1)用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(2)对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132m m m ⎛⎫-< ⎪+⎝⎭,求证1132m mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (3)求出满足等式nnnnn n )3()2(43+=++++ 的所有正整数n . 解法1:(1)证:用数学归纳法证明:(ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(2)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133nnmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mnmn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (3)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333n nnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)nnn n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形:当1n =时,34≠,等式不成立;当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,.解法2:(1)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①①当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立; ②假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(2)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(1),111033mm n n ⎛⎫--> ⎪++⎝⎭≥,1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤. (3)解:假设存在正整数06n ≥使等式00000034(2)(3)nn n n n n ++++=+成立,即有0000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ② 又由(2)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭0000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n .下同解法1.3.(2001,全国理20) 已知i ,m ,n 是正整数,且1<i ≤m <n(1 )证明 n i p i m <m i p i n ; ( 2 )证明 (1+m )n >(1+n )m 证明:(1)略(2)因为1<m <n , mn>1 ,由贝努利不等式有n m m n m m n+=+>+1.1)1(,所以(1+m )n >(1+n )m4.(2007,四川理22)设函数 . (1)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(2)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(3)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.(1)解:展开式中二项式系数最大的项是第4项,这项是335631201C n n ⎛⎫= ⎪⎝⎭(2)证法一:因为()()22112211n f x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭121nn ⎛⎫>+ ⎪⎝⎭1121ln 12n n ⎛⎫⎛⎫>++ ⎪ ⎪⎝⎭⎝⎭()'1121ln 12nf x n n ⎛⎫⎛⎫≥++= ⎪ ⎪⎝⎭⎝⎭证法二:因()()22112211nf x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭而()'11221ln 1nf x n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭故只需对11n ⎛⎫+ ⎪⎝⎭和1ln 1n ⎛⎫+ ⎪⎝⎭进行比较。

相关文档
最新文档