《数学分析》第十章_定积分的应用
数学分析第十章 定积分的应用
![数学分析第十章 定积分的应用](https://img.taocdn.com/s3/m/4e45d9e8ee06eff9aff80767.png)
x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图
数学分析课本(华师大三版)-习题及答案第十章
![数学分析课本(华师大三版)-习题及答案第十章](https://img.taocdn.com/s3/m/a9230a7267ec102de2bd89c3.png)
数学分析课本(华师大三版)-习题及答案第十章第十章 定积分的应用一、 填空题 1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A =2. 曲线xxe y e y -==,及1=x 所围面积A =3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S =5. 曲线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t t y tt x ,弧长4=S ,则其重心坐标是 7. 曲线0,0),0(==≤=y x x ey x所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是 10.设有一内壁形状为抛物面22y xz +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h =11.由曲线,2,1=+=x x x y 及2=y 所围图形的面积S = 曲线xx xy 223++-=与x 轴所围成的图形的面积A =二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰baxdxln ln ln (B )⎰bae ex dxe (C)⎰b ay dye ln ln(D )⎰b a e e xdxln2.曲线x y x y ==,1,2=x 所围成的图形面积为A ,则A =( ) (A )dx x x)1(21-⎰(B )dx x x )1(21-⎰ (C )⎰⎰-+-2121)2()12(dyy dy y(D )⎰⎰-+-2121)2()12(dxx dx x3.曲线xe y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( )(A )dxex ex)(10-⎰(B )dy y y y e )ln (ln 1-⎰(C )dxxe e ex x )(1⎰-(D )dy y y y )ln (ln 10-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( ) (A)()θθπd a 220cos 221⎰(B )θθππd a ⎰-2cos 221(C)()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A)⎰πθθ02221d e a(B )⎰πθθ20222d e a (C)⎰-ππθθd e a 22(D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+46262cos sin 2πππθθθθd d (C )()()⎰⎰+462602cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln x y -=上210≤≤x 一段弧长S =( ) (A)dx x ⎰⎪⎭⎫ ⎝⎛-+2102111(B )⎰-+212211dx x x(C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dxx ⎰-+21022])1[ln(18.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( ) (A )()⎰-ππ2022cos 1dt t a(B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a(D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y t a x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdtt t a t(B )⎰-⋅022)sin (cos3sec 4πdtt t a t (C )⎰-⋅π02)sin (cos 3sec 2dtt t a t (D )⎰-⋅02)sin (cos 3sec 2πdtt t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积 =V ( ) (A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V=( )(A )⎰-adxx a 022)(4 (B )⎰-adx x a 022)(8(C )⎰-a dxx a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰h ahdh 0(B )⎰a ahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+h dy y h H S 0)( (B )⎰-+H dy y h H S 0)((C )⎰-h dy y H S 0)( (D )⎰+-+H h dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰hdy y dh d2π (B )⎰--h dy a y a dhd 022])([π(C )⎰h dy y dh d b2π (D )⎰-h dy y ay dhd b02)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( )(A )⎰-+-b adx x g x f x g x f m )]()()][()(2[π(B )⎰---b adx x g x f x g x f m )]()()][()(2[π(C )⎰-+-b adx x g x f x g x f m )]()()][()([π(D )⎰---b adx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。
华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)
![华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)](https://img.taocdn.com/s3/m/d0dc5c55195f312b3069a541.png)
第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。
华东师范大学数学分析第10章
![华东师范大学数学分析第10章](https://img.taocdn.com/s3/m/afd8268826fff705cd170a56.png)
(5)r a sin3 3 (a 0,0
3 );
(6)r a ( a 0),0
2.
解
(1)s
b 1
y '2 ( x)dx
a
s
4 1
0
9 4
xdx
8 27
(10
10
1)
(2) x cos4 (t ), y sin4 t
s 2 x 't2 y '2t dt 0
2 4sin t cost cos4 t sin4 tdt 0
a 64
2
3
(3)
'( y)
[a
1
] y2
b2
a b
(1
) y2
1 2
b2
y,
[ '( y)]2
[
b a
(1
) y 2
b2
y]2
(1 a2
b2
y2 b2 )
1
y2
a2 b2
b2 y2 ( b ,
b
S2
( y) 1
b
'2 ( y)dy 2
b
y2
a1 b
b2
a2 y2 1 b2 y2 dx
5 10
x
1 2
x
从而它的面积为
1 2
x
1 2
x
xOz平面上椭圆方程为
1 4
x2
x2 10
z2 42
1
则 PQR 面积为 25 1
Z2 42
于是所求体积
V
4 2 25 1
0
dz z2
42
2 | 25z 100 z2 4
16
30
《定积分的应用》课件
![《定积分的应用》课件](https://img.taocdn.com/s3/m/6d712430178884868762caaedd3383c4bb4cb4e0.png)
在经济学中,定积分可以用于计算经济变量的累积分布函数和概率密度函数,从而解决 诸如保险、投资和风险评估等问题。在物理学中,定积分可以用于解决诸如物体运动轨 迹、电磁场和热传导等问题。在工程学中,定积分可以用于解决流体动力学、结构分析
和材料力学等问题。这些实际问题的解决需要借助定积分的理论和方法。
计算变速直线运动的路程
对于变速直线运动,我们可以通过微元法将时间划分为无数个小区间,然后根据速度函数计算每个小 区间的路程,最后求和得到总路程。
微元法的实例
计算圆环面积
通过微元法,我们可以将圆环划分为 无数个同心圆的面积,然后求和得到 近似值。
计算变力做功
对于变力做功的问题,我们可以通过 微元法将力划分为无数个微小的力, 然后根据每个微小力的作用距离计算 做功,最后求和得到总功。
计算体积
总结词
定积分在计算体积方面也具有重要应用,可以用于计算旋转体和曲面的体积。
详细描述
利用定积分的几何意义,可以计算旋转体的体积,例如球体、圆柱体等。此外 ,定积分还可以用于计算曲面的体积,例如旋转抛物面等。这些计算方法在几 何、物理和工程等领域中具有广泛的应用。
解决实际问题
总结词
定积分的应用不仅仅局限于数学领域,还可以解决许多实际问题,如经济学、物理学和 工程学等。
05
定积分在经济学中的应用
边际分析与弹性分析
边际分析
定积分用于计算边际成本、边际收益 和边际利润,帮助企业决策者了解生 产或销售的增量变化对总成本、总收 入和总利润的影响。
弹性分析
定积分用于计算需求价格弹性、供给 价格弹性和交叉价格弹性,帮助企业 决策者了解产品价格变动对市场需求 和供给的影响程度。
定积分的性质
定积分的应用课件
![定积分的应用课件](https://img.taocdn.com/s3/m/0133738a9fc3d5bbfd0a79563c1ec5da50e2d6d2.png)
液体静压力计算步骤
详细阐述液体静压力计算的步骤,包 括确定计算区域、选择坐标系、列出 被积函数等。
其他物理问题中定积分应用
引力计算
通过定积分求解质点系或连续体 之间的引力问题。
波动问题
将波动问题转化为定积分问题, 进而求解波动过程中的各种物理 量。
01
02
电场强度计算
利用定积分求解电荷分布连续体 所产生的电场强度。
消费者剩余和生产者剩余计算
消费者剩余计算
消费者剩余是消费者愿意支付的价格与实际支付价格之间的差额。在需求曲线和价格线之间的面积表示消费者 剩余,可以通过定积分计算。
生产者剩余计算
生产者剩余是生产者实际得到的价格与愿意接受的最低价格之间的差额。在供给曲线和价格线之间的面积表示 生产者剩余,同样可以通过定积分计算。
01
通过定积分求解绕x轴或y轴旋转一周所得旋转体的体积。
平行截面面积为已知的立体体积计算
02
利用定积分将立体划分为无数个平行截面,通过截面面积和高
度求解体积。
参数方程表示立体体积计算
03
将参数方程转化为普通函数形式,再利用定积分求解体积。
曲线弧长求解方法
1 2
直角坐标下曲线弧长计算
通过定积分求解曲线在直角坐标系下的弧长。
参数方程表示曲线弧长计算
将参数方程转化为普通函数形式,再利用定积分 求解弧长。
3
极坐标下曲线弧长计算
通过定积分求解曲线在极坐标系下的弧长。
03
定积分在物理学中应用
变力做功问题求解方法
微元法求解变力做功
通过将变力做功的过程划分为无数个微小的 元过程,每个元过程中力可视为恒力,从而 利用定积分求解变力做功。
欧阳光中《数学分析》(上)配套题库-章节题库(定积分及定积分的应用)【圣才出品】
![欧阳光中《数学分析》(上)配套题库-章节题库(定积分及定积分的应用)【圣才出品】](https://img.taocdn.com/s3/m/76c5c517dd88d0d233d46ab7.png)
第10章定积分及定积分的应用1.设,且.则证明:易知题式中的定积分均存在,故对[0,1]作分划△:应用几何-算术不等式,可知令n→∞,结论立即得证.2.设,则证明:分割[a,b]区间:。
作积分和式估计令n→∞,即得所证.3.试证明下列命题.(1)设且有,则(2)设且有,其中(3)设f(x)是[0,1]上的递减函数,0<α<1,则证明:(1)记并在两端作[0,1]上的定积分,则得从而有A=2/3,由此可知(2)注意到因此有(3)易知从而有移项即可得证.4.试证明下列命题.(1)设,若有,则f(x)在(0,π)中至少有两个零点.(2)设.若有,则f(x)在[a,b]中至少有N+1个零点.(3)设,若对满足的任一连续函数φ(x),均有证明:(1)由于,故知f(x)在(0,π)中至少有一个零点,否则与题设矛盾.(i)若f(x)有一个零点,且f(x)的值不变号,则根据类似于前面的推理,仍可推出矛盾.(ii)若f(x)有一个零点x=x0,且函数值变号,则函数值在(0,x0)和(x0,π)上同号.因此但是这一矛盾说明f(x)至少有两个零点.(2)设P(x)是次数不超过N的多项式,则有用反证法.假定f(x)在[a,b]中只有m≤N个零点:则选取f(x)在这些点左右值变号的点:且不妨设并作多项式因为在每个区间上,总有所以,但P(x)的次数不超过N,矛盾.得证.(3)作函数易知且故得将两式相减,因此有即.这说明即5.若则对任给的ε>0,存在[a,b]上的阶梯函数φ(x),使得(所谓[a,b]上的阶梯函数,是指定义在[a,b]上的有限分(区间)段函数,在每一小段区间上,该函数是一个常数.)证明:对任给的ε>0,存在[a,b]的分划△:a=x0<x1<…<x n=b使得.现在作阶梯函数φ(x)如下:有6.试证明下列命题.(1)设且,则(2)设f(x)在[a,b]上可微,且,则(3)设f(x)在[0,2]上二次可导,且有,则证明:(1)作,则(2)令,有(3)作f(x)在x=1处的T aylor公式(ξ位于x与1之间).注意到,可得7.设,且有则在任一闭区间上的最大值在端点上取到.是上凸函数.证明:(i)反证法.假定存在闭区间[a,b],f(x)在上取到最大值f(c),且则取a′,使得,再取,使得.从而有这导致矛盾.(ii)设L(x)是线性函数,则它满足题式(实际为等式).现在取且考察,易知G(x)满足题式,故G(x)在x=a或x=b处取到最大值.但G(a)=G(b)=0,因此得到8.试证明下列极限等式:(1)设,则(2)设,则。
定积分的应用课件
![定积分的应用课件](https://img.taocdn.com/s3/m/2f9b44bef605cc1755270722192e453610665bda.png)
2 信号处理
定积分可以计算信号的功 率、频谱和通量。
3 流体力学
通过定积分可以计算流体 的压力、速度和流率。
定积分在地理学中的应用
地形测量
通过定积分可以计算地球表面和 地质构造的高程。
气象学
定积分可以计算气象参数在空气 层中的分布和变化。
人口地理学
通过定积分可以计算人口密度和 城市发展的空间格局。
将面积概念应用于实际场 景,如教室布置和园艺规 划。
3 面积游戏
通过面积游戏和竞赛激发 学生学习兴趣和动力。
和混合效果。
3
创意表达
定积分可以用于艺术家和设计师的创意 表达和构思。
定积分在社会科学中的应用
社会学
定积分可以用于计算人口统计数 据和社会发展指标。
心理学
通过定积分可以建模心理过程和 行为变化。
经济学
定积分可以用于经济模型和政策 的评估和预测。
小学生学习面积时的应用
1 绘图和标注
2 实际场景
通过绘制图形和标注边长, 引导学生进行面积计算。
3
经济增长
通过计算国民收入的定积分,可以评估经济的增长率。
定积分在生物学中的应用
种群动态
定积分可以计算物种数量和 种群生长率。
生态系统
通过定积分可以计算能量流 量和物质循环。
药物浓度
定积分可以计算药物在体内 的浓度和释放速率。
定积分在工程学中的应用
1 结构分析
定积分可以计算结构的强 度、刚度和变形。
定积分在计算机科学中的应用
1 图像处理
定积分可以计算图像的亮 度、对比度和边缘检测。
2 数据挖掘
通过计算定积分,可以评 估数据的分布和模式。
数学分析-定积分应用
![数学分析-定积分应用](https://img.taocdn.com/s3/m/ba9d0103c281e53a5802ffee.png)
2018/8/27
6
微元法 (Element Method)
例1. 写出长为 l 的非均匀细直棒质量的积分表达式,
任一点的线密度是长度的函数。 解:建立坐标如图, 设任意点x的密度为 ( x ) o
x x+dx
l
x
( x ) C
关键 ( x ) 变量!
step2. 质量 M ( x)dx
2018/8/27 9
一、直角坐标系情形
y
y f ( x)
y
y f2 ( x) y f1 ( x )
o
a
x x x
b x
o
a x
x x
b x
曲边梯形的面积
由y=f1(x)和y=f2(x)围成的面积:
dA f ( x )dx
A2018/8/27 a f ( x )dx
第十章 定积分应用
y
y=f (x)
0
a
x x+dx
b
x
2018/8/27
1
第一节 定积分的元素法
一、问题的提出 定积分概念的出现和发展都是由实际问题引起和 推动的。因此定积分的应用也非常广泛。本书主要介
绍几何、物理上的应用问题,例如:平面图形面积,
曲线弧长,旋转体体积,水压力,抽水做功,引力等。
如何应用定积分解决实际问题_____微元法:
2
a
0
4ab sin2 tdt ab.
0
2018/8/27 16
2
二、极坐标系情形
曲边扇形是由曲 线rj()及射线 , 所围成 的图形
dA
d
图形是曲边扇(梯)形
r =j( )
数学分析(上册)定积分的应用10-6课件(高等教育出版社第四版)
![数学分析(上册)定积分的应用10-6课件(高等教育出版社第四版)](https://img.taocdn.com/s3/m/91b5d436376baf1ffc4fad82.png)
(1) 用矩形法公式
dx 1 0 1 x 2 10 ( y0 y1
1
y9 ) 0.8099 y10 ) 0.7600).
1 (或 ( y1 y2 10 (2) 用梯形法 dx 1 y0 0 1 x 2 10 ( 2 y1
1
y10 y9 ) 0.7850. 2
前页 后页 返回
i 1
在几何意义上,这是用一系列小矩形来近似小曲边 梯形面积的结果,所以把这个近似计算法称为矩形 法.矩形法的精度较差,通常使用下面着重介绍的 两种方法.
前页 后页 返回
一、梯形法
将积分区间 [a, b] 作 n 等分,分点为
ba a x0 x1 xn b, Δxi . n 相应的被积函数值记为
P0 ( x0 , y0 ), P1 ( x1 , y1 ), P2 ( x2 , y2 )
的抛物线 p1 ( x ) 1 x 1 x 1 来近似替代, 便有
2
前页 后页 返回
x2 x0
f ( x )dx p1 ( x )dx (1 x 2 1 x 1 )dx
前页 后页 返回
曲边梯形换成了梯形,其面积为
y i 1 y i Δxi , i 1, 2, 2
, n.
于是,整个曲边梯形面积的近似值为
即
b
a
f ( x )dx
i 1
n
y i y i 1 Δxi , 2
b
a
b a y0 f ( x )dx ( y1 n 2
1
(x x )
3 2 3 0
1
2 3 ( x2 x0 ) 1 ( x 2 x0 )
数学分析之定积分的应用
![数学分析之定积分的应用](https://img.taocdn.com/s3/m/83046dfead51f01dc281f18f.png)
第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:型平面图形 .1.简单图形:型和2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.求由曲线围成的平面图形的面积.例1例2求由抛物线与直线所围平面图形的面上的曲边(二)参数方程下曲边梯形的面积公式:设区间梯形的曲边由方程给出 .又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .求由摆线的一拱与轴例3所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为,的扇形面积为 . )顶角为例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点,的两条直线之间 ) . 以代方程不变,倾角为图形关于因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。
教学重点:熟练地应用本章给出的公式,用截面面积计算体积.(一)已知截面面积的立体的体积:设立体之截面面积为推导出该立体之体积.祖暅原理: 夫幂势即同 , 则积不容异 . ( 祖暅系祖冲之之子齐梁时人 , 大约在五世纪下半叶到六世纪初 )例1求由两个圆柱面和所围立体体积 .P244 例1 ( )例2 计算由椭球面所围立体 (椭球 )的体积 .[1] P244例2 ( )(二)旋转体的体积: 定义旋转体并推导出体积公式..例3 推导高为, 底面半径为的正圆锥体体积公式.例4 求由曲线和所围平面图形绕轴旋转所得立体体积.绕轴一周所得旋转体体积.( 1000)例5 求由圆§ 3 曲线的弧长( 1 时 )教学要求:熟练地应用本章给出的公式,计算平面曲线的弧长。
数学分析课本(华师大三版)-习题及答案第十章
![数学分析课本(华师大三版)-习题及答案第十章](https://img.taocdn.com/s3/m/967a23eb710abb68a98271fe910ef12d2af9a9c1.png)
第十章 定积分的应用一、填空题1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A = 2. 曲线x x e y e y -==,及1=x 所围面积A = 3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S = 5. 曲线 ⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t ty tt x ,弧长4=S ,则其重心坐标是7. 曲线0,0),0(==≤=y x x e y x 所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是10.设有一内壁形状为抛物面22y x z +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h = 11.由曲线,2,1=+=x xx y 及2=y 所围图形的面积S = 曲线x x x y 223++-=与x 轴所围成的图形的面积A = 二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰ba xdx ln ln ln (B )⎰ba e ex dx e(C )⎰baydy e ln ln (D )⎰ba e exdx ln2.曲线x y xy ==,1,2=x 所围成的图形面积为A ,则A =( )(A )dx x x )1(21-⎰(B )dx xx )1(21-⎰(C )⎰⎰-+-2121)2()12(dy y dy y(D )⎰⎰-+-2121)2()12(dx x dx x3.曲线x e y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( ) (A )dx ex e x )(10-⎰ (B )dy y y y e)ln (ln 1-⎰(C )dx xe e exx )(1⎰- (D )dy y y y )ln (ln 1-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( )(A )()θθπd a 220cos 221⎰ (B )θθππd a ⎰-2cos 221 (C )()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰ 5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A )⎰πθθ02221d e a (B )⎰πθθ20222d e a (C )⎰-ππθθd ea 22 (D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+462602cos sin 2πππθθθθd d(C )()()⎰⎰+46262cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln xy -=上210≤≤x 一段弧长S =( )(A )dx x ⎰⎪⎭⎫⎝⎛-+212111 (B )⎰-+2102211dx x x (C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dx x ⎰-+21022])1[ln(1 8.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( )(A )()⎰-ππ2022cos 1dt t a (B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a (D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdt t t a t(B )⎰-⋅022)sin (cos 3sec 4πdt t t a t(C )⎰-⋅π02)sin (cos 3sec 2dt t t a t(D )⎰-⋅02)sin (cos 3sec 2πdt t t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积=V ( )(A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V =( )(A )⎰-adx x a 022)(4(B )⎰-adx x a 022)(8(C )⎰-adx x a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰hahdh 0 (B )⎰aahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+hdy y h H S 0)( (B )⎰-+Hdy y h H S 0)((C )⎰-hdy y H S 0)( (D )⎰+-+Hh dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰h dy y dh d 02π (B )⎰--h dy a y a dh d 022])([π (C )⎰hdy y dh db2π (D )⎰-hdy y ay dh d b2)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m 为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( ) (A )⎰-+-badx x g x f x g x f m )]()()][()(2[π(B )⎰---badx x g x f x g x f m )]()()][()(2[π(C )⎰-+-badx x g x f x g x f m )]()()][()([π(D )⎰---badx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。
数学分析10.5定积分在物理中的某些应用
![数学分析10.5定积分在物理中的某些应用](https://img.taocdn.com/s3/m/08bcc43176c66137ee061988.png)
第十章 定积分的应用 5 定积分在物理中的某些应用一、液体静压力例1:如图所示为一管道的圆形闸门(半径为3米). 问水平面齐及直径时,闸门所受到的水的静压力为多大? 解:圆的方程记为:x 2+y 2=9.由相同深度的静压强等于水的比重(v)与深度(x)的乘积,当△x 很小时,闸门上从深度x 到x+△x 的狭条△A 所受的静压力为: △P ≈dP=2vx 2x 9-dx. 闸门上所受的总压力为: P=⎰-302x 9vx 2dx=18v.二、引力例2:一根长为l 的均匀细杆,质量为M ,在其中垂线上相距细杆为a 处有一质量为m 的质点。
试求细杆对质点的万有引力。
解:如图,细杆位于x 轴上的[-2l ,2l ], 质点位于y 轴上的点a.任取[x, x+△x]⊂[-2l ,2l ],当△x 很小时, 把这一小段细杆看作一质点, 其质量为dM=lMdx. 于是它对质点m 的引力为: dF=2r kmdM =l Mx a km 22⋅+dx. 又dF x =dFsin θ, dF y =dFcos θ, 且F x =⎰-22x dF ll =0;F y =⎰-22y dF l l =-2θcos M x a km 2022⎰⋅⋅+l l dx=-2⎰+2022 )x a (kmMa 23ll dx=-a 4a 2kmMa 22l +.例3:设有一半径为r 的圆弧形导线,均匀带电,电荷密度为δ,在圆心正上方距圆弧所在平面为a 的地方有一电量为q 的点电荷. 试求圆弧形导线与点电荷之间作用力(引力或斥力)的大小.解:把中心角为d φ的一小段导线圆弧看作一点电荷,其电量为dQ=δrd φ. 它对点电荷q 的作用力为: dF=2ρkqdQ =22r a kqr δ+d φ. dF z =dFcos θ=dF ·22r a a +=23)r a (akqr δ22+d φ. ∴它们之间的作用力为:F z =⎰π20z dF =⎰+π202223)r a (akqr δd φ=23)r a (πakqrδ222+.三、功与平均功率例4:一圆锥形水池,池口直径30米,深10米,池中盛满了水。
10数学分析教案-(华东师大版)第十章定积分的应用平面曲线的弧长与曲率)
![10数学分析教案-(华东师大版)第十章定积分的应用平面曲线的弧长与曲率)](https://img.taocdn.com/s3/m/5fd1963b52d380eb62946de0.png)
§3 平面曲线的弧长与曲率一 平面曲线的弧长先建立平面曲线弧长的概念,设C=AB 是一条没有自交点的非闭的平面曲线,在C 上从A 到B 依次取分点A=P 0,P 1,P 2,…,P n =B,它们成为对曲线C 的一个分割,记为T ,然后用线段连接T 中每相邻两点,得到C 的n 条弦1(1,2,...,)i i P P i n -=,这n 条弦又成为C 的一条内接折线,记||T||=max|P i-1P i |,11||nT i ii s PP -==∑分别表示最长弦的长度和折线的总长度。
定义1 如果存在有限极限||||0lim s T T s →=,即任给ε>0,恒存在δ>0,使得对于C 的任何分割T ,只要||T||<δ,就有|s T -s|<ε,曲线C 是可求长的,并把s 定义为曲线C 的弧长。
定理10.1 设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程x=x(t),y=y(t),t ∈[α,β]给出,若x(t)、y(t)在[α,β]上连续可微,则C 是可求长的,且弧长为s βα=⎰。
证明 对C 作任一分割T={ P 0,P 1,P 2,…,P n },并设P0与Pn 分别对应t=α和t=β,且P i (x i ,y i )=(x(t i ),y(t i )),i=1,2,…,n -1,于是与T 对应得到区间[α,β]的一个分割T':α=t 0,t 1,t 2,…,t n =β。
现在用反证法先证明||||0lim ||||0T T →'=.假设||||0lim ||||0T T →'≠,则存在ε0>0,对于任何δ>0,都可以找到一个分割T 使得||T||<δ而同时||T'||>ε0,从而可以找到C 上两点Q'和Q'',使得|Q''Q'|<δ,而它们对应的参量t'和t''满足|t't''|≥ε0,依次取δ=1/n,n=1,2,…,则得到两个点列{Q'n }和{Q''n }和它们对应的参量数列{t'n }和{t''n },它们满足|Q n ''Q n '|<1/n, |t'n t''n |≥ε0,由致密性定理,存在子列{}{}k kn n t t '''及,和t*和t**∈[α,β],使得lim *,lim **k knn k k t t t t →∞→∞'''==,显然|t*-t**|≥ε0,即t*≠t**。
华东师范大学数学系《数学分析》(第4版)(上册)(章节题库 定积分的应用)【圣才出品】
![华东师范大学数学系《数学分析》(第4版)(上册)(章节题库 定积分的应用)【圣才出品】](https://img.taocdn.com/s3/m/d623cceacf84b9d528ea7ad9.png)
3.求曲线
的全长.
解:将曲线改写成参数方程,并计算微弧:
因此
4.已知抛物叶形线 作 M.求
如图 10-3 所示,其中当 0≤x≤3 时的叶形部分记
(1)M 的面积;
(2)M 的周长;
(3)M 绕 x 轴旋转所得旋转体的体积
(4)M 绕 x 轴旋转所得旋转体的侧面积
3/5
圣才电子书
图 10-1 则
的切线,切线与 x 轴交点的横坐标是
即切点的横坐标是
于是切线斜率为
(2)所求的旋转体的体积为
切线方程是
Hale Waihona Puke 2.求圆的渐伸线和连接
两个端点:起点 A(a,0)与终点 B(a,-2πa)的直线段 AB 所围成图形的面积,并求
渐伸线的弧长
1/5
圣才电子书
十万种考研考证电子书、题库视频学习平
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 10 章 定积分的应用
1.过点(4,0)作曲线
的切线.
(1)求切线的方程;
(2)求由这条切线与该曲线及 x 轴所围成的平面图形(如图 10-1 所示)绕 x 轴旋转
一周所得的旋转体的体积.
解:(1)令 过点(4,0)作曲线
(5)M 的重心.
十万种考研考证电子书、题库视频学习平 台
解:(1)由对称性,只要求出 果,即
图 10-3 与 x 轴所围成的面积,两倍即得结
(2) 由此即得
(3) (4) (5)由对称性,
5.求抛物体
的重心和绕 z 轴的转动惯量(已知抛物体的密度为 1).
4/5
圣才电子书
十万种考研考证电子书、题库视频学习平
数学分析10.4旋转曲面的面积
![数学分析10.4旋转曲面的面积](https://img.taocdn.com/s3/m/cefa550c3968011ca200910c.png)
第十章定积分的应用4 旋转曲面的面积一、微元法定义:已知:若φ(x)=⎰xf(t)dt,则当f为连续函数时,φ’(x) =f(x),或adφ=f(x)dx,且φ(a)=0,φ(b)=⎰bf(t)dt.a现将问题倒过来,若所求量φ是分布在某区间[a,x]上的,或它是该区间端点x的函数,即φ=φ(x), x∈[a,b],且当x=b时,φ(b)适为最终所求的值.在任意小区间[x,x+△x]⊂[a,b]上,若能把φ的微小增量△φ近似表示为△x的线性形式:△φ≈f(x)△x,其中f为某一连续函数,而且当△x→0时,△φ- f(x)△x=o(△x),亦即dφ=f(x)dx,那么只要把定积分⎰bf(x)dx计算出来,就是该问题所求的结果,这种a方法通常称为微元法.注:1、所求量φ关于分布区间必须是代数可加的;2、微元法的关键是正确给出△φ的近似表达式△φ≈f(x)△x.应用:求平面图形面积的微元表达式:△A≈|y|△x,且dA=|y|dx. 求立体体积的微元表达式:△V≈A(x)△x,且dV=A(x)dx.求曲线弧长的微元表达式:△s≈2y1'+dx.+△x,且ds=2y1'二、旋转曲面的面积设光滑曲线C 的方程为y=f(x), x ∈[a,b],不妨设f(x)≥0.曲线C 绕x 轴旋转一周得旋转曲面如图,可用微元法导出其面积公式. 通过x 轴上点x 与x+△x 分别作垂直于x 轴的平面,在旋转曲面上截得一狭带,当△x 很小时,近似于一圆台侧面,即△s ≈π[f(x)+f(x+△x)]22y x ∆+∆=π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x ,其中△y=f(x+△x)-f(x),又y lim 0x ∆→∆=0,2x x y 1lim ⎪⎭⎫⎝⎛∆∆+→∆=)x (f 12'+. 由f ’(x)的连续性可保证:π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x-2πf(x))x (f 12'+△x=o (△x).∴dS=2πf(x))x (f 12'+, S=2π⎰'+ba2)x (f 1f(x )dx.若光滑曲线C 由参数方程:x=x(t), y=y(t), t ∈[α,β]给出,且y(t)≥0,则 由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为: S=2π⎰'+'βα22)t (y )t (x y(t)dt.例1:计算圆x 2+y 2=R 2在[x 1,x 2]⊂[-R,R]上的弧段绕x 轴旋转所得球带的面积.解:圆在x 轴上方的曲线为y=22x R -,则y ’=22xR x --,所得球带的曲面面积为:S=2π⎰-+⋅-21x x 22222xR x 1x R dx=2πR(x 2-x 1).注:当x 1=-R, x 2=R 时,则得球的表面积S 球=4πR 2.例2:计算由内摆线x=acos 3t,y=asin 3t 绕x 轴旋转所得旋转曲面面积。
数学分析10.1平面图形的面积
![数学分析10.1平面图形的面积](https://img.taocdn.com/s3/m/3cb1a8afa1c7aa00b42acb2a.png)
第十章 定积分的应用1 平面图形的面积公式1:连续曲线y=f(x)(≥0),以及直线x=a, x=b(a<b)和x 轴所围曲边梯形面积为:A=⎰b a f(x )dx=⎰ba y dx.若f(x)在[a,b]变号,则所围图形的面积为:A=⎰b a |f(x )|dx=⎰ba |y |dx.公式2:上下两条连续曲线y=f 2(x)与y=f 1(x)以及两条直线x=a 与x=b(a<b)所围的平面图形面积为:A=⎰ba 12(x )]-f (x )[f dx.例1:求由抛物线y 2=x 与直线x-2y-3=0所围图形的面积A.?解法一:A 等同于由抛物线y=x 2与直线y=2x+3所围图形的面积. 解方程组:⎩⎨⎧=+= x y 32x y 2,得⎩⎨⎧==9y 3x , ⎩⎨⎧=-=1y 1x . ∴A=⎰-+312)x -3(2x dx=[32-(-1)2]+3[3-(-1)]-3(-1)-333=332. 解法二:如图,图形被x=1分为左右两部分, A 左=⎰--10)]x (x [dx=3⎰10x dx=34. A 右=⎰⎪⎭⎫ ⎝⎛-9123-x x dx=312-9233-41-922+21)-(93⨯=328. A= A 左+ A 右=34+328=332.:公式3:设曲线C 为参数方程x=x(t), y=y(t), t ∈[α,β],在[α,β]上y(t)连续,x(t)连续且可微且x ’(t)≠0(类似地可讨论y(t)连续可微且y ’(t)≠0的情形). 记a=x(α), b=x(β), (a ≠b),则由曲线C 及直线x=a, x=b 和x 轴所围的图形,其面积计算公式为:A=⎰'βα(t)x )t (y dt.例2:求由摆线x=a(t-sint), y=a(1-cost) (a>0)的一拱与x 轴所围平面图形的面积.解:摆线的一拱可取t ∈[0,2π],又x ’=a(1-cost), ∴A=⎰-2π022)t cos 1(a dt=3πa 2.公式4:若参数方程所表示的曲线是封闭的,即有x(α)=x(β), y(α)=y(β), 且在(α,β)内曲线自身不再相交,则由曲线自身所围图形面积为::A=⎰'βα(t)dt x )t (y 或A=⎰'βα(t)dt y )t (x .例3:求椭圆22a x +22by =1所围的面积.解:化为参数方程:x=asint, y=bcost, t ∈[0,2π], 又x ’=acost , ∴A=⎰2π02tdt abcos =πab.公式5:设曲线C 为极坐标方程r=r(θ), θ∈[α,β],且r(θ)在[α,β]上连续, β-α≤2π.由曲线C 与两条射线θ=α, θ=β所围成的平面图形,通常也称为扇形,此扇形的面积为:A=⎰βα2d θ)θ(r 21.证:如图,对区间[α,β]作任意分割T:α=θ0<θ1<…<θn-1<θn=β,<射线θ=θi(i=1,2,…,n-1)把扇形分成n个小扇形.∵r(θ)在[α,β]上连续,∴当T很小时,在每一个△i=[θi-1, θi]上r(θ)的值变化也很小,任取ξi∈△i,便有r(θ)≈r(ξi), θ∈△i, i=1,2,…,n.这时,第i个小扇形的面积△A i≈21r2(ξi)△θi, ∴A≈∑=n1i21r2(ξi)△θi.当T→0时,两边取极限,就有A=⎰βα2dθ)θ(r21.-例3:求双纽线r2=a2cos2θ所围平面图形的面积.解:如图,∵r2≥0,∴θ∈[-4π,4π]∪[43π,45π],由图形的对称性可得:A=4·⎰4π2θdθ2cosa21=a2 sin2θ|4π=a2 .习题1、求由抛物线y=x2与y=2-x2所围图形的面积.解:求得两曲线交点为(-1,1), (1,1). ∴所围图形的面积为:A=⎰-1122)x-x-(2dx=38.{2、求曲线y=|lnx|与直线x=101, x=10, y=0所围图形的面积. 解:所围图形的面积为:A=⎰10101|lnx |dx=-⎰1101lnx dx+⎰101lnx dx =-(xlnx|1101-⎰1101x dlnx)+ xlnx|101+⎰101x dlnx=-(101ln10-109)+10ln10-9=1099ln10-1081.3、抛物线y 2=2x 把圆x 2+y 2=8分成两部分,求这两部分面积之比. 解:问题等同于抛物线y=21x 2把圆x 2+y 2=8分成两部分,求面积比.:它们的交点为(2,2),(-2,2). 记两部分的面积为A 1,A 2,则A 1=⎰--2222)x 21x -8(dx=8⎰-4π4π2θcos d θ-38=2π+34;A 2=8π-A 1=6π-34.∴21A A =34-6π34+2π=2 -9π2 +3π.4、求内摆线x=acos 3t, y=asin 3t (a>0)所围图形的面积. 解:如图,所围图形面积为: A=4⎰'2π033dt |)t t(asin cos a |=12a2⎰2π024tdttsin cos=12a2⎰2π024tdt tsin cos =83πa 2.【5、求心形线r=a(1+cos θ) (a>0)所围图形的面积. 解法一:根据心形线的对称性,得A=2·⎰+π022d θ)θcos 1(a 21=a 2⎰++π02d θ)θcos θcos 21(=23πa 2.解法二:化为参数方程:x=a(1+cos θ)cos θ, y=a(1+cos θ)sin θ, θ∈[0,2π], A=|⎰'++2π0d θ]θsin )θcos θ[a(1cos )θcos a(1| =a 2|⎰-+2π0234θ)dθθsin cos θcos 2θcos (2|=23πa 2.,6、求三叶形曲线r=asin3θ (a>0)所围图形的面积.解:根根三叶形曲线的形态特点,所围图形由相同的三部分组成,即 A=3⎰32π3π223θsin a 21d θ=⎰32π3π223θsin a 21d3θ=4πa 2.7、求曲线a x +by =1 (a,b>0)与坐标轴所围图形的面积. 解:曲线与x 轴的交点为(a,0),∴所围图形的面积为:A=b ⎰⎪⎪⎭⎫ ⎝⎛+-a0a x a x 21dx=6ab .$8、求曲线x=t-t 3, y=1-t 4所围图形的面积.解:当t=-1,1时,x=0,y=0,∴曲线在t ∈[-1,1]围成封闭图形,即 A=|⎰'-11-43)t -)(1t t (dt|=4|⎰-11-46)t t (dt|=3516.9、求二曲线r=sin θ与r=3cos θ所围公共部分的面积.解法一:化为圆的方程:x 2+(y-21)2=41, (x-23)2+y 2=43. 它们的交点为O(0,0)与P(43,43),∴所围公共部分的面积为: A=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛-4302223y 4321-y 41dy=⎰-6π2π2t cos 41dt+⎰3π02t cos 43dt -833 =323+12π+3233+8π-833=245π-43. *解法二:由sin θ=3cos θ, 得tan θ=3,∴二曲线相交于θ=3π.A=⎰3π02θsin 21d θ+⎰2π3π2θcos 23d θ=-)1(cos2θ413π0-⎰d θ+⎰+2π3π1)(cos2θ43d θ =-163+12π+8π-1633=245π-43.(参考解法)如图:求得P(43,43) S 阴=S P OO 1扇形+S P OO 2扇形-S P OO 1∆ -S P OO 2∆ =3πOO 12+6πOO 22-21·43·OO 1-21·43·OO 2=12π+8π-163-1633=245π-43.10、求两椭圆22a x +22b y =1与22b x +22ay =1(a>b>0)所围公共部分的面积.解:两椭圆在第一象限的交点为:⎪⎪⎭⎫ ⎝⎛++2222b a abba ab,. 根据图形的对称性,可得:A=8⎰+⎪⎪⎭⎫ ⎝⎛--22baab022x a x 1b dx=4abarcsin 22b a b +-2222b a b 4a +.。
(完整版)10数学分析教案-(华东师大版)第十章定积分的应用平面图形的面积
![(完整版)10数学分析教案-(华东师大版)第十章定积分的应用平面图形的面积](https://img.taocdn.com/s3/m/b173f6f202020740bf1e9b40.png)
第十章 定积分的应用§1 平面图形的面积在上一章开头讨论过由连续曲线y =f (x )(≥0),以及直线x =a ,x =b (a 〈b )和x 轴所围曲边梯形的面积为()b ba a A f x dx ydx ==⎰⎰,如果f (x )在[a ,b ]上不都是非负的,则所围图形的面积为|()|||b ba a A f x dx y dx ==⎰⎰,一般地,由上下两条连续曲线y =f 2(x )和y =f 1(x )以及两条直线x =a , x =b (a 〈b )所围的平面图形,它的面积计算公式为21[()()]ba A f x f x dx =-⎰ 例1 求由抛物线y ²=x 与直线x -2y -3=0所围平面图形的面积.解 该平面图形如图所示。
先求出抛物线与直线的交点坐标(1,-1)、(9,3),用x =1把图形分成左右两部分,应用公式得111004[()]23A x x dx xdx =--==⎰⎰,921328[]23x A x dx -=-=⎰,所以A=A 1+A 2=32/3. 本题还可以把抛物线方程和直线方程改成x =y ²,x =2y +3,y∈[1,3],改取积分变量为y ,便得32132[23]3A y y dy -=--=⎰。
设曲线C 由参数方程x=x(t),y=y (t ),t ∈[,]给出,在[a ,b ]上y(t)连续,x=x(t )连续可微且x ’(t )≠0(对x(t )连续,y=y(t )连续可微且y'(t)≠0的情形可类似讨论),记a=x(),b=x ()(a 〈b 或a>b),则由曲线C 及直线x =a 、x =b 和x 轴所围的图形,其面积计算公式为|()()|A y t x t dt βα'=⎰ 例2 求由摆线x=a(t-sint),y=a (1-cost )(a>0)的一拱与 x 轴所围平面图形的面积.解 摆线的一拱可取t ∈[0,2π],所求面积为2222200(1cos )[(sin )](1cos )3A a t a t t dt a t dt a πππ'=--=-=⎰⎰ 如果由参数方程表示的曲线x=x(t),y=y (t ),t ∈[,]是封闭的,既有x ()=x(),y()=y (),且在(,)上曲线自身不再相交,那么由曲线自身所围成的图形面积为|()()|A y t x t dt βα'=⎰(或|()()|A x t y t dt βα'=⎰),此公式可由前面推出,绝对值内的积分,其正负由曲线x=x(t),y=y (t ),t ∈[a ,b ]的旋转方向所确定。
数学分析PPT课件第四版华东师大研制--第10章-定积分的应用(1)可编辑全文
![数学分析PPT课件第四版华东师大研制--第10章-定积分的应用(1)可编辑全文](https://img.taocdn.com/s3/m/55c9a56cef06eff9aef8941ea76e58fafab0453b.png)
围立体的体积.
z
a
x
a x0
O
a
y
解 先求出立体在第一卦限的体积V1. x0 [0,a] ,
x x0 与立体的截面是边长为 a2 x02 的正方形,
前页 后页 返回
所以 A( x) a2 x2 , x [0,a]. 于是求得
V
8V1 8
9 0
a2 x2
dx 16 a3. 3
以下讨论旋转体的体积.
4
S( A2 ) 1 x ( x 2) dx
2 3
x3
2
x2 2
4
2x
1
14 3
3 2
.
则
S(
A)
S(
A1 )
S(
A2
)
4 3
14 3
3 2
9 2
.
前页 后页 返回
若把 A 看作为 y 型区域,则
g1( y) y2 (1 y 2), g2( y) y 2 (1 y 2).
体积公式.
前页 后页 返回
§3 平面曲线的弧长与曲率
本节定义光滑曲线的弧长,并用定积分给出弧长计 算公式.
一、平面曲线的弧长
定义1 设平面曲线 C 由以下参数方程表示:
x x(t), y y(t), t [, ].
如果 x(t)与 y(t)在[ , ]上连续可微, 且 x(t)与 y(t)
•(4, 2)
A
x y2
O
4x
• (1, 1)
若把 A 看作 x 型区域, 则
f1(
x)
x
x 2
,0 ,1
x x
1 4
,
f2x x ,0 x 4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 定积分的应用 ( 8 时 )
§1 平面图形的面积 ( 2 时 )
一. 直角坐标系下平面图形的面积 :
1 简单图形:-X 型和-Y 型平面图形 .
2简单图形的面积: 给出-X 型和-Y 型平面图形的面积公式. 对由曲线
0),(=y x F 和0),(=y x G 围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.
例1 求由抛物线 x y =2与直线 032=--y x 所围平面图形的面积.
3参数方程下曲边梯形的面积公式:设区间],[b a 上的曲边梯形的曲边由方程
b a t t y y t x ==≤≤==)( , )( , , )( , )(βχαχβαχ给出.又设0)(>'t χ,就有)(t χ↗↗, 于是存在反函数 )(1x t -=χ. 由此得曲边的显式方程 ],[ , )]([)(1b a x x y t y ∈=-χ.
⎰⎰'==-b a dt t t y dx x y S β
α
χχ)(| )( || )]([ |1, 亦即 ⎰⎰==β
α
βαχ)(| )( || |t d t y dx y S .
具体计算时常利用图形的几何特征 .
例2 求由摆线)0)(cos 1(),sin (>-=-=a t a y t t a x 的一拱与x 轴所围平面图形的面积. 例3 求椭圆122
22=+b
y a x 所围平面图形的面积. 二 极坐标下平面图形的面积: 推导由曲线 )(θr r =和射线 , βθαθ==
) (βα<所围“曲边扇形”的面积公式 . (简介微元法,并用微元法推导公式.半径为r , 顶角为θ∆的扇形面积为
θ∆221r . ) ⎰=βα
θθd r A )(212 .
例4求由双纽线 θ2cos 22a r = 所围平面图形的面积 .
解 ⎥⎦⎤⎢⎣⎡-∈⇒≥4 , 4 , 02cos ππθθ或⎥⎦
⎤⎢⎣⎡ππ45 , 43. ( 可见图形夹在过极点, 倾角为4π±的两条直线之间 ) . 以θ-代θ 方程不变⇒图形关于X 轴对称;以θπ-代θ, 方程不变, ⇒图形关于Y 轴对称. ( 参阅[1]P 24 图610- )
因此 ⎰=⋅=40
222cos 214π
θθa d a A .
Ex [1]P 242 1—6.
§2 由平行截面面积求体积 ( 2 时 )
一 已知平行截面面积求体积求立体的体积:设截面面积为],[ , )(b a x x A ∈推
导出该立体之体积: ⎰=b
a
dx x A V )(.
祖暅原理: 夫叠棊成立积,缘幂势即同则积不容异.(祖暅系祖冲之之子,齐梁时人, 大 约在五世纪下半叶到六世纪初)
例1 求由两个圆柱面 222a y x =+ 和 2
22a z x =+所围立体体积 . [1]P 244 E1 ( 33
16a ) 例2 计算由椭球面 122
2222=++c
z b y a x 所围立体 (椭球 )的体积 . [1] P 342 E2 ( abc π3
4 ) 二 旋转体的体积: 定义旋转体并推导出体积公式.
⎰=b
a
dx x f V )(2π.
例3 推导高为h , 底面半径为r 的正圆锥体体积公式.
例4 求由曲线02
=-y x 和0=-y x 所围平面图形绕X 轴旋转所得立体体积.
例5 求由圆25)20(22≤-+y x 绕X 轴一周所得旋转体体积. ( 10002
π ) 例6 ,0 , :==-x e y D x X 轴正半轴 . D 绕X 轴旋转 . 求所得旋转体体积.
Ex [1]P 246 1,2,3.
§3 平面曲线的弧长 ( 1 时 )
一. 弧长的定义: 定义曲线弧长的基本思想是局部以直代曲,即用折线总长的极限定义弧长.可求长曲线.
二. 弧长计算公式:光滑曲线的弧长.设 :L )(t x χ=,)(t y y =,,βα≤≤t 又()())( , )(B , )( , )(ββχααχy y A ,)(t χ和)(t y 在区间],[βα上连续可导且0)()(22≠'+'t y t χ. 则 L 上以A 和B 为端点的弧段的弧长为
dt t y t s ⎰'+'=
β
αχ22)]([)]([ .
为证明这一公式,先证以下不等式:对+
∈∀R c b a ,, ,有
|| | |2222c b c a b a -≤+-+, (Ch 1 §1 Ex 第5题 (P 4) .其几何意义是:在以点),( , ),(c a b a 和)0,0(为顶点的三角形中,两边之差不超过第三边.) 事实上, |||||||||||||
| | |22222222222222c b c b c b c b c b c a b a c b c a b a -=+-≤+-≤+++-=+-+. 为证求弧长公式,在折线总长表达式中, 先用Lagrange 中值定理, 然后对式)()(*22i i y ξξχ'+'插项进行估计.参阅 [1]P 247.
如果曲线方程为极坐标形式)( ], , [
, )(θβαθθr r r ∈=连续可导,则可写出其参数方程θθθθsin )( ,cos )(r y r x ==.于是
θθθθθθχβ
αβαd r r d y s ⎰⎰'+='+'=
)()()]([)]([ 2222.
例1 — 3 [1] P 249—250 E 1—3.
Ex [1] P 352 1.
§4 旋转曲面的面积 ( 1 时 )
用微元法推出旋转曲面的面积公式:曲线方程为],[ , )(b a x x f y ∈=时,
⎰'+=⇒b
a
dx x f x f )(1)(2S 2π ;曲线方程为 ],[ , )( , )(βαχ∈==t t y y t x 时,
⎰'+'=⇒β
α
χπdt t y t x y )()()(2S 22 .
例1—2 [1] P 254—255 E 1—2.
Ex [1] P 255 1—3.
§5 定积分的物理应用举例 ( 2 时 )
例1—4 [1] P 255—259 E 1—2.
Ex [1] P 259 1—10.。