电力系统静态安全分析
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/fbaafd2acd7931b765ce0508763231126fdb775e.png)
Ward等值法的改进措施(3)
非基本运行方式下WARD等值校正:
先以内部系统实时数据作状态估计,求出边界节点的电压模值与电压相角; 然后以所有边界节点作为平衡节点,对基本运行方式下的外部等值系统(由边界节点及保留的外部系统节点组成)作潮流计算。 对保留的PV节点:有功注入为0,电压模值为给定值,相角取边界节点相角平均值。 潮流计算求得的边界注入用于校正基本运行方式下的注入。 如果校正后注入进行状态估计时,与内部信息有较大残差,可修改边界节点电压模值与相角,重复计算2-3次。
第三节 支路开断模拟
第三节 支路开断模拟
直流潮流数学模型
写成另一种形式
其中
直流潮流的断线模型 应用直流潮流模型求解输电系统的状态和支路有功潮流非常简单。而且,由于模型是线性的,故可以快速进行追加和开断线路后的潮流计算。 原理:原网络直流潮流公式: 当支路(或追加)开断后,而注入功率P没有变化时,直流潮流公式为:
Ward等值法的改进措施(1)
并联支路的处理
等值后的并联支路,代表了从边界节点看出去的外部网络对地电容和补偿并联支路。
因为外部网络的串联阻抗值较小,所以外部系统的并联支路有集聚于边界节点的趋势。
因此:等值时尽量不用并联支路,而通过求边界的等值注入来计及影响。考虑并联支路聚集效应。
等值在边界的并联支路,产生错误的并联支路响应模型。如:边界节点电压微小变化,导致并联支路无功功率显著增加。
电力系统运行状态(2)
电力系统运行状态(3)
正常状态的电力系统可分为安全正常状态与不安全正常状态。 已处于正常状态的电力系统,在承受一个合理的预想事故集(contingency set)的扰动之后,如果仍不违反等约束及不等约束,则该系统处于安全正常状态。 如果运行在正常状态下的电力系统,在承受规定预想事故集的扰动过程中,只要有一个预想事故使得系统不满足运行不等式约束条件,就称该系统处于不安全正常状态。 预防控制:使系统从不安全正常状态转变到安全正常状态的控制手段。
电力系统静态安全分析综述
![电力系统静态安全分析综述](https://img.taocdn.com/s3/m/09deeee4524de518964b7d0e.png)
事故。对系统安全性的分析,涉及到系统故 障后的稳态行为和暂态行为,相应地安全 分析也分为静态安令分析和动态安全分析 两个领域。电力系统的静态安全分析仅考 虑事故后稳态运行情况的安全性,它研究 系统中的元件开断引起支路有功潮流及母 线电压越限,如果出现越限,就要采取相应 的校正控制策略消除越限,保证系统的正 常运行。静态安全分析是电力系统调度部 门在调度过程中必须进行的一项重要工 作,其目的是提高系统运行的安全性。在本 文中。我们将重点讨论静态安全分析的问
后果。自20世纪60年代以来,大面积停电事 故时有发生,在经济上造成了巨大的损失, 因此,各国对电力系统的安全性分析,开始 给予了足够的重视,成为七、八十年代非常 活跃的研究领域。特别是2003年8月14日发 生的美加大停电事故,造成的经济损失和 社会影响更加严重,引起了人们对电力系 统安全性的强烈关注。如何提高系统的安 全性,将重点放在了如何对系统进行安全 分析,必须从系统规划、系统调度操作以及 系统维修计划等方面做统一而全面的考 虑,并最终集中体现在系统的运行条件上。 当互连系统运行中发生故障时,保证 对负荷持续供电的能力,即系统保证避免 引起广泛波及性供电中断的能力,这就是 电力系统的安全性问题,它涉及到系统的
本文链接:/Periodical_kjzxdb201030048.aspx
国民经济发展水平的重要标志是电力
工业。现代社会的不断发展,促使用电需求
率供需必须平衡,一类是不等式约束条件, 即系统中的某些变量必须在一定限值以 内,如各节点的电压模值、机组的有功和无 功出力、支路潮流等。同时满足等式和不等 式条件的系统,才可以认为是处于正常状 态。在考虑预想事故集的情况下,根据系统 对以上两类约束条件的满足情况,可将电 力系统分为四种运行状态: (1)安今正常状态-(2)不安全正常状态。 (3)紧急状态,(4)待恢复状态。
国网考试总结-高等电力系统分析
![国网考试总结-高等电力系统分析](https://img.taocdn.com/s3/m/1c27c918580216fc700afdcc.png)
电力系统静态安全分析的基本概念电力系统静态安全分析是电力系统规划和调度的常用手段,用以判断在发生预想事故(输变电设备强迫退出运行)后系统是否会过负荷或电压越限的功能。
电力系统动态安全分析用于判断在发生预想事故后系统是否会失稳的功能。
静态安全分析的基本方法:补偿法,直流潮流法,灵敏度分析法。
直流输电的基本原理及稳态数学模型1、直流输电线路输送的电流和功率由线路两端的直流电压所决定,与两端的交流系统的频率和电压相位无关。
直流电压的调节是通过调节换流器的触发角和交流系统的电压来实现的,换流器输出直流电压的改变,将决定直流电流的大小。
(直流潮流的控制)2、由于交流变压器等值电感的存在,相电流不能突变,因而换流器的供电电源从一相换到另一相时不能瞬时完成,需要经过一个换相期,换相期所对应的电角度称为换相角。
(换相角定义,范围)3、由于换相角的存在,直流电压的平均值将随直流电流的增大而减小;换流器正常工作的触发角的变化范围减小。
(换相角对直流系统的影响)4、换相电流中包含两个分量,分别为常数分量和正弦分量。
其中,常数分量随着触发角的增大而减小,正弦分量滞后于换相电压90°。
常数分量是短路电流中的自有分量,其产生机理是电感回路中的电流不能发生突变;正弦分量是短路电流中的强迫分量,由于短路回路是纯电感回路,所以正弦分量的相位滞后于电源电压90度。
因此,换流器的稳态工况是在换相期使交流系统两相短路,在非换相期使交流系统单相断线。
(换相电流的理解)5、直流潮流的基本方程:整流器、逆变器、交流基波电流和直流电流、直流电压和交流电压的关系。
6、直流稳态运行方程中引入了等值换相电阻,等值换相电阻并不具有真实电阻的全部意义,它不吸收有功功率,其大小体现了直流电压平均值随直流电流增大而减小的斜率。
等值换相电阻是一个网络参数,不随系统运行状态的改变而改变。
由于等值电阻的引入,换相角不显含在直流潮流公式中,换相效应完全由换相电阻与直流电流的乘积表征。
第三章 电力系统静态安全分析
![第三章 电力系统静态安全分析](https://img.taocdn.com/s3/m/aa832fc30508763231121244.png)
二.电力系统静态等值 (3)根据式(3-15)计算出分配到边界节 点上的注入功率增量,并将其加到边界节 点原有注入功率上,得到边界节点的等值 Q 。也可以用以下的简便方法 注入 P 、 来计算边界节点上的等值注入,如假定边 界节点为 i ,则计算式为 P U g g U U g cos b sin
E
BE
1 EE
二.电力系统静态等值 对于线性系统来说式(3-8)和式(3-9)是 一个严格的等值,只要 I 不变,在任何 I 、 I 时,由式(3-8)求得的 U 和 U ,同原始的 未等值全网的计算结果完全一致。在实际 应用时,需用注入功率来代替注入电流, 即 S 1 I diag U S (3-11)
E E
Y BE 0
EE
EB
YBB YIB
Y BI U B I B YII U I I I
(3-2)
二.电力系统静态等值
或写成 (3-3) (3-4) Y U Y U Y U I (3-5) Y U Y U I 消去外部系统的节点,即消去式(3-2) 中的 U ,则从式(3-3)中得 U Y I Y Y U (3-6) 将上式代入式(3-4)得 Y Y Y Y U Y U I Y Y I (3-7) 合并式(3-7)与式(3-5)可得
0 i
0 i
ij
ij
0 ij
io
io
二.电力系统静态等值 这种方法特别适宜于在线应用,因为 内部和边界的节点电压模值、电压相角与 联络线潮流都可以由状态估计来提供。 Ward等值后的网络接线,如图3-2所示。
十一、电力系统静态安全分析(2)
![十一、电力系统静态安全分析(2)](https://img.taocdn.com/s3/m/47cfd7d084254b35eefd34c7.png)
©版权所有
东南大学电气工程系
内容提要 基本节点与基本支路 支路开断模拟 直流法 补偿法 灵敏度分析法 发电机开断模拟 预想事故的自动选择
©版权所有
东南大学电气工程系
一、基本节点与基本支路
基本节点:在外部系统中,对一定的运行状态,某 些节点或支路对内部系统有较强的关联,这些节点 或支路的状态发生改变时,可对内部系统的潮流分 配有着明显的影响。 基本支路:由基本节点连接起来的支路称为基本支 路。 在建立外部等值模型时,为保证内部系统在线潮流 计算的精确性,原始网络的基本节点与基本支路应 保留,并在这些节点和支路上装设测点。
Pij ( 1 ) = B ij (θ i (1 ) − θ j (1) ) = B ij (θ i (0) + ∆ θ i ) − (θ j (0) + ∆ θ j ) = B ij (θ i (0) − θ j (0) ) + B ij ( ∆ θ i − ∆ θ j ) = Pij ( 0 ) + ∆ Pij
u ξ kj 其中
和
θ ξ kj 可以用以下方法来计算
U kεu u ξ kj = Q j εQ
©版权所有
100∆θ k0 θ ξ kj = Pj ε P
(31)
东南大学电气工程系
上两式中: εU为电压变化百分比,当节点k电压变化小于此值 时,就可忽略不计; εQ为节点i无功功率最大假定变化量的百 分值;
©版权所有
东南大学电气工程系
直流法-方法2 直流法-方法2
假定由于支路km开断, B´0变成为B´1 ,导致θ0变成θ1,但是注入不变。 理论上,可以采用P0 = B´1 θ1用新的因子表计算出新的θ1 但考虑用基本情况下的B´0求解。类似方法1,有:
电力系统静态安全分析方法研究
![电力系统静态安全分析方法研究](https://img.taocdn.com/s3/m/f786cf346d85ec3a87c24028915f804d2b1687a0.png)
电力系统静态安全分析方法研究电力系统是现代社会的基础设施之一,它不仅提供了电力服务,同时也对工业生产、商业发展、社会稳定起着至关重要的作用。
因此,保障电力系统的安全是非常重要的任务。
在电力系统运行中,静态安全分析是一项重要的工作。
本文将介绍电力系统静态安全分析的方法,分析其优缺点,并探讨未来的发展方向。
一、静态安全分析方法静态安全分析是指在电力系统正常运行状态下,研究其稳定性、断电容忍能力、电压控制能力等,从而保证电源的可靠性和稳定性。
静态安全分析的主要方法包括潮流分析、潮流限制分析、电压稳定裕度分析、可靠性评估等。
1、潮流分析潮流分析是电力系统静态安全分析的基础工具,它是用来计算电力系统各节点的电压、电流、功率等技术参数的一种数学方法。
潮流分析可以用来确定输电线的负载率、测量变压器的功率损耗、计划电力系统的运行条件等。
它不仅可以满足工程实际操作需要,还可以提供对电力系统的可靠性和稳定性的静态分析。
2、潮流限制分析潮流限制分析,指通过模拟各种故障和异常情况,评估电力系统在这些情况下的运行能力。
通过潮流限制分析,可以确定电力系统的最大电流、最大功率、最大负荷量等。
它可以帮助工程师找出电力系统中的故障点,并在紧急情况下制定合适的应对措施。
3、电压稳定裕度分析电压稳定裕度分析是指评估电力系统在负荷变化和扰动情况下的电压稳定性。
其分析结果可以用来指导电力系统的电压控制策略,以确保电力系统在正常工作条件下保持稳定和动态响应。
电压稳定裕度分析使电力系统管理人员能够更好地预测故障,并采取必要的措施,来避免电力系统的运行中断和不稳定因素的发生。
4、可靠性评估可靠性评估一般用来评价电力系统的负荷容量、发电机的使用年限、元件的可靠性、维护成本、电源的备用容量等问题。
可靠性评估可以从实践中获得足够的数据来确定电力系统的设计和运行要求,制定适当的运行和维护计划。
它在电力系统的长期规划和设计方面起着至关重要的作用,可对系统性能进行独立评估,从而优化可靠性、稳定性、安全性和经济性。
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/c3fe2f030812a21614791711cc7931b765ce7b86.png)
01.
02.
03.
04.
目录
静态安全分析概述
静态安全分析方法
静态安全分析的应用
静态安全分析的发展趋势
静态安全分析的定义
静态安全分析是一种对电力系统进行安全评估的方法
主要关注电力系统在正常运行条件下的稳定性和可靠性
通过对电力系统的拓扑结构、参数和运行状态进行分析,评估系统在故障情况下的稳定性和恢复能力
潮流计算可以分析电力系统的稳定性、可靠性和效率,为电力系统的规划、设计和运行提供依据。
潮流计算主要包括节点电压计算和支路电流计算,通过求解网络方程得到各节点的电压和各支路的电流。
潮流计算还可以用于分析电力系统的故障情况,为故障诊断和恢复提供支持。
灵敏度分析
灵敏度分析的定义:研究系统参数变化对系统安全性能的影响
应用效果:提高电力系统运行效率,减少故障损失,保障电力系统安全稳定运行
04
考虑动态因素的静态安全分析
动态因素的影响:电力系统运行过程中,负荷、发电、输电等参数会发生变化,需要考虑这些动态因素对系统安全的影响。
01
动态安全分析方法:传统的静态安全分析方法无法考虑动态因素的影响,需要采用新的分析方法,如动态潮流计算、状态估计等。
03
静态安全分析的未来发展方向:与物联网、大数据、人工智能等技术的深度融合,实现电网的智能化、精细化管理。
04
评估指标:包括电压稳定裕度、频率稳定裕度、功角稳定裕度等
评估步骤:首先确定系统的运行状态,然后计算系统的静态安全裕度,最后分析系统的稳定性和可靠性
电网规划设计
1
静态安全分析在电网规划设计中的应用
2
静态安全分析在电网规划设计中的作用
3
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/9b816f3a2f60ddccda38a0ec.png)
Zij Iij Ij-Iij
网络
U1(0) Ui
(0)
I1 Ii Ij In
(a)
网络
U1(1) Ui
(1)
0 Iij -Iij 0
Uj(0) Un (b)
(0)
Uj(1) Un (c)
(1)
图3-6
对于线性网络,可以应用迭加原理把图3-6(a)分成两个网络即 . 图3-6(b)和3-6(c)。这时待求的节点电压 U 也可看成两个部 . . . ( 0) (1) 分
式中: U 相当于没有追加支路情况下的各节点电压,这个向量可 以用原网络的因子表求出,即:
. (0)
U U U
(46)
U
. (0)
Y 1 I
. (0)
(47)
I 时求出的,其值为 U 是向原网络注入电流向量 . . (48) U (1) Y 1 I (1)
. (1)
. (1)
©版权所有
补偿法
补偿法:将支路开断视为该支路未被断开,而在其两端节点 处引入某一待求的补偿电流,以此来模拟支路开断的影响。
特点:不必修改导纳矩阵,可以用原来的因子表来解算网络 的状态。
以单一支路开断为例说明补偿法的物理概念
当网络节点i、j之间发生支路开断,可以等效地认为在i、j节点间并 联了一个追加的支路阻抗Zij,其数值等于被断开支路阻抗的负值。 这时流入原网络的注入电流将由 I
Zij
. Iij
ZT Zij Zij
(53)
. 图3-7 用等效发电机原理求Iij的等值电路图
支路开断后的节点电压向量
通过等值电路络 ZT . E
用直流法进行电力系统静态安全分析
![用直流法进行电力系统静态安全分析](https://img.taocdn.com/s3/m/ff2df6cfba0d4a7302763aff.png)
用直流法进行电力系统静态安全分析
用直流法进行电力系统静态安全分析
摘 要:介绍了潮流计算的一种方法直流法,并举例说明了用直流法进行静态安全分析的步骤。
关键词:直流法;电力系统;静态安全分析
电力系统静态安全分析是应用电力系统的实时数据,对一组可能出现的假想事故进行分析的在线模拟计算过程,用以校核事故后稳态电力系统运行方式的安全性,以便预先使运行人员提高警惕或采取措施。
为了适应实时安全分析的要求,计算方法应该是快速的,而在计算精度上则只要求知晓元件过负荷的概略数值,因此直流法至今仍经常作为备选的一种潮流算法。
本文通过一个简单的例子来说明用直流法进行静态安全分析的步骤。
1 直流法潮流计算
支路ij的等值电路如图1所示。
由等值图,可得支路潮流为:
将实部、虚部分开:
在直流法潮流中,采用如下假定:
于是上式可以写成:。
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/c27e3593ac51f01dc281e53a580216fc700a5333.png)
汇报人:
01
02
03
04
05
06
定义:电力系统静态安全 分析是一种评估电力系统 在正常和异常运行状态下 是否安全的分析方法。
目的:通过静态安全分析, 可以预测和防止电力系统 中的潜在安全问题,确保 电力系统的稳定运行。
保障电力系统的稳定运行
报告生成:将分析结果整理成 报告,供相关人员参考和使用
确定安全目标:根据电力系统的实 际情况,制定合理的安全目标,为 预防控制措施提供指导。
制定控制措施:根据潜在风险的分析 结果,制定相应的预防和控制措施, 降低事故发生的概率和影响程度。
添加标题
添加标题
添加标题
添加标题
分析潜在风险:对电力系统可能存 在的安全隐患进行深入分析,识别 出可能引发事故的风险点。
密结合
引入人工智能技术,提高安全分析的准确性和效率
结合大数据技术,实现大规模电力系统的安全监测和预警
引入地理信息系统技术,实现电力系统的空间安全分析
加强与气象、环境等领域的合作,研究极端天气、自然灾害等对电力系统安全的 影响
汇报人:
实施控制措施:将制定的控制措施 落实到位,加强监督和检查,确保 措施的有效性和可持续性。
评估新建设电力系统的安全性和稳定性 确定电力系统中的关键元件和薄弱环节 优化电力系统的结构和布局 为电力系统的调度运行提供安全保障
预防和控制连锁故 障
提高电网的稳定性 和可靠性
优化调度和运行方 式
辅助决策和应急响 应
故障诊断:通过静态安全分析,可以快速准确地识别和定位系统中的故障 故障处理:根据静态安全分析的结果,可以制定有效的故障处理方案,提高处理效率 预防性维护:通过静态安全分析,可以预测潜在的故障风险,提前进行维护和预防 优化运行:通过静态安全分析,可以优化电力系统的运行方式,提高运行效率和稳定性
电力系统静态安全分析2——杜晓风 (2)
![电力系统静态安全分析2——杜晓风 (2)](https://img.taocdn.com/s3/m/29305bdf49649b6648d747c0.png)
以预想事故相邻级确定权重因子
预想事故自动筛选算法原理图
入口 取第一个预想事故 安全 自动选择 不安全 安全评估
行为指标计算及排队顺序 取下一个预想事故 否 是 输出预想事故一览表 出口
预想事故是否已经作完
图1 预想事故自动筛选算法的原理图
电力系统静态安全域
保证电力系统静态安全运行的条件是在当前网 络结构下,不但要保证正常运行状态,而且在 因偶然事故导致故障元件切除后的运行状态下, 仍然要保证发电机功率和负荷需求功率的平衡, 同时各设备运行在安全限值约束之内。 前面介绍的方法均为逐点法——在给定的运行 状态下,对预想事故集的所有预想事故逐一求 解潮流方程,以此来确定系统是否运行在安全 约束范围内。
-0.6
-0.8
接线图
例题
解: P B
0
1 1 0.6 0.25 0.2 0.8 1 0.2
1 9 5 2 0.2 2 15 3 1 1 3 5 2 0.4 0.2
潮流模型及安全约束条件
电力系统的安全运行,就是保证系统的功率平衡,同时 各设备运行在安全限值之内
潮流模型——保证功率平衡由功率平衡方程实现,即等式
约束条件
安全约束条件——设备运行在安全限值之内
若系统节点数为n,第n个节点为参考节点,负荷节 点编号为1~nL (共nL个),发电机节点编号为nL +1~n-1(共包括参考节点共Ng个),支路数为m。此外 其潮流模型一般可采用P-Q分解潮流模型
概念
预想事故的自动筛选:在静态安全分析中,先 用简化潮流的计算方法对预想事故集中的每一 个预想事故进行近似计算,剔除明显不会引起 安全问题的预想事故,且按事故的严重性进行 排序,组成预想事故一览表,然后用更精确的 潮流算法去对表中的事故依次进行分析。
现代电力系统分析静态安全分析
![现代电力系统分析静态安全分析](https://img.taocdn.com/s3/m/6a2821fc4128915f804d2b160b4e767f5acf8000.png)
电力系统故障分析
静态安全分析:用于分析电力系统在故障状态下的稳定性和可靠性
故障类型:包括线路故障、设备故障、负荷故障等
故障影响:可能导致电力系统电压崩溃、频率崩溃、系统解列等
故障处理:通过静态安全分析,制定故障处理方案,确保电力系统安全稳定运行
评估电力系统的可靠性和稳定性
制定电力系统的发展规划和政策
电力系统运行
静态安全分析在电力系统运行中的作用:评估电力系统在正常和故障情况下的稳定性和可靠性。
静态安全分析在电力系统调度中的应用:帮助调度员制定合理的调度方案,确保电力系统的安全稳定运行。
静态安全分析在电力系统规划中的应用:为电力系统规划提供依据,确保规划方案满足电力系统安全稳定运行的要求。
静态安全分析:根据网络模型和状态估计,分析电力系统的安全性
安全裕度:计算电力系统的安全裕度,判断高电力系统的安全性和稳定性
仿真验证:通过仿真验证静态安全分析方法的有效性和准确性
2
静态安全分析的应用
电力系统规划
5%
55%
30%
10%
确定电力系统的规模和结构
优化电力系统的投资和运营成本
现代电力系统分析静态安全分析
演讲人
01.
静态安全分析概述
02.
03.
目录
静态安全分析的应用
静态安全分析的挑战与展望
1
静态安全分析概述
静态安全分析的定义
1
静态安全分析是一种对电力系统进行安全评估的方法
2
主要关注电力系统的静态特性,如拓扑结构、参数等
3
通过分析电力系统的静态特性,评估系统在正常和故障情况下的安全性
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/8b1a7710443610661ed9ad51f01dc281e53a5627.png)
4
静态安全域分析:确定 系统在给定运行状态下 的安全域范围
5
静态安全约束分析:分 析系统在给定运行状态 下的安全约束条件
6
静态安全优化分析:优 化系统运行方式以提高 系统静态安全水平
静态安全分析在电力系统中的应用
电力系统规划:评估电力系统在不同场景下 的安全性,为规划提供依据
电力系统运行:实时监控电力系统的运行状 态,及时发现并处理安全隐患
演讲人
电力系统静态安全分析
目录
01. 静态安全分析概述 02. 静态安全分析的关键技术 03. 静态安全分析的应用案例 04. 静态安全分析的发展趋势
静态安全分析概述
基本概念
01
02
03
04
静态安全分析:对 电力系统在给定运 行条件下的安全性
进行分析的方法
运行条件:包括负 荷、电压、频率等
系统参数
分析、概率风险评估
2
等方法进行安全裕度
评估。
3
评估指标:安全裕度
评估的主要指标包括
裕度系数、裕度范围、
裕度等级等。
静态安全分析的应用案例
电网规划与设计
01
确定电力系统 的规模和结构
02
评估电力系统 的可靠性和稳
定性
03
优化电力系统 的运行方式和
控制策略
04
评估电力系统 的投资效益和
环保效益
电网运行与控制
04
网络模型优化:根据实际需 求,对模型进行优化,提高 分析效率和准确性
故障模拟与分析
故障模拟: 通过计算机 仿真技术, 模拟电力系 统可能出现 的故障场景
故障分析: 对模拟的故 障场景进行 深入分析, 找出可能导 致系统故障 的原因
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/6ed2f7475fbfc77da269b1b9.png)
I km
称Lij
为
km
支路开断分布
系
数,定义为:Lij
km
I ij I km
,得:
Lijkm
xkm X ik X im X jk X jm xij xkm X kk X mm 2 X km
Lij
的物
km
理意义就是:当
支路k
m在基本情况下流
有单位电流时,
Qi Q ji
Qi
Qij Q j Q ji Q j
Qi Q j
Qij
V Q ji
V
V Qi
V Qj
Qi Q j
2020/3/7
22
5补 偿 法
所谓补偿法是指:当网络中支路开断的 情况下,可以认为该支路未被开断,而在其 两端节点处引入某一待求的功率增量或电流 增量(或称补偿功率或补偿电流)来模拟支 路的开断。
Pj
jQ j
Pj'
jQ
' j
由式2减去式1得:
} 2
Pi jQi Pij jQij Pj jQ j Pji jQ ji
} 3
2020/3/7
17
2020/3/7
18
假想支路ij并未被开断,而用在节点I和节点j处分别注入 Pi jQi
(3)
式中,Z C(n1)(n1)表示松弛节点接地时,支路km
开断后的阻抗矩阵,
V。
。 V
。 V s
电力系统的静态稳定性分析与改进研究
![电力系统的静态稳定性分析与改进研究](https://img.taocdn.com/s3/m/282138790812a21614791711cc7931b765ce7bdd.png)
电力系统的静态稳定性分析与改进研究一、引言电力系统是现代社会不可或缺的基础设施,它提供了人们所需的电力供应。
但是,随着能源需求的增长和系统复杂性的提升,电力系统的静态稳定性也面临着越来越大的挑战。
静态稳定性是指系统从扰动后恢复到稳定运行的能力,这是电力系统运行的基本要求。
本文将探讨电力系统的静态稳定性分析方法以及改进研究的相关内容。
二、静态稳定性分析静态稳定性分析是评估电力系统的抗扰动能力,以便在系统出现故障或异常情况时采取适当的措施来保障系统的稳定运行。
静态稳定性分析主要涉及以下几个方面:1. 潮流计算潮流计算是静态稳定性分析的基础,用于确定系统各节点的电压、功率和潮流分布情况。
通过潮流计算,可以评估系统中的潮流分布是否合理,并找出潮流过载和电压偏差等问题。
2. 负载流失稳定分析负载流失稳定分析是指在系统发生负载流失事件时,研究系统的稳定性。
一旦系统中的某个负载突然断开,将会导致系统频率下降,功率损失增加,甚至可能引发连锁故障。
负载流失稳定分析能够评估这种情况下系统的恢复能力。
3. 短路分析短路是电力系统中常见的故障,如果短路电流过大或持续时间过长,可能对系统稳定性造成影响。
因此,通过短路分析可以评估系统在短路事件发生时的稳定性表现,并寻找潜在的改进措施。
三、静态稳定性改进研究为了进一步提升电力系统的静态稳定性,研究者开展了许多相关研究。
以下是一些常见的改进方法:1. 灵敏度分析灵敏度分析是通过对系统参数的微小变化进行分析,评估这些变化对系统静态稳定性的影响。
通过灵敏度分析,可以确定系统中哪些参数对稳定性最为敏感,并采取相应的优化措施。
2. 功率系统稳定裕度功率系统稳定裕度是指系统在受到例行或非例行扰动时允许出现的最大变化量。
通过对系统稳定裕度的研究,可以确定系统的抗扰动能力,从而采取相应的措施进行改进。
3. 新能源的集成随着新能源的逐步普及和加入电力系统,对静态稳定性的要求也越来越高。
因为新能源具有不稳定性和随机性,会对系统的潮流、电压和频率等参数产生影响。
电力系统博士入学考试必备---静态安全分析
![电力系统博士入学考试必备---静态安全分析](https://img.taocdn.com/s3/m/c43801f1760bf78a6529647d27284b73f2423677.png)
静态安全分析的定义电力系统各种运行状态的定义及其相互转换关系安全性和可靠性的区别和联系电力系统安全分析的内容和流程各种静态等值的原理和特点故障组的定义预想事故分析的步骤从安全角度来看,电力系统运行的五种状态是什么?简述每种状态的特点。
(03A)电力系统的可靠性、安全性和稳定性各有什么含义?简述各自的主要研究内容.(03A、05A)什么是电力系统的可靠性?有哪些研究内容?(05B)什么是静态安全分析和动态安全分析?安全分析是指应用潮流计算方法,对运行中的网络或某一研究下的网络,按N—1原则,研究一个个运行元件因故障退出运行后,网络的安全性及安全裕度。
静态安全分析是研究元件有无过负荷及母线电压水平是否符合要求,有无越限,以检验电网结构强度和运行方式是否满足安全运行的要求。
动态安全分析是研究线路功率是否超稳定极限。
安全分析从功能上课分为两大模块:一块为故障排序,即按N-1故障严重程度自动排序,另一块为阿娜全评估。
对静态安全分析而言,也就是进行潮流计算,动态安全分析则要进行稳定计算分析。
安全分析(上题)的内容和流程:安全分析的功能就是应用计算机使运行人员及时获得实时数据并对下一时刻中可能出现的事故进行快速而详尽的计算分析,从而得出较完整而准确的结论。
电力系统的可靠性、安全性和稳定性各有什么含义?简述各自的主要研究内容。
(可靠性和安全性的区别与联系)可靠性:(安全性见第一题)为保证供电的持续性,也就是说,要求系统安全、可靠,首先应明确安全性(security)和可靠性(reliability)的定义。
在早期的文献中,这两个术语有时混用。
大体上说有两种定义方法,方法一:1)在系统规划设计或历史统计方面,系统保证对负荷持续供电的能力,称为可靠性。
它涉及到较长的时间段,是一个长时期持续供电的平均值概念,为此必须考虑众多可能的运行状态及各种故障;2)在系统运行方面,当系统发生故障时,保证对负荷持续供电的能力,称为安全性.它涉及到系统的当前现状和突然发生的故障,因此是一个时变的或瞬时性的问题。
电力系统静态安全分析
![电力系统静态安全分析](https://img.taocdn.com/s3/m/f03622ee4bfe04a1b0717fd5360cba1aa8118c2c.png)
为无穷大,
k
因此,应用直流潮流模型可以方便地找出
网络中那些开断后引起系统解列的线路,
对于这些线路不能直接进行断线分析。
例:三节点电力系统,节点1 为平衡节点,
其支路和节点参数(标幺值)如下:
X12=0.25,X13=0.4, X23=0.2;P2=-0.6,
P3=-0.8。用直流法求解: (1)基态时各支路有功潮流分布; (2)采用直流法求支路1-2 开断后各支路潮 流分布。
直流潮流数学模型
P B0θ
写成另一种形式
XP
其中
X
B' 1 0
Pij Bijij i j xij
第三节 支路开断模拟
• 直流潮流的断线模型 应用直流潮流模型求解输电系统的状
态和支路有功潮流非常简单。而且,由于 模型是线性的,故可以快速进行追加和开 断线路后的潮流计算。
原理:原网络直流潮流公式: XP 当支路(或追加)开断后,而注入功率
X
式中:
'
X
k
Xek ekT
X
(3-67) (3-68)
k 1 xk ekT Xek
由式(3-67)可知节点阻抗矩阵的修正
量为 X X ' X Xe eT
2)状态量的变化
第三节 支路开断模拟
在节点注入功率不变的情况下,可以直接
得到追加线路 k 后状态向量的增量
XP Xe eT XP Xe eT (3-71)
k
kk
k
kk
3)追加线路后的状态向量
' Xe eT
k
kk
第三节 支路开断模拟
当网络断开支路 k 时只要将 xk 换为 xk,
以上公式同样适用。必须指出,当网络开
电力系统静态稳定性分析
![电力系统静态稳定性分析](https://img.taocdn.com/s3/m/3bd1a196b8f3f90f76c66137ee06eff9aff84945.png)
电力系统静态稳定性分析一、电力系统静态稳定性的概念静态稳定性是指电力系统在外部扰动(如大负荷突然失去或电网连锁故障等)下,维持基本工作状态的能力。
电力系统静态稳定性分析主要研究系统的平衡和不平衡工作状态,以及在系统发生扰动后的响应过程。
主要包括潮流分析、电力系统潮流控制、稳定裕度分析等。
二、电力系统静态稳定性分析方法1.潮流分析潮流分析是电力系统静态稳定性分析的基础。
通过潮流分析可以确定系统各个节点的电压、电流、功率等参数,以及线路、变压器的负载情况。
潮流计算方法主要包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和直接潮流法等。
通过对潮流分析的结果进行评估和判断,可以得出系统的稳定性状况。
2.电力系统潮流控制电力系统潮流控制主要通过调整发电出力和负荷的分配来实现。
常用的方法包括静态无功补偿装置的投入和退出、变压器调压控制、发电机调压控制、风电和光伏发电等分布式电源的接入控制等。
通过潮流控制,可以有效控制系统的电压、无功功率等参数,从而提高系统的稳定性。
3.稳定裕度分析稳定裕度分析是针对电力系统可能发生的故障和异常情况进行评估和分析,以判断系统在不同工况下的稳定性水平。
常见的稳定裕度指标包括暂态稳定裕度、稳定边界等。
通过稳定裕度分析,可以识别和解决系统的潜在稳定问题,保证系统的稳定运行。
三、电力系统静态稳定性常见问题1.电压稳定问题:电力系统电压的稳定性是影响系统静态稳定性的重要因素。
过高或过低的电压都会导致系统稳定性下降,甚至发生电压失稳。
通过控制无功功率的输出、调整电网结构等措施,可以有效解决电压稳定问题。
2.功率平衡问题:系统内的功率平衡是保证系统稳定运行的基础。
发电出力和负荷之间的失衡会导致系统频率的变化,进而影响系统的稳定性。
通过合理调整发电出力和负荷分配,保持功率平衡,可以提高系统的静态稳定性。
3.事故短路问题:电力系统中的事故短路是可能引起系统瞬态稳定失稳的重要因素。
当发生事故短路时,会导致系统的电压下降、频率波动等现象,进一步影响系统的稳定性。
电力系统静态安全分析技术研究
![电力系统静态安全分析技术研究](https://img.taocdn.com/s3/m/2dde83f568dc5022aaea998fcc22bcd126ff4238.png)
电力系统静态安全分析技术研究一、静态安全分析的概念静态安全分析是指在不考虑时间演化的前提下,通过对电力系统在不同运行模式下的功率平衡、电压稳定、设备负荷能力等方面进行模拟与分析,以提前预防、发现并消除可能导致系统不稳定的因素,保证电力系统的正常运行。
二、静态安全分析的方法1.负荷流分析负荷流分析是一种基于电力系统牛顿-拉夫逊法的计算方法,用于计算电力系统的电压、电流和功率等各种参数,以验证系统是否达到静态稳定状态。
负荷流分析可促使发电机与负荷之间的电流、功率保持平衡,确保电力系统能够满足负荷需求。
2.静态稳定极限分析静态稳定极限分析是通过对电力系统节点电压和功率的分析,确定系统能否在发生故障时保持稳定。
静态稳定极限分析主要包括阻尼振荡稳定裕度、发电机电势稳定限制和输电线路载荷容量等指标的计算。
3.设备负荷能力评估设备负荷能力评估主要针对各个设备(如发电机、变压器、输电线路等)的安全运行能力进行分析,确定设备在承受额定负荷之外的额外负荷时的稳定性。
通过评估设备的负荷能力,可以为系统的运营提供合理的设备利用和负荷调控建议。
4.网损分析电力系统的网损分析是指对系统输电线路、变电站等设备的电阻损耗和电感损耗进行分析,以评估系统的电能损耗情况。
通过网损分析,可以识别系统中可能存在的不合理的网损情况,进而采取相应的措施来减少系统的网损。
三、静态安全分析的技术1.基于仿真模型的分析技术通过建立电力系统的仿真模型,将系统的运行状态与实际情况进行对比分析,以评估系统的稳定性和各个设备的运行情况。
仿真模型可以考虑不同的变量和参数,从而对系统进行精细的分析。
2.基于优化算法的分析技术静态安全分析中的一些问题可以通过优化算法进行解决,如负荷流分析和设备负荷能力评估等。
优化算法可以通过将系统的运行目标与限制条件进行优化,寻找最优解,提高系统的稳定性和性能。
3.基于数据挖掘的分析技术通过对大量历史数据的分析和挖掘,可以找出系统的规律和共性,为系统运行管理提供参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 与Newton潮流算法相结合的直接法
根据图 a可得系统初始状态的功 率平衡方程式: Pi + jQi = (Piα + Pij ) + j (Qiα + Qij ) Pj + jQ j = (Pjβ + Pji ) + j (Q jβ + Q ji )
' Pi + jQi = Piα + jQi'α
2011-3-19
7
第一节 预想事故评定
预想事故评定(又称预想事故分析),是根据系统 预想事故评定 中全部可能扰动集合中的某一子集------预想事 故集,来评定系统的安全性。 在静态安全评定中,预想事故集至少应包括下 列扰动: 线路(支路)开断(line outage); 发电机开断(generator outage)。
2011-3-19
安全正常状态:已处于正常状态的电力系统,在 安全正常状态 承受一个合理的预想事故集的扰动之后,如果仍 不违反等式约束和不等式约束时系统的状态。 不安全正常状态:处于正常状态的电力系统,在 不安全正常状态 承受规定预想事故集的扰动过程中,只要有一个 预想事故是系统不满足运行约束条件时系统的状 态。 紧急状态:当系统运行在不满足不等式约束条件 紧急状态 下时的状态。 待恢复状态:当整个系统处于瓦解或崩溃时的状 待恢复状态 态。
}
(1) (2 ) (3)
17
根据图 b可得系统最终状态的功 率平衡方程式: Pj + jQ j = P + jQ
' jβ ' jβ
}
由式 (2 )减去式 (1)得: ∆Piα + j∆Qiα = Pij + jQij ∆Pjβ + j∆Q jβ = Pji + jQ ji
2011-3-19
}
2011-3-19
8
2011-3-19
一、支路开断模拟
在网络的基本情况(既未发生预想事故 的情况)潮流解求得之后,对于支路开断模 拟,通常采用的方法有: 1、直流法; 2、分布系数法; 3、与Newton潮流算法结合的直接法; 4、与快速解耦潮流算法结合的直接法; 5、补偿法。
2011-3-19
9
1 直流法
直流法是以直流潮流法为基础的模拟单 一支路开断或多重支路开断的直流预想 事故分析法,是最为简单、快速但可能 也是最不精确的一种方法。它只能解出 支路的有功功率潮流和节点电压相位角, 而不能解出支路无功功率潮流和节点电 压模值。
[P 0)] = [B0' ][θ (0) ] + [∆B ][θ ( 0) ] + [B0' ][∆θ ] + [∆B ][∆θ ] (
略去其中两增量的乘积 可得:
展开,可得
[∆θ ] = −[B
2011-3-19
‘ −1 0
] [∆B][θ ]
(0)
11
求出[∆θ ]后代入下式可以求出 [∆P ]: ∆Pij = Bij (∆θ i − ∆θ j )
‘ 。 。ο 。 。 V = V + ∆ V + [h ]V s
× 其中 [ h ] − [1, ⋯ ,] T ∈ R( n − 10 ) 1 1, 1
由(3)式展开,可得支路 km 开断后,任一节点 i的节点电压 增量值为: ∆ V i = Z ik ∆ I k + Z im ∆ I m = Z ik − Z im) km ( I 式中, km 是基本情况下,支路 km 中流过的电流值。 I
2011-3-19
。 。
ο
。
ο
。
ο
ο
。
14
ο ο 根据支路追加法可得Z ik 和Z im与支路未开短前原阻抗阵元素的关系: ο Z ik = Z ik + ο
1 (Z ik − Z im )(Z kk − Z mk ) z km − Z kk − Z mm + 2Z km
1 (Z ik − Z im )(Z km − Z mm ) Z im = Z im + z km − Z kk − Z mm + 2Z km 上式代入(4)式可得支路km开断后,系统中各个节点的电压增量值: 。 Z kk − Z mk Z km − Z mm ∆ V i = (Z ik − Z im )1 + − I km z km − Z kk − Z mm + 2Z km z km − Z kk − Z mm + 2Z km
∂ Q ij ∂Q j ∆ Q i ∂ Q ji ∆ Q j ∂Q j ∂ Q ij ∂V = ∂ Q ji ∂V
4
描述系统运行条件的四种状态
安全正常状态(secure normal state) 不安全正常状态(insecure normal state) 紧急状态(emergency state) 待恢复状态(restorative state) 一般来说,电力系统如果在数量上和 在质量,都满足了用户的要求,就可 认为系统处于正常的运行状态。
2011-3-19
5
电力系统处于正常运行状态应满足的条件:
(1)系统中各节点的有功、无功功率的供需条件必须平衡; (2)各节点的电压模值不应超过允许的上限和下限; (3)为了保持系统的稳定性,相邻节点间的电压相位差不应 超过最大允许偏差; (4)各可控发电机组,其有功、无功功率不应超过允许的上 限和下限; (5)系统中各支路的潮流不应超过潮流视在功率的最大允许 限值。 对于(1)称之为功率平衡约束条件或载荷约束条件,它 隶属于等式约束条件。对于(2)-(5)称之为运行约条件, 隶属于不等式约束条件。只有同时满足等式和不等式两种 约束条件的系统,才可认为是处于运行的正常状态。 6
∆ Pi α ∆ Q iα ∆P jβ ∆Q jβ
∆ Pi ∆Qi ∆P j ∆Q j
∆P ∆θ 从 Newton 潮流方程式: ∆ Q = [J ] ∆ V
2011-3-19
第一节 预想事故评定 第二节 自动故障选择
第二章 安全约束调度
第一节 安全控制的模型 第二节 求解方法
第三章 动态安全分析
2011-3-19
3
第一章 静态安全分析
电力系统静态安全分析是提高电力 系统安全性的重要措施之一,它的主要 内容包括: a预想事故评定 a自动事故选择 a预防控制
2011-3-19
∂ Q ij ∆ Q ij ∂ Q i ∆ Q = ∂ Q ji ji ∂Q i
2011-3-19
∂ Pij ∂ Pij ∂ P j ∆ Pi ∂ θ ∆ P = ∂ P ji ∂ P ji j ∂P j ∂θ
2011-3-19
。
。
13
。 。 ο ∆ V = Z ∆ I × ( Z 式中, ο ∈ C(n −1) n −1) 表示松弛节点接地时,支路km
[ ] [ ]
(3)
开断后的阻抗矩阵,
ο ‘ 。 。 。 。 × ∆ V = V − V s − V ∈ C(n −1)1。 也就时说,支路开断后 各节点对地而 言的新电压值为:
i
∆ θ ∆ V =
[S ]
j
i
j
Hale Waihona Puke
[ S ]是初始状态潮流解最后 一次迭代下的 Jacobi 矩阵之逆。 于是支路开断后,系统 最终状态下的状态变量 将为:
[θ ] = [θ ] + [∆θ ]
m 0
(用于松弛节点外的所有节点)
2011-3-19
20
[V ] = [V ] + [∆V ]
m 0
(用于所有PQ型节点)
式中,上角0和m,分别表示系统初始状 态和最终状态下的值。
2011-3-19
21
4 与快速解耦潮流算法相结合的直接法
基本思想和前一种方法相同,只是把P和Q解耦分别计算, 公式如下:
∂ Pij ∆ Pij ∂ Pi ∆ P = ∂ P ji ji ∂P i
18
假想支路ij并未被开断,而用在节点I和节点j处分别注入 ∆Pi + j∆Qi 和 ∆Pj + j∆Q j 的方法来模拟其开断(图c);在网络接近线性的假 设下,这些新注入的功率增量应满足下列的灵敏度方程式:
∂ Pi α ∂ Pi ∂ Q iα ∂ Pi = ∂ P jβ ∂ Pi ∂ Q jβ ∂P i ∂ Pi α ∂Q i ∂ Q iα ∂Q i ∂ P jβ ∂Q i ∂ Q jβ ∂Q i ∂ Pi α ∂Pj ∂ Q iα ∂Pj ∂ P jβ ∂Pj ∂ Q jβ ∂Pj ∂ Pi α ∂Q j ∂ Q iα ∂Q j ∂ P jβ ∂Q j ∂ Q jβ ∂Q j
∆
2011-3-19
12
2 分布系数法
首先建立起系统的网络 方程式: V i − V s = ∑ Z ij I j (i = 1, 2,⋯ , s ,⋯ , n )
j =1 。 。 n 。
式中, s − − 参考节点 s 的规定复电压,但其相 位角取为 0 V
。
V i − − 对地而言的节点 i 复电压, I j − − 节点 j 的注入复电流,它由下 式表示: 。 。 Pj − jQ j Ij = − y j V (1,, , n ; j ≠ s ) 2⋯ j * V j 其中, y j − − 节点 j 的对地导纳。