2017年高考文科数学全国1卷(附答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -

绝密★启用前

2017年普通高等学校招生全国统一考试

文科数学 全国I 卷

(全卷共12页)

(适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建)

注意事项:

1.

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.

回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.

考试结束后,将本试卷和答案卡一并交回。 一、 选择题:本题共12小题,每小题5分,共60分。在每个小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A

B =3|2x x ⎧

⎫<⎨⎬⎩

⎭ B .A

B =∅

C .A

B 3|2x x ⎧

⎫=<⎨⎬⎩

⎭ D .A

B=R

2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值

D .x 1,x 2,…,x n 的中位数

3.下列各式的运算结果为纯虚数的是

A .i(1+i)2

B .i 2(1-i)

C .(1+i)2

D .i(1+i)

4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是

A .

14 B .

π8 C .12

D .π4

5.已知F 是双曲线C :x 2

-2

3y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,

点A 的坐标是(1,3).则△APF 的面积为( ) A .13

B .1 2

C .2 3

D .3 2

6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是

7.设x ,y 满足约束条件33,

1,0,x y x y y +≤⎧⎪

-≥⎨⎪≥⎩

则z =x +y 的最大值为

A .0

B .1

C .2

D .3

8..函数sin21cos x

y x

=-的部分图像大致为( )

9.已知函数()ln ln(2)f x x x =+-,则

A .()f x 在(0,2)单调递增

B .()f x 在(0,2)单调递减

C .y =()f x 的图像关于直线x =1对称

D .y =()f x 的图像关于点(1,0)对称 10.如图是为了求出满足321000n n ->的最小偶数n ,那么在

和两个

空白框中,可以分别填入 A .A >1000和n =n +1 B .A >1000和n =n +2 C .A ≤1000和n =n +1 D .A ≤1000和n =n +2

11. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知sin sin (sin cos )0B A C C +-=,

a =2,c =2,则C = A .

π

12

B .

π6

C .

π4

D .

π3

12.设A 、B 是椭圆C :22

13x y m

+=长轴的两个端点,若C 上存在点M 满足∠

AMB =120°,则m 的取值范围是 A .(0,1][9,)+∞

B .(0,3][9,)+∞

C .(0,1][4,)+∞

D .(0,3][4,)+∞

二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________.

14.曲线2

1

y x x

=+

在点(1,2)处的切线方程为_________________________. 15.已知π(0)2

a ∈,,tan α=2,则π

cos ()4α-=__________。

16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平

面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题

为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)

记S n为等比数列{}n a的前n项和,已知S2=2,S3=-6.

(1)求{}n a的通项公式;

(2)求S n,并判断S n+1,S n,S n+2是否成等差数列。18.(12分)如图,在四棱锥P-ABCD中,AB//CD,且90

BAP CDP

∠=∠=(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,90

APD

∠=,且四棱锥P-ABCD的体积为

8

3

,求该四棱锥的侧面积.

相关文档
最新文档