第二节单正态总体的假设检验
正态总体均值的假设检验
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一
一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:
概率论与数理统计 8-2
H 0 : µ ≤ µ 0 = 225, H 1 : µ > 225,
取 α = 0.05, n = 16, x = 241.5, s = 98.725 0.6685 t0.05 (15) = 1.7531 > t = s/ n
故接受 H 0 , 认为元件的平均寿命不 大于 225小时.
n = 15,
x = 10.48, α = 0.05, s = 0.237,
x − µ 0 10.48 − 10.5 t = = t分布表 = 0.327, s/ n 0.237 / 15 查表得 tα / 2 ( n − 1) = t 0.025 (14) = 2.1448 > t = 0.327, 故接受 H 0 , 认为金属棒的平均长度 无显著变化 .
n2 = 10,
y = 79.43, s2 = 2.225,
2
且s
2 w
(10 −1)s + (10 −1)s = = 2.775, 10 + 10 − 2
2 1 2 2
查表可知 t0.05 (18) = 1.7341,
查表8.1知其拒绝域为 查表 知其拒绝域为 t ≤ − tα ( n1 + n2 − 2). x− y = −4.295, 因为 t = 1 1 sw + 10 10
某切割机在正常工作时, 例1 某切割机在正常工作时 切割每段金属棒的 平均长度为10.5cm, 标准差是 标准差是0.15cm, 今从一批产 平均长度为 品中随机的抽取15段进行测量 其结果如下: 段进行测量, 品中随机的抽取 段进行测量 其结果如下 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2
根据第六章 第六章§ 定理四 定理四知 当H 0为真时, 根据第六章§2定理四知,
8.2-0单正态假设检验
u X 0 . S/ n
拒绝域为| u | u / 2 .查表得 u / 2 = u0.025 = 1.96 .
由于
| u | | x 0 | 0.4 50 1.22 1.96 , s/ n 4
所以接受H0,即认为总体的均值μ=0.
147,150,149,154,152,153,148,151, 155
假设零件长度服从正态分布,问这批零件是否
合格(取 = 0.05)?
解 这里是在总体方差 2 未知的情况下,检验假设 H0: 0 150 ,H1: 150 .
在H0成立时,检验统计量
T X 0 ~ t(n 1) .
| t | | x 0 | 1.096 2.306 .
s/ n
所以接受H0,即认为这批零件合格.
三、正态总体方差的假设检验— 2 检验
设总体 X ~ N (, 2 ) 平 .
, (X1,X2,…,Xn)为X 的样本,给定显著性水
1.当 已知时,方差 2的假设检验
H0: 2
(5)由数据计算得x 112.8, s 1.1358
故T 112.8 112.6 0.4659 2.4469 1.1358 7
故接受H 0 ,即可认为用热敏电阻测温仪间接测量温度无系统 误差。
例2 某车间加工一种零件,要求长度为150mm, 今从一批加工后的这种零件中抽取 9 个,测得长度如 下:
2
2 (n)
或 2
2 1
2 (n)
2
2 0
2
2 0
2
2
单正态总体的参数假设检验
单正态总体的参数假设检验一、引言在统计学中,参数假设检验是一种常用的统计推断方法,用于对总体参数的假设进行验证。
在本文中,我们将讨论单正态总体的参数假设检验方法。
单正态总体是指样本来自一个服从正态分布的总体。
二、参数假设检验的基本步骤参数假设检验的基本步骤包括以下几个方面:1. 提出假设:在进行参数假设检验时,首先需要提出原假设和备择假设。
原假设(H0)是对总体参数的一个特定取值或一组取值的陈述,备择假设(H1)是对原假设的补充或对立假设。
2. 选择检验统计量:检验统计量是一个用于判断是否拒绝原假设的量。
在单正态总体的参数假设检验中,常用的检验统计量有样本均值、样本比例等。
3. 确定显著性水平:显著性水平是在进行假设检验时所允许的犯第一类错误的概率。
通常情况下,显著性水平取0.05或0.01。
4. 计算检验统计量的观察值:根据样本数据,计算检验统计量的观察值。
5. 确定拒绝域:拒绝域是一组检验统计量的取值,如果观察到的检验统计量的取值落在这个区域内,则拒绝原假设。
6. 做出决策:根据观察到的检验统计量的取值和拒绝域的关系,做出接受或拒绝原假设的决策。
三、单正态总体均值的参数假设检验在单正态总体均值的参数假设检验中,常用的检验方法有Z检验和t检验。
1. Z检验:当总体的标准差已知时,可以使用Z检验。
Z检验的检验统计量为样本均值与总体均值之差除以标准差的样本标准差。
根据中心极限定理,当样本容量较大时,检验统计量近似服从标准正态分布。
2. t检验:当总体的标准差未知时,使用t检验。
t检验的检验统计量为样本均值与总体均值之差除以标准误差的样本标准差。
根据学生t分布的性质,当样本容量较小时,检验统计量服从t分布。
四、实例分析为了更好地理解单正态总体的参数假设检验方法,我们以某电商平台的订单发货时间为例进行分析。
假设我们关注的是该电商平台订单的平均发货时间。
我们提出如下的原假设和备择假设:原假设(H0):订单的平均发货时间为3天。
第二节 正态总体均值的假设检验
σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ
单个正态总体的假设检验
第二节 单个正态总体的假设检验1.单个正态总体数学期望的假设检验(1) σ2已知关于μ的假设检验(Z 检验法(Z -test)) 设总体X ~N (μ,σ2),方差σ2已知,检验假设H 0:μ=μ0;H 1:μ≠μ(μ0为已知常数)由X ~N (μ,nσ)X N (0,1),我们选取ZX (8.2)作为此假设检验的统计量,显然当假设H 0为真(即μ=μ0正确)时,Z ~N (0,1),所以对于给定的显著性水平α,可求z α/2使P {|Z |>z α/2}=α,见图8-1,即P {Z <-z α/2}+P {Z >z α/2}=α.从而有P {Z >z α/2}=α/2, P {Z ≤z α/2}=1-α/2.图8-1利用概率1-α/2,反查标准正态分布函数表,得双侧α分位点(即临界值)z α/2. 另一方面,利用样本观察值x 1,x 2,…,x n 计算统计量Z 的观察值z 0x (8.3)如果:(a )|z 0|>z α/2,则在显著性水平α下,拒绝原假设H 0(接受备择假设H 1),所以|z 0|>z α/2便是H0的拒绝域.(b ) |z 0|≤z α/2,则在显著性水平α下,接受原假设H 0,认为H 0正确.这里我们是利用H0为真时服从N (0,1)分布的统计量Z 来确定拒绝域的,这种检验法称为Z 检验法(或称U 检验法).例8.1中所用的方法就是Z 检验法.为了熟悉这类假设检验的具体作法,现在我们再举一例.例8.2 根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下(单位:kg ²cm -2): 32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ²cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?解 ① 提出假设H 0:μ=μ0=32.50;H 1:μ≠μ0. ② 选取统计量Z =X ,若H 0为真,则Z ~N (0,1).③ 对给定的显著性水平α=0.05,求z α/2使P {|Z |>z α/2}=α,这里z σ/2=z 0.025=1.96.④ 计算统计量Z 的观察值:|z 0| ≈3.05.⑤ 判断:由于|z 0|=3.05>z 0.025=1.96,所以在显著性水平α=0.05下否定H 0,即不能认为这批产品的平均抗断强度是32.50 kg ²cm -2.把上面的检验过程加以概括,得到了关于方差已知的正态总体期望值μ的检验步骤: (a ) 提出待检验的假设H 0:μ=μ0;H 1:μ≠μ0. (b ) 构造统计量Z ,并计算其观察值z 0:ZX ,z 0x .(c ) 对给定的显著性水平α,根据P {|Z |>z α/2}=α,P {Z >z α/2}=α/2,P {Z ≤z α/2}=1-α/2 查标准正态分布表,得双侧α分位点z α/2. (d ) 作出判断:根据H 0的拒绝域 若|z 0|>z α/2,则拒绝H 0,接受H 1; 若|z 0|≤z α/2,则接受H 0.(2) 方差σ2未知,检验μ(t 检验法(t -test)) 设总体X ~N (μ,σ2),方差σ2未知,检验H 0:μ=μ0;H 1:μ≠μ0.由于σ2X 便不是统计量,这时我们自然想到用σ2的无偏估计量——样本方差S 2代替σ2,由于X t (n -1),故选取样本的函数tX (8.4)图8-2作为统计量,当H 0为真(μ=μ0)时t ~t (n -1),对给定的检验显著性水平α,由 P {|t |>t α/2(n -1)}=α,P {t >t α/2(n -1)}=α/2,见图8-2,直接查t 分布表,得t 分布分位点t α/2(n -1).利用样本观察值,计算统计量t 的观察值t 0x 因而原假设H0的拒绝域为|t 0|>t α/2(n -1). (8.5)所以,若|t 0|>t α/2(n -1),则拒绝H 0,接受H 1;若|t 0|≤t α/2(n -1),则接受原假设H 0.上述利用t 统计量得出的检验法称为t 检验法.在实际中,正态总体的方差常为未知,所以我们常用t 检验法来检验关于正态总体均值的问题.例8.3 用某仪器间接测量温度,重复5次,所得的数据是1250°,1265°,1245°,1260°,1275°,而用别的精确办法测得温度为1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?这里假设测量值X 服从N (μ,σ2)分布.解 问题是要检验H 0:μ=μ0=1277;H 1:μ≠μ0.由于σ2未知(即仪器的精度不知道),我们选取统计量tX .当H 0为真时,t ~t (n -1),t 的观察值为|t 0|185.399-==>3. 对于给定的检验水平α=0.05,由P {|t |>t α/2(n -1)}=α,P {t >t α/2(n -1)}=α/2, P {t >t 0.025(4)}=0.025,查t 分布表得双侧α分位点t α/2(n -1)=t 0.025(4)=2.776.因为|t 0|>3>t 0.025(4)=2.776,故应拒绝H 0,认为该仪器间接测量有系统偏差.(3) 双边检验与单边检验上面讨论的假设检验中,H 0为μ=μ0,而备择假设H 1:μ≠μ0意思是μ可能大于μ0,也可能小于μ0,称为双边备择假设,而称形如H 0:μ=μ0,H 1:μ≠μ0的假设检验为双边检验.有时我们只关心总体均值是否增大,例如,试验新工艺以提高材料的强度,这时所考虑的总体的均值应该越大越好,如果我们能判断在新工艺下总体均值较以往正常生产的大,则可考虑采用新工艺.此时,我们需要检验假设H 0:μ=μ0;H 1:μ>μ0. (8.6)(我们在这里作了不言而喻的假定,即新工艺不可能比旧的更差),形如(8.6)的假设检验,称为右边检验,类似地,有时我们需要检验假设H 0:μ=μ0;H 1:μ<μ0. (8.7)形如(8.7)的假设检验,称为左边检验,右边检验与左边检验统称为单边检验.下面来讨论单边检验的拒绝域.设总体X ~N (μ,σ2),σ2为已知,x 1,x 2,…,x n 是来自X 的样本观察值.给定显著性水平α,我们先求检验问题H 0:μ=μ0;H 1:μ>μ0.的拒绝域.取检验统计量ZX ,当H 0为真时,Z 不应太大,而在H 1为真时,由于X 是μ的无偏估计,当μ偏大时,X 也偏大,从而Z 往往偏大,因此拒绝域的形式为ZX ≥k ,k 待定.因为当H 0X ~N (0,1),由P {拒绝H 0|H 0为真}=PX k ⎫≥⎬⎭=α得k =z α,故拒绝域为ZX ≥z α. (8.8)类似地,左边检验问题H 0:μ=μ0;H 1:μ<μ0.的拒绝域为ZX ≤-z α. 8.9)例8.4 从甲地发送一个信号到乙地,设发送的信号值为μ,由于信号传送时有噪声迭加到信号上,这个噪声是随机的,它服从正态分布N (0,22),从而乙地接到的信号值是一个服从正态分布N (μ,22)的随机变量.设甲地发送某信号5次,乙地收到的信号值为: 8.4 10.5 9.1 9.6 9.9由以往经验,信号值为8,于是乙方猜测甲地发送的信号值为8,能否接受这种猜测?取α=0.05.解 按题意需检验假设H 0:μ=8;H 1:μ>8. 这是右边检验问题,其拒绝域如(8.8)式所示, 即 Z =X ≥z 0.05=1.645.而现在z 0=1.68>1.645,所以拒绝H 0,认为发出的信号值μ>8.2.单个正态总体方差的假设检验(2χ检验法(2χ-test)) (1) 双边检验设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2=σ02;H 1:σ2≠σ2.其中σ02为已知常数.由于样本方差S 2是σ2的无偏估计,当H 0为真时,比值22S σ一般来说应在1附近摆动,而不应过分大于1或过分小于1,由第六章知当H 0为真时2χ=22(1)n S σ-~2χ(n -1). (8.10)所以对于给定的显著性水平α有(图8-3)图8-3P {21/2αχ-(n -1)≤2χ≤2/2αχ(n -1)}=1-α. (8.11)对于给定的α,查2χ分布表可求得2χ分布分位点21/2αχ-(n -1)与2/2αχ(n -1).由(8.11)知,H 0的接受域是21/2αχ- (n -1)≤2χ≤2/2αχ (n -1); (8.12)H 0的拒绝域为2χ<21/2αχ-(n -1)或2χ>2/2αχ(n -1). (8.13)这种用服从2χ分布的统计量对个单正态总体方差进行假设检验的方法,称为2χ检验法. 例8.5 某厂生产的某种型号的电池,其寿命长期以来服从方差σ2=5000(小时2)的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变,现随机抽取26只电池,测得其寿命的样本方差s 2=9200(小时2).问根据这一数据能否推断这批电池的寿命的波动性较以往有显著的变化(取α=0.02)?解 本题要求在α=0.02下检验假设H 0:σ2=5000;H 1:σ2≠5000.现在n =26,2/2αχ(n -1)=20.01(25)χ=44.314, 21/2αχ- (n -1)= 20.99(25)χ=11.524,σ02=5000.由(8.13)拒绝域为22(1)n s σ->44.314或22(1)n s σ-<11.524由观察值s 2=9200得220(1)n s σ-=46>44.314,所以拒绝H 0,认为这批电池寿命的波动性较以往有显著的变化.(2) 单边检验(右检验或左检验)设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2≤σ02;H 1:σ2>σ02.(右检验)由于X ~N (μ,σ2),故随机变量*2χ=22(1)n S σ-~2χ(n -1).当H 0为真时,统计量2χ=220(1)n S σ-≤*2χ.对于显著性水平α,有P {*2χ>2αχ(n -1)}=α图8-4(图8-4).于是有P {2χ>2αχ(n -1)}≤P {*2χ>2αχ(n -1)}=α.可见,当α很小时,{2χ>2αχ(n -1)}是小概率事件,在一次的抽样中认为不可能发生,所以H 0的拒绝域是:2χ=220(1)n S σ->2αχ(n -1)(右检验). (8.14)类似地,可得左检验假设H 0:σ2≥σ02,H 1:σ2<σ02的拒绝域为2χ<21αχ-(n -1)(左检验). (8.15) 例8.6 今进行某项工艺革新,从革新后的产品中抽取25个零件,测量其直径,计算得样本方差为s 2=0.00066,已知革新前零件直径的方差σ2=0.0012,设零件直径服从正态分布,问革新后生产的零件直径的方差是否显著减小?(α=0.05)解 (1) 提出假设H 0:σ2≥σ02=0.0012;H 1:σ2<σ02.(2) 选取统计量2χ=220(1)n S σ-.*2χ=22(1)n S σ-~2χ(n -1),且当H 0为真时,*2χ≤2χ(3) 对于显著性水平α=0.05,查2χ分布表得21αχ-(n -1)=20.95(24)χ=13.848,当H 0为真时,P {2χ<21αχ- (n -1)}≤P 2212(1)(1)n S n αχσ-⎧⎫-<-⎨⎬⎩⎭=α. 故拒绝域为2χ<21αχ- (n -1)=13.848.(4) 根据样本观察值计算2χ的观察值2χ=220(1)240.000660.0012n s σ-⨯==13.2.(5) 作判断:由于2χ=13.2<21αχ- (n -1)=13.848,即2χ落入拒绝域中,所以拒绝H 0:σ2≥σ02,即认为革新后生产的零件直径的方差小于革新前生产的零件直径的方差.最后我们指出,以上讨论的是在均值未知的情况下,对方差的假设检验,这种情况在实际问题中较多.至于均值已知的情况下,对方差的假设检验,其方法类似,只是所选的统计量为2χ=2120()nii Xμσ=-∑.当σ2=σ2为真时,2χ~2χ(n ).关于单个正态总体的假设检验可列表8-2.总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。
第二节 正态总体均值的假设检验8-2
14
三、基于成对数据的检验(t 检验):
设X和Y是两个正态总体, 均值分别为 1 和 2 , X 和 Y不是相互独立的。取成对样本 : (X1 , Y1) , (X2 , Y2) , … , ( Xn , Yn )。 要检验: H0 : 1 = 2 , H1 : 1 ≠ 2 . 可以把这个问题转化成单个总体的假设检验 , 令Z = X - Y , 它服从 N ( , 2) , 这里 (= 1- 2) , 2 均未知。 Zi = Xi – Yi (i=1 , 2 , … , n)是来自该正态总体的样本。 显然 , 检验 H0 : 1= 2 , H1 : 1 ≠ 2 等价于检验 H0 : =0 , H1: ≠0,
11
例 2. 在平炉上进行一项试验以确定改变操作方法的建 议是否会增加钢的得率, 试验是在同一只平炉上进行 的. 每炼一炉钢时除操作方法外, 其它条件都尽可能 做到相同. 先用标准方法炼一炉, 然后用建议的方法 炼一炉, 以后交替进行, 各炼了10炉, 其得率分别为: 标准方法: 78.1 72.4 76.2 74.3 77.4 78.4 新方法: 79.1 76.0 81.0 75.5 76.7 77.3 80.0 77.3 79.1
16
解: 分别作各对数据的差 zi = xi - yi ,如上表 ,
并假设 z1 , z2 , … , z9 来自正态总体N ( , 2 ) ,
这里 , 2 均属未知 。若两台仪器的性能一样, 则各对数据的差异可看作是随机误差, 而随机误差可以认为服从正态分布, 其均值为零, 因此本题归结为检验假设: H0: =0 , H1: ≠ 0. 由前面的结论知,可取 T =
问是否有理由认为元件的平均寿命大于225小时?
解 : 按题意需检验 H 0 : 0 = 225 , H 1 : > 225 . X- 取 a = 0 .05,统计量: t = 。 S n 当 H 0 成立时,由 X - 0 S n X- S n ,
正态总体均值的假设检验讲义PPT(39张)
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验) 四、小结
一、单个总体 N(,2)均值 的检验
1 . 2为,关 已的 于 知 (Z 检 检 )验 验
在上节中讨论过体 正N态(总 ,2)
当 2为已 ,关 知 于 时 0的检验 : 问题
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度服从正态分布, 且标准差没有变
化, 试问该机工作是否正常? (0.05 )
解 因X 为 ~N (,2),0.15,
要检验假设
H 0:1.5 0, H 1:1.5 0,
n15, x1.04,80.0,5
(1)假设检 H0:验 0,H1:0; (2)假设检 H0:验 0,H1:0; (3)假设检 H0:验 0,H1:0.
讨论中都是H利 0 为用真时服N(从 0,1)分布
的统计Z量X0 来确定拒绝,这 域种 的 / n
检验法称 Z检 为验.法
一个有用的结论
解 设该次考试的学生为 成X绩, 0.0,5
则 X ~N (,2)样 , 本均X值 ,样为 本标准 S, 差
需检验假设: H 0 : 7 ,0 H 1 : 7 .0
因为 2未知 , 故采t用 检验,法 当H0为真, 时
统t 计 X 0 量 X 7~ 0 t(n 1 ), S /nS /n 查表 8-1 知拒绝域为 tX S/7n0 t/2(n1), 由 n 3 ,X 6 6 . 5 ,S 6 1 ,t 0 . 0 5 ( 3 2 ) 5 2 5 . 0,3
S/ n
当观察 t 值 xs/n0 过分大时 H0,就拒绝
正态总体均值的假设检验
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)
.
又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
7-2正态总体参数的检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为
8.2正态总体均值的假设检验
t t ( n1 n2 2).
x y 因为 t 4.295, 1 1 sw 10 10
t0.05 (18) 1.7341,
所以拒绝 H 0 ,
即认为建议的新操作方法较原来的方法为优.
例5 有甲、乙两台机床加工相同的产品, 从这两台机床加工 的产品中随机地抽取若干件, 测得产品直径(单位:mm)为 机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9
X 0 P Z / n
拒绝域为 Z Z
或 H0: 0;H1:0
X 0 P Z / n
拒绝域为 Z Z
2、方差未知 问题:总体 X~N(,2),2未知 假设 H0:=0;H1:≠0 构造T统计量 T X 0 ~ t (n 1)
t检验 双边检验
X 0 由 P t 2 (n 1) S n 确定拒绝域 T t 2 (n 1) x 0 如果统计量的观测值 T t 2 (n 1) S n
则拒绝原假设;否则接受原假设
S
n
例2 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1) 解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
得 k t / 2 (n1 n2 2).
故拒绝域为
( x y) t t / 2 ( n1 n2 2). 1 1 sw n1 n2
第二节单正态总体的假设检验
P{|T |k }
查 t 分布表得 kt / 2t0.025(8) 2.306,从而拒绝域
为 | t | 2.306. (4) 因为 x 49.9, s2 0.29, 所以
| t | x 50 0.56 2.036,| t | 0.56 2.036, s/ n
故应接受 H0 , 即以为包装机工作正常.
由此即得拒绝域为
u
x
0
/n
u / 2 ,
即
W (,u / 2 ) (u / 2 ,).
根据一次抽样后得到旳样本观察值 x1, x2 ,, xn 计 算出 U旳观察值 u, 若 u u / 2 , 则拒绝原假设 H0 ,
即以为总体均值与0 有明显差别;
若 u u / 2 , 则接受原假设 H0 , 即以为总体均值与
S/ n 故选用 T 作为检验统计量,记其观察值 t. 因为 X
是 旳无偏估计量,S 2是 2 旳无偏估计量, 当 H0
成立时,t 不应太大,当 H1 成立时,t 有偏大旳趋
势, 故拒绝域形式为
t x 0 k
s/ n
( k 待定).
对于给定旳明显性水平 , 查分布表得
k t / 2(n 1), 使 P{T t / 2(n 1)} ,
使
P{ 2
2 1
/
2
(
n
1)
或
2
2
/
2
(
n
1)}
,
由此即得拒绝域为
2
n1
2 0
s
2
2 1
/
2
(
n
1)
或
2
n1
2 0
s
2
2 1
《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验
真)
P1 2
(
x y
11
k)
k t (n1 n2 2)
sw
n1 n2
2
概率统计
在显著性水平 下, H0 的拒绝域:
x y
sw
11
t (n1 n2 2)
2
n1 n2
注:
当
2 1
2 2
2
未知时
检验假设
或
H0 : 1 -2 (或1 2 ), H0 : 1 2 (或1 2 ),
2
概率统计
所以拒绝H 0 ,可认为这两种轮胎的耐磨性有显著差异。
注: ▲ 用两种不同的方法得到了两种不同的结论,那么
究竟应该采取哪一个结论比较合理呢?
显然,应该采取第二种方法得出的结论是合理的
因为数据配对的方法是针对同一架飞机的,它是 排除了因飞机之间的试验条件的不同而对数据产 生的干扰,所以它是直接反映了这两种轮胎的耐 磨性的显著差异的情况,因此,应采取第二种方 法得出的结论,即可认为这两种轮胎的耐磨性有 显著差异。
概率统计
按单个正态总体中当 2 未知时,关于 的假设检验
的计算公式,可得 H0 的拒绝域为:
C { t t t (n 1)}
2
经计算 d 320 , s2 89425 ,
t
d s
320 2.83 89425
n
8
t (n 1) t0.05 (7) 2.365
2
2
因为: t 2.83 t0.05 (7) 2.365
为已知常数,显著水平为
概率统计
Q 检验统计量
(X Y)
~ N (0,1)
2 1
2 2
n1 n2
单个正态总体参数的假设检验
单个正态总体参数的假设检验一、假设检验的基本概念假设检验是统计推断的一种方法,其基本思想是通过抽样来对总体参数进行推断,并判断总体参数是否满足其中一种假设。
在进行假设检验时,我们首先提出一个原假设(H0),这是一个既定的假设,表示总体参数满足其中一种特定的值或不满足其中一种特定的关系。
同时,我们还提出一个备择假设(H1),表示总体参数不满足原假设。
通过对样本数据的统计推断,我们可以对原假设进行拒绝或不拒绝的判断。
二、假设检验的步骤假设检验一般包括以下步骤:1.提出假设:根据问题的需求和背景条件,提出原假设和备择假设。
2.确定显著性水平:显著性水平(α)是指当原假设成立时,我们愿意犯第一类错误的概率。
一般情况下,我们常使用0.05作为显著性水平。
3.选择检验统计量:根据所需检验的问题,选择适当的检验统计量。
在单个正态总体参数的假设检验中,常用的检验统计量有Z检验和t检验。
4.计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。
5.根据显著性水平查找拒绝域:根据显著性水平和检验统计量的分布,查找拒绝域的临界值。
6.判断并作出结论:如果检验统计量的观察值落在拒绝域内,则拒绝原假设,否则不拒绝原假设。
三、应用领域1.药物临床试验:在新药物的临床试验中,可以通过对患者进行抽样,检验患者服用药物前后的药效差异是否显著,以判断药物的疗效。
2.市场调研:在市场调研中,可以通过对一定数量的顾客进行问卷调查,检验顾客对其中一种产品的满意度是否显著不同,以了解产品在市场中的竞争力。
3.品质控制:在生产过程中,可以通过抽样检验产品的质量是否符合设定的标准。
例如,食品加工厂可以通过抽样检验产品的营养成分是否达到设定的要求。
4.经济学研究:在经济学研究中,可以通过对一定数量的经济指标进行抽样,检验指标的差异是否显著,以判断宏观经济政策的有效性。
总结:单个正态总体参数的假设检验是统计学中一种重要的方法,通过对样本数据的统计推断,判断总体参数是否满足其中一种假设。
概率论 正态总体的均值和方差的假设检验
H 0 : μ 1600,
2
H1 : μ 1600
由于方差σ 未知,故选择统计量
X 1600 T Sn / n
当H0 成立时,T ~ t ( n-1) = t (9) ,由所给的样本值
求得x 1582 ,
*2 16528.89 Sn
故
1582 1600 t 10 0.443 16528.89
1 提出待检验的假设H0及备择假设H1; 2 选择适当的检验统计量,在H0成立的条件 下,确定它的概率分布; 3 给定检验水平 ,(依前所得的概率分布)确 4 由样本观测值计算统计量的值; 5 根据统计量的观测值落入拒绝域W1内,还 是W1外进行判断,落入拒绝域W1内,拒绝H0;落入
拒绝域W1外,接受H0.
解
本题归结为检验假设
H 0 : μ 800,
选择统计量
H1 : μ 800;
X 800 U 9 40
当H0成立时,U~N(0,1).对于 = 0.05,由正态分布函
数表查得u /2=u0.025 =1.96,从而得检验的拒绝域为 W1={(x1 , x2 , ∙∙∙ , xn) :|u| u 0.025 =1.96 },
χ 2 的值进行判断:
若χ 2 W1,则拒绝 H0;若χ 2 W1,则接受 H0 .
2 拒绝域: W 1 {( x1 , x2 , , xn ) : χ 2 χ1 α / 2 ( n 1)} 2 n 1}. {( x1 , x2 , , xn ) : χ 2 χα /2
H 0 : μ1 μ2 , H1 : μ1 μ2
由样本值求得统计量 T 的观测值
t x y
2 ( n 1) s2 ( n1 1) s1 2 n 2n
假设检验
第一节 假设检验的基本原理 第二节 单个正态总体的假设检验 第三节 两个正态总体的假设检验
第一节:假设检验的基本原理
一、基本概念 假设检验是统计推断的另一种重要形式,
其任务是通过样本对未知的总体分布特征作 出合理的推测。
先对总体分布中的某些参数或对总体分布类 型做某种假设,然后根据样本值做出接受还 是拒绝所做假设的结论。
例如 若H0 : m = m0, 则H1 有以下三种情况: (1) H0 : m = m0, H1: m m0 (2) H0 : m = m0, H1 : m > m0 (3) H0 : m = m 0, H1 : m < m0
其中(1)称为双边检验.
其中(2), (3)称为单边检验.
第二步:选取一个合适的检验统计量,并根据原假设 H0和备择假设 H1 确定H0的拒绝域.
0.05 6
因为4.9>1.96 ,即观测值落在拒绝域内
所以拒绝原假设。
二 当2未知时, 均值m的检验(t检验)
1 (双边检验) H0: m = m0 H1: m m0
此时2未知, 不能用
U
X
m0
n
用
T
X
m0
S
n
当H0成立时,
T
X m0
S
~ t(n 1)
n
因此, 对给定的, 查t分布表, 使
X
m0
~ N(0, 1)
n
当H0 成立时, u的值不应太大.
而当H1 成立时, u的值往往偏大.
因此, P{uu}=
于是得到H0的拒绝域为 (u, )
类似地, 若检验的假设是
第二节 正态总体参数的检验
2
9
二、两个正态总体参数的假设检验
2 设 有 两 个 相 互 独 立 的 正 态 总 体 X ~ N ( µ1,σ 1 ) ,
Y ~ N ( µ 2,σ ) , 分别抽取独立的样本 ( X1 , X2 ,⋯, Xn1 ) 和
2
µ 第六章证明, X = ( (− , ) 第六章证明,若 χ 2 ~ Nn−1σS 证明 (2) 检验统计量 2
2 2 H 下 O χ1−α / 2(n−1) 2 0 ), 2 则
x
( n − 1) S
~ χ (n −1) ,
(4) 由样本值算得
χ的值; 的值;
2
则拒绝H 否则 不能 若 χ 2 < λ1 或 χ 2 > λ2 ,则拒绝 0 ; 否则, 拒绝H 拒绝 0 .
− tα / 2 ( n − 1) O
tα / 2 (n − 1)
x
~
(4) 由样本值算得 t 的值; 的值; 则拒绝H 如果 | t |> tα 2 (n − 1) ,则拒绝 0 ; 否则, 不能拒绝H 否则 不能拒绝 0 .
5
两家生产同一类产品, 例2 两家生产同一类产品,其质量指标假定都服从正 态分布,标准规格为均值等于120.现从甲厂抽出5 120.现从甲厂抽出 态分布,标准规格为均值等于120.现从甲厂抽出5件 产品,测得其指标值为119,120,119.2,119.7,119.6; 产品,测得其指标值为119,120,119.2,119.7,119.6; 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 122.2,113.8,117.2。 122.2,113.8,117.2。试判断这两家厂的产品是否符 合标准. 合标准. (α = 0.05 )
单正态总体的参数假设检验
单正态总体的参数假设检验在统计学中,假设检验是一种用于判断总体参数是否符合某种特定假设的方法。
而单正态总体的参数假设检验则是指对一个正态分布总体的参数进行假设检验。
单正态总体的参数假设检验通常涉及两个假设:原假设(H0)和备择假设(H1)。
原假设是我们想要进行检验的假设,而备择假设则是与原假设相反的假设。
在单正态总体的参数假设检验中,我们通常关注的参数有均值(μ)和标准差(σ)。
下面将分别介绍如何进行均值和标准差的参数假设检验。
1. 均值参数假设检验对于均值参数的假设检验,常用的方法有Z检验和T检验。
Z检验适用于总体的标准差已知的情况,而T检验适用于总体的标准差未知的情况。
假设我们要对一个正态分布总体的均值进行假设检验,原假设为均值等于某个特定值(H0: μ = μ0),备择假设为均值不等于特定值(H1: μ ≠ μ0)。
我们需要计算样本的均值(X̄)和标准差(S),然后根据样本量(n)和总体标准差(σ)的已知情况选择对应的检验方法。
如果总体标准差已知,可以使用Z检验。
计算Z统计量的公式为:Z = (X̄ - μ0) / (σ / √n)然后,根据显著性水平(α)选择临界值,比较计算得到的Z统计量与临界值的大小,以判断是否拒绝原假设。
如果Z统计量的绝对值大于临界值,则拒绝原假设;否则,接受原假设。
如果总体标准差未知,可以使用T检验。
计算T统计量的公式为:T = (X̄ - μ0) / (S / √n)同样地,根据显著性水平(α)选择临界值,比较计算得到的T统计量与临界值的大小,以判断是否拒绝原假设。
2. 标准差参数假设检验对于标准差参数的假设检验,常用的方法有卡方检验和F检验。
卡方检验适用于单个总体标准差的假设检验,而F检验适用于两个总体标准差的假设检验。
假设我们要对一个正态分布总体的标准差进行假设检验,原假设为标准差等于某个特定值(H0: σ = σ0),备择假设为标准差不等于特定值(H1: σ ≠ σ0)。
一个正态总体期望与方差的假设检验
第二节 一个正态总体 期望与方差的假设检验
一、期望值的假设检验
检验 二、方差的假设检验-
2
一、期望值的假设检验
2 2 1、方差 0 为已知时对期望值 的检验— u 检验
设样本 X 1 , X 2 ,
, X n 来自正态总体 N ( , 2 ), 方
差 2已知,对 的检验问题由上节中的五个步骤来进行. ①建立假设 关于正态均值 常用的三对假设 (a) H0 : 0 ,H1 : 0 ; (双边假设检验问题) (b) H0 : 0 ,H1 : 0 ; (单边假设检验问题) } (c) H0 : 0 ,H1 : 0 . 选择哪一种假设应根据问题的需要.
② 检验统计量都选择 U 统计量
U
X 0
/ n
~ N (0,1)
(8.2.1)
③ 确定显著性水平
显著性水平 的大小应根据研究问题的需要而定,
一般为0.05. ④ 确定临界值,给出拒绝域 对于三种不同的假设,其拒绝域如图所示,其中u1 / 2 是标准正态分布的 1 分位数, 其他意义相同. 2
即样本观测值落在拒绝域之外, 故接受原假设, 认为该批金 属丝折断力的方差与64无显著差异.
以上对方差的检验属于双侧检验,另外还有单侧检验:
2 2 H0 : 2 0 ;H1 : 2 0
(8.2.8)
2 2 H0 : 2 0 ;H1 : 2 0 (8.2.9) 关于假设检验问题 2 2 (8.2.10) H0 : 2 0 ;H1 : 2 0 它与假设检验问题式(8.2.8)在同一显著性水平α下的检验 方法是一样的,其他的单侧检验也类同. 例4 某车间生产一种保险丝,规定保险丝熔化时间的 方差不得超过400.今从一批产品中抽处25个,测得其熔化时 间的方差为388.58, 试根据所给数据, 检验这批产品的方差 是否符合要求(α=0.05). 已知保险丝的熔化时间服从正态 分布.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19 18 22 20 16 25
试问: 这些结果是否表明, 这种类型的电池低于该公
司所声称的寿命? (显著性水平 0.05 ).
解 可把上述问题归纳为下述假设检验问题:
H0 : 21.5
H1 : 21.5.
这可利用 t 检验法的左侧检验法来解.本例中021.5,
n 6, 对于给定的显著性水平 0.05, 查附表得
(4) 由于 x 49.9, s2 0.29, 所以
| t | x 50 0.56 2.036,| t | 0.56 2.036, s/ n
故应接受 H0 , 即认为包装机工作正常.
二、总体方差的假设检验
设总体 X ~ N ( , 2 ), X1, X 2 , X n 是取自 X 的一
t (n 1) t0.05(5) 2.015. 再据测得的6个寿命小时数算得: x 20, s2 10.
解 可把上述问题归纳为下述假设检验问题:
H0 : 21.5
H1 : 21.5.
这可利用 t 检验法的左侧检验法来解.本例中021.5,
n 6, 对于给定的显著性水平 0.05, 查附表得
时,
S
2
应在
2 0
附近,
当 H1 成立时,
2有偏小或偏
大的趋势,故拒绝域形式为
2
n1
2 0
S
2
ห้องสมุดไป่ตู้1
或
2
n1
2 0
S
(
2 k2 k1, k2
待定)
对于给定的显著性水平 , 查分布表得
k1
2 1
/2(n
1), k2
2
/
2
(n
1),
使
P{ 2
(
25)
11.524,
解 现在
n
26,
2 0
5000,
2
/
2
(n
1)
2 0.01
(25)
44.314,
2 1
/2(n
1)
2 0.99
(
25)
11.524,
根据 2检验法, 拒绝域为
W [0,11.524) (44.314,)
代入观察值 s2 9200, 得
k u / 2 , 使 P{U u / 2 } ,
由此即得拒绝域为
u
x
0
/n
u / 2 ,
即
W (,u / 2 ) (u / 2 ,).
根据一次抽样后得到的样本观察值 x1, x2 ,, xn 计 算出 U的观察值 u, 若 u u / 2 , 则拒绝原假设 H0 ,
即认为总体均值与0 有显著差异;
若 u u / 2 , 则接受原假设 H0 , 即认为总体均值与
0 无显著差异.
类似地, 对单侧检验有:
(2) 右侧检验:检验假设:H0 : 0 , H1 : 0 .
可得拒绝域为
u
x
/
0
n
u
.
(3) 左侧检验:检验假设:H0 : 0 , H1 : 0 ,
H0 : 2 64, H1 2 64. 上述假设检验问题可利用 2检验法的右侧检验法来
命的波动性较以往的有显著的变化 (取 0.02)? 解 本题要求在水平 0.02下检验假设
现在
H0 : 5000, H1 : 2 5000.
n
26,
2 0
5000,
2
/
2
(n
1)
2 0.01
(25)
44.314,
2 1
/2(n
1)
2 0.99
第二节 单正态总体的假设检验
一、总体均值的假设检验
1. 方差 2已知情形—— u检验法 设总体 X ~ N ( , 2 ), X1, X 2 ,, Xn 是取自 X 的一
个样本,X 为样本均值.
(1) 检验假设 H0 : 0 , H1 : 0 , 其中 0 为
已知常数. 由第五章第三节知,当 H0 为真时,
算出 T 的观察值 t, 若 t t / 2(n 1), 则拒绝原假设
H0 , 否则接受假设H0 .
类似地,对单侧检验有:
(2) 右侧检验:检验假设:H0 : 0 , H1 : 0 ,
可得拒绝域 为
t
x s/
0
n
t (n 1).
(3)左侧检验:检验假设:H0 : 0 , H1 : 0 ,
T X 0 ~ t(n 1),
S/ n 故选取 T 作为检验统计量,记其观察值 t. 由于 X
是 的无偏估计量,S 2是 2 的无偏估计量, 当 H0
成立时,t 不应太大,当 H1 成立时,t 有偏大的趋
势, 故拒绝域形式为
t x 0 k
s/ n
( k 待定).
2 1
/
2
(n
1)
或
2
2 / 2(n 1)} ,
由此即得拒绝域为
2
n1
2 0
s
2
2 1
/
2
(n
1)
或
2
n1
2 0
s
2
2 1
/
2
(n
1),
即
W
[0,
2 1
/
2
(
n
1))
(
2
/
2
(n
1),).
根据一次抽样后得到的样本观察值 x1, x2 ,, xn
个样本,X 与 S 2 分别为样本均值与样本方差.
(1)
检验假设
H0
:
2
2 0
,
H1
:
2
2 0
,
其中
0
为已知常数. 由第五章第三节知,当 H0为真时,
2
n1
2 0
S
2
~
2(n
1),
故选取 2作为检验统计量. 相应的检验法称为 2
检验法. 由于 S 2是 2 的无偏估计量,当 H0 成立
2
n1
2 0
s
2
2 1
(n
1).
(3) 左侧检验:检验假设
H0
:
2
2 0
,
H1
:
2
2 0
,
可得拒绝域为
2
n1
2 0
s
2
2 (n
1).
例4 一公司声称某种类型的电池的平均寿命至少为 21.5小时, 有一实验室检验了该公司制造的6套电池, 得到如下的寿命小时数:
U X 0 ~ N (0,1), / n
故选取 U 作为检验统计量,记其观察值为 u. 由于X 是 的无偏估计量, 当H0 成立时, u 不应太大,
当 H1 成立时,u 有偏大的趋势, 故拒绝域形式为
u x 0 k (k 待定). / n
对于给定的显著性水平 , 查标准正态分布表得
完
例2 有一工厂生产一种灯管, 已知灯管的寿命X 服从
正态分布 N ( ,40000), 根据经往的生验, 知道灯管的
平均寿命不会超过1500小时. 为了提高灯管的平均寿
命, 工厂采用了新的工艺, 为了弄清楚新工艺是否真
的能提高灯管的的平均寿命, 他们测试了采用新工艺
生产的25只灯管的寿命, 其平均值是1575 小时. 尽管
平均寿命. 完
2. 方差 2 未知情形—— t 检验法 设总体 X ~ N ( , 2 ), X1, X 2 ,, Xn 是取自X 的一
个样本,X 与 S 2分别为样本均值与样本方差.
(1) 检验假设 H0 : 0 , H1 : 0 , 其中 0 为
已知常数. 由第5章第三节知, 当 H0 为真时,
取显著水平为 0.05, 查附表得 u 1.645,
因已测出 x 1575, 从而
u
x
/
u0 n
1575 1500 200
25 1.875.
由于 u 1.875u 1.645, 从而否定原假设 H0 , 接
受备择假设 H1, 即认为新工艺事实上提高了灯管的
原假设H0 , 从而认为这种类型电池的寿命并不比公
司宣称的寿命短.
完
例5 某厂生产的某种型号的电池, 其寿命(以小时计)
长期以来服从方差 2 5000的正态分布, 现有一批
这种电池, 从它的生产情况来看, 寿命的波动性有所 改变. 现随机取26只电池, 测出其寿命的样本方差
s2 9200, 问根据这一数据能否推断这批电池的寿
对于给定的显著性水平 , 查分布表得
k t / 2(n 1), 使 P{T t / 2(n 1)} ,
由此即得拒绝域为
t