2021考研数学试卷真题(数学一)

合集下载

考研数学一真题(含答案)

考研数学一真题(含答案)

2012 年全国硕士研究生入学统一考试数学一2012年全国硕士研究生入学统一考试数学一试题、选择题 :1: 8小题,每小题 4分,共 32分. 下列每题给出的四个选项中,只有一个选项符合题目要求的, 请将所选项前的字母填在答题纸指定位置上 .xx2xy2kx(4)(1) 曲线y渐近线的条数(2) (3) (A) 0 设函数(A) (x 2y(x) (B) 1 (C) 2 (e x 1)e(2x 2) (e nx n), 其 1n ) 1(n 1)!(D) 3中 n 为正整数 , 则 y (B) ( 1n)(n 1) (C) (1n ) (0)1n!(D) ( 1n )n!如果函数 f (x, y)在 (00, )处连续 ,那么下列命题正确的是(A) f (x, y)若极限 lim存在 , 则 f (x, y)在(00,)处可微y0xy(B) 若极限 limf (x, y)存在 , 则 f (x, y)在 (00, y 2 )处可微(C)x0 y0f (x,y) 在 (00, )处可微 , 则 极限 limf (x, y)存在(D)f (x,y)在(00, )处可微 ,则 极限 limf (x, y)存在2012 年全国硕士研究生入学统一考试数学一0sinxd(xk 1,2,3则) 有(A)(B)(C)(D)12II1(5) 设 , 其中为任意常数,则下列向量组线性相关12 3 4C C C1 2 3 的为( )(A) 1, 2, 3 (B) (C)1, 2, 41 CC C C1, 2, 3, 41(D)1, 3, 42, 3, 4100(6) 设 A 为 3 阶矩阵, P 为 3 阶可逆矩阵,且 1 则 p AP0 1 0 . 若 P=( 1, 2, 3 ),(),002Q 1AQ ( )1 0 02 0 0100200(A)(B)(C)(D)020*********001002002001(7) 设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则p X Y ( )1124 (A)(B)(C)(D) 5535(8 )将长度为1m的木棒随机地截成两段,则两段长度的相关系数为( )11122(A) 1 (B) (C) (D)给大家分享点个人的秘密经验,让大家考得更轻松。

2021年考研数学一真题及答案

2021年考研数学一真题及答案

2005年考研数学一真题欧阳光明(2021.03.07)填空题(本题共6小题,每小题4分,满分24分。

答案写在题中横线上)x2(1)曲线y=莎刁的斜渐近线方程为。

1 1[答案l y = ^-4【解析】_ 1 1所以斜渐近线方程为7 =^-401 1综上所述,本题正确答案是y =^-4o【考点】高等数学一一元函数微分学一函数图形的凹凸性.拐点及渐近线(2)微分方程兀"+ 2y »屁满足以1)=-話勺解为。

[答案】y -押处_ 9%【解析】原方程等价于y+2、lnx所以通解为将y(i)=鳥代入可得c = °综上所述,本题正确答案是y =^/nx"k【考点】高等数学一常微分方程一一阶线性微分方程2 2 2(3)设函数u(x,y,z) = 1 +石+正+码单位向量九=乔{I」」},贝[]du1 1+「希V3综上所述,本题正确答案是三。

【考点】高等数学一多元函数微分学一方向导数和梯度(4)设°是由锥面Z =与半球面z = J" _X 2_『围成的空间区域,,是"的整个边界的外侧,则If xdydz + ydzdx + zdxdy =Zo【答案】2*(1-字)R : 【解析】综上所述,本题正确答案是W-T )«3O【考点】高等数学一多元函数积分学一两类曲面积分的概念、 性质及计算(5)设旳,%也均为三维列向量,记矩阵力=(旳,也°) 如果⑷=1,那么⑹=。

【答案】2。

【解析】 【方法一】 【方法二】dn (1,2,3) 一o£【答案】丁。

【解析】du x du y du 因为 Ox— 3f dy ~ 6f dzdu1 1所以乔(1,2,3) =3 •蔚两列取行列式,并用行列式乘法公式,所以 综上所述,本题正确答案是2。

【考点】线性代数一行列式T 亍列式的概念和基本性质,行列 式按行(列)展开定理(6) 从数1234中任取—个数记为X,再从1,2,…,X 中任一个数,记为侦]P{Y = 2} = o13【答案】屁。

考研数学一真题及答案解析(完整版)

考研数学一真题及答案解析(完整版)

2021考研数学〔一〕真题完整版一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕假设反常积分()11badx x x +∞+⎰收敛,那么〔 〕()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且〔2〕函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,那么()f x 的一个原函数是〔 〕()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩〔3〕假设()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,那么()q x =〔 〕()()()()()()2222313111xx A x x B x x C D x x +-+-++〔4〕函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,那么〔 〕〔A 〕0x =是()f x 的第一类间断点 〔B 〕0x =是()f x 的第二类间断点 〔C 〕()f x 在0x =处连续但不可导 〔D 〕()f x 在0x =处可导〔5〕设A ,B 是可逆矩阵,且A 与B 相似,那么以下结论错误的选项是〔 〕 〔A 〕TA 与TB 相似 〔B 〕1A -与1B -相似 〔C 〕TA A +与TB B +相似 〔D 〕1A A -+与1B B -+相似〔6〕设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,那么()123,,2f x x x =在空间直角坐标下表示的二次曲面为〔 〕〔A 〕单叶双曲面 〔B 〕双叶双曲面 〔C 〕椭球面 〔C 〕柱面〔7〕设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,那么〔 〕〔A 〕p 随着μ的增加而增加 〔B 〕p 随着σ的增加而增加 〔C 〕p 随着μ的增加而减少 〔D 〕p 随着σ的增加而减少 〔8〕随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,那么X 与Y 的相关系数为〔 〕二、填空题:9-14小题,每题4分,共24分,请将答案写在答题纸...指定位置上. 〔9〕()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx〔10〕向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA〔11〕设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,那么()_________1,0=dz〔12〕设函数()21arctan axxx x f +-=,且()10''=f ,那么________=a 〔13〕行列式100010014321λλλλ--=-+____________. 〔14〕设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,那么μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解容许写出文字说明、证明过程或演算步骤.〔15〕〔此题总分值10分〕平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.〔16〕〔此题总分值10分〕设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 假设'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.〔17〕〔此题总分值10分〕设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值〔18〕设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个外表的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑〔19〕〔此题总分值10分〕函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: 〔I 〕级数11()n n n xx ∞+=-∑绝对收敛;〔II 〕lim n n x →∞存在,且0lim 2n n x →∞<<.〔20〕〔此题总分值11分〕设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?〔21〕〔此题总分值11分〕矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭〔I 〕求99A〔II 〕设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。

201X考研数学一真题及答案

201X考研数学一真题及答案

2021年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕B〔2〕D〔3〕D〔4〕B〔5〕B〔6〕A〔7〕〔B 〕〔8〕〔D 〕二、填空题:914小题,每题4分,共24分,请将答案写在答题纸...指定位置上. 〔9〕012=---z y x〔10〕11=-)(f〔11〕12+=x xy ln 〔12〕π〔13〕[-2,2]〔14〕25n答题纸...指定位置上.解容许写出文字说明、证明过程或演算步骤. 〔15〕【答案】2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x )e (x lim xtdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x xx x x x x 则令(16)【答案】20202232222=+=+='++'⋅++')x y (y xy y y x xy y y x y y yx y )(y 20-==或舍。

x y 2-=时, 21106606248062480633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y04914190141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。

2021考研数学一真题及答案解析 (1)

2021考研数学一真题及答案解析 (1)

x2020 年全国硕士研究生入学统一考试数学(一)试题一、 选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求 的.请将所选项前的字母填在答.题.纸.指定位置上. (1) 当 x → 0+ ,下列无穷小量中最高阶的是(A ) ⎰x(e t 2 -1)dt 0 (B ) ⎰⎰⎰0 ln(1+t3 )dt(C)sin x sin t2dt 0.(D)1 cos x 0sin3tdt【答案】(D).f (x)(2)设函数在区间(-1,1)lim f (x) = 0 有定义,且 x→0,则()(A)当x lim f (x ) = 0x →0 时, f (x ) 在x = 0处可导lim x →0(B ) 当 f (x )x 2x f (x ) = 0 x = 0时, f (x ) 在 x = 0 处可导limf (x ) = 0 x →0 (C ) 在x 2 x y处可导时, lim f (x ) = 0(D )f (x ) 在 x = 0 处可导时, x →0【答案】(C ). f (x , y )(0,0) 在可微,f (0, 0) 0 ,n =(f ' , f ' , -1) (0,0) ,非0向量α⊥n ,则()(A)( x, y )→(0,0)存在(( x, y )→(0,0)存在(C)( x, y )→(0,0)存在(n ∑a xlim( x, y )→(0,0)存在【答案】(A).∑a x n(3)R 为n=1收敛,r 为实数,则()∞2n2n(A)n=1发散,则 r ≥R∑ a x ∞2n2n (B ) n =1收敛,则 r ≤ R(C ) r∑a x ∞ 2n≥R 2n,n=1r发散(D)∑ a xi ∞2n≤ R 2n,则 n =1 收敛 【答案】(A ).(4) 若矩阵 A 由初等列变换为矩阵 B ,则()(A )存在矩阵P ,使 PA = B ; (B )存在矩阵 P ,使 BP = A ; (C )存在矩阵 P ,使 PB = A ; (D )方程组AX = 0 与 BX =0 同解; 【答案】(B ).l : x -a 2 = y -b 2 = z -c 21 a b c ⎛ a ⎫ 1 1 1⎪l : x - a 3 = y - b 3 = z - c 3 2 a b cαi = bi⎪c ⎪i = 1, 2,3(5)已知3 2 2相交于一点,令⎝i ⎭,,则()(A)α1可由α2,α3线性表示(B)α2可由α1,α3线性表示(C)α3可由α1,α2线性表示(D)α1,α2,α3线性无关【答案】(C).P(A)=P(B)=P(C )=1 , P(AB)=0, P(AC )=P(BC )=4112 ,则A, B, C恰好发生一个的概率为()3 (A)42 (B)31 (C)25(D)12【答案】(D).(6)设为x1, x2,..., x100 来自总体X 的简单随机样本,其中P {x 0} P {x 1} Φ= = = = 12 , (x ) 表示标准正态分布函 数,则由中心极限定理可知,∑100P { x ≤ 55}i =1 的近似值为( )(A )1- Φ(1)(1) (B)1-Φ(0.2) (C)⎦. (D )Φ(0.2) 【答案】(B ).二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答.题.纸.指定位置上. lim⎡ 1 - 1 ⎤ =⎢ x(9) x →0 ⎣ e 【答案】 -1-1 ln (1+x)⎥ (10)设⎪ ⎩( )⎧x = ⎪⎨ y = ln (t + t 2 +1 ,则 t =1 .【答案】 - ( 11 ) 设 函 数 +∞f x 满 足 f '( x ) + af '( x ) + f (x ) = 0 (a > 0) , 且f (0) = m ,f '(0) = n , 则 ⎰0 f ( x )dx = .【答案】 am + n= (12) 设函数 【答案】 4e t2 +1 d 2 y dx 2 2 ∂2 f ∂x ∂y ⎰) =f (x, y)=xy e xt2 dt 0 ,则(1,1).a 0 -1 10 a 1 -1=-1 1 a 0 (13)行列式11 0a.【答案】a4 - 4a2 .⎛-π,π⎫2 2 ⎪() Cov (X ,Y )=(14)已知随机变量X 服从区间⎝⎭上的均匀分布, Y = sin X ,则.2【答案】π.三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答.题.纸.指定位置上.(15)(本题满分10分)f x, y =x3+ 8y3-xy求函数的极值.⎧x =1【详解】x y f ' =3x 2 - y = 0 f ' =24y 2 - x = 0⎧x= 0⎩ ⎨y =0⇒⎧ ⎪ ⎨ xx xy⎪ 6⎨ ⎪ y = 1或⎪⎩ 12 '' = 6x '' = -1 ⎧ x = 0f f⎧A = 0⎪B =-1⎨⎪f '48 y⎨y = 0 ⎪C = 0又 ⎩yy当⎩时⎩,.AC -B2 =-1<0 ,不为极值点⎧x =1⎧x =1⎪ 6 ⎧A 1⎪ ⎨ ⎩ ⎧ A C - B 2 =3>0 ⎪ 6 ⎨ ⎪ y = 1 当 ⎩ 12。

考研数学一高等数学-试卷1_真题无答案

考研数学一高等数学-试卷1_真题无答案

考研数学一(高等数学)-试卷1(总分102, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设当x→0时,有ax 3+bx 2+cx~,则( ).SSS_SINGLE_SELA a=,b=1,c=0B a=,b=1,c=0C a=,b=-1,c=0D a=0,b=2,c=02.设f(x)=,g(x)=x 3+x 4,当x→0时,f(x)是g(x)的( ).SSS_SINGLE_SELA 等价无穷小B 同阶但非等价无穷小C 高阶无穷小D 低阶无穷小3.设,则当x→0时,f(x)是g(x)的( ).SSS_SINGLE_SELA 低阶无穷小B 高阶无穷小C 等价无穷小D 同阶但非等价的无穷小4.设{an }与{bn}为两个数列,下列说法正确的是( ).SSS_SINGLE_SELA若{an }与{bn}都发散,则{anbn}一定发散B若{an }与{bn}都无界,则{anbn}一定无界C若{an}无界且=0,则=0D若an 为无穷大,且=0,则bn一定是无穷小5.设f(x)=在(一∞,+∞)内连续,且=0,则( ).SSS_SINGLE_SELA a>0,b>0B a<0,b<0C a≥0,b<0D a≤0,b>06.设α~β(x→a),则等于( ).SSS_SINGLE_SELA eBe 2C 1D7.设函数f(x)连续,且f’(0)>0,则存在δ>0使得( ).SSS_SINGLE_SELA 对任意的x∈(0,δ)有f(x)>f(0)B 对任意的x∈(0,δ)有f(x)<f(0)C 当x∈(0,δ)时,f(x)为单调增函数D 当x∈(0,δ)时,f(x)是单调减函数8.设f(x)是二阶常系数非齐次线性微分方程y"+py"+qy=sin2x+2e x的满足初始条件f(0)=f"(0)=0的特解,则当x→0时,( ).SSS_SINGLE_SELA 不存在B 等于0C 等于1D 其他9.下列命题正确的是( ).SSS_SINGLE_SELA 若|f(x)|在x=a处连续,则f(x)在x=a处连续B 若f(x)在x=a处连续,则|f(x)|在x=a处连续C 若f(x)在x=a处连续,则f(x)在x=a的一个邻域内连续D 若[f(a+h)一f(a一h)]=0,则f(x)在x=a处连续2. 填空题1.SSS_FILL2.SSS_FILL3.SSS_FILL4.SSS_FILL5.当x→0时,x—sinxcos2x~cx k,则c=__________,k=__________.SSS_FILL6.SSS_FILL7.SSS_FILL8.SSS_FILL9.设f’(x)连续,f(0)=0,f"(0)=1,则=___________.SSS_FILL10.设f(x)一阶连续可导,且f(0)=0,f"(0)≠0,则=___________.SSS_FILL11.设f(x)连续,且=__________.SSS_FILL12.SSS_FILL13.设f(x)在x=0处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为_________.SSS_FILL14.设在x=0处连续,则a=___________,b=___________.SSS_FILL3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。

考研数学(一)历年真题(1990-2021)无水印

考研数学(一)历年真题(1990-2021)无水印

1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim(xx x a x a→∞+-=_____________.(3)设函数()f x =1011x x ≤>,则[()]f f x =_____________.(4)积分222e y xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xxF x f t dt -=⎰则()F x '等于(A)e (e )()xx f f x ----(B)e (e )()xx f f x ---+(C)e(e )()x x f f x ---(D)e(e )()xx f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x +(B)1[()]n n f x +(C)2[()]nf x (D)2![()]nn f x (3)设a 为常数,则级数21sin()[n na n ∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα(C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分)求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分)设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A 八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d y dx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1e x xy --+=-(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3(B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy⎰⎰(B)12D xydxdy⎰⎰(C)14(cos sin )D xy x y dxdy+⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E (C)=BAC E(D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求2lim .x π+→(2)设n是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i ia b i n ≠≠= 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2(B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos nn a n ∞=--∑常数0)a >(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为(A)0(B)1(C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求0x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.z x y∂∂∂(3)设()f x =21ex x -+00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =的上侧.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论.(2)(2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出.(2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________.(4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小(B)同价但非等价的无穷小(C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x -+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1(B)6t =时P 的秩必为2(C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sincos ).x x x x →∞+(2)求.x dx (3)求微分方程22,x y xy y '+=满足初始条件11x y==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰ 其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.baa b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞(1)求X 的数学期望EX 和方差.DX (2)求X 与X 的协方差,并问X 与X 是否不相关?(3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-=_____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M<<(B)M P N <<(C)N M P <<(D)P M N<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件(B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d =(B)4b d =-(C)4a c=(D)4a c=-(5)已知向量组1234,,,αααα线性无关,则向量组(A)12233441,,,++++αααααααα线性无关(B)12233441,,,----αααααααα线性无关(C)12233441,,,+++-αααααααα线性无关(D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222S xdydz z dxdyx y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim0,x f x x→=证明级数11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为X 01P1212则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X YZ =+(1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ(3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰=_____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn n ∞-=+-∑的收敛半径R =_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π(B)在π上(C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-+则级数(A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散(D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分)(1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx (2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y 七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x =e 0x -00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e xy y y '''-+=的通解为_____________.(4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于(A)-1(B)0(C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值(B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >= 且1n n a ∞=∑收敛,常数(0,2πλ∈则级数21(1)(tan nnn n a n λ∞=-∑(A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与kx 是同阶无穷小,则k 等于(A)1(B)2(C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a ab b b b -(B)12341234a a a ab b b b +(C)12123434()()a ab b a a b b --(D)23231414()()a ab b a a b b --三、(本题共2小题,每小题5分,满分10分)(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +=== 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z xy x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a 五、(本题满分7分)求级数211(1)2n n n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,TA =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明(1)2=A A 的充分条件是 1.T=ξξ(2)当1T=ξξ时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值.(2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ===又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:XY123123(2)求随机变量X 的数学期望().E X1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2013sin coslim(1cos )ln(1)x x x x x x →+++=_____________.(2)设幂级数1nnn a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为_____________.(3)对数螺线e θρ=在点2(,)(e ,)2ππρθ=处切线的直角坐标方程为_____________.(4)设12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且,=AB O 则t =_____________.(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)二元函数(,)f x y =22(,)(0,0)0(,)(0,0)xyx y x y x y ≠+=,在点(0,0)处(A)连续,偏导数存在(B)连续,偏导数不存在(C)不连续,偏导数存在(D)连续,偏导数不存在(2)设在区间[,]a b 上()0,()0,()0.f x f x f x '''><>令1231(),()(),[()()](),2ba S f x dx S fb b a S f a f b b a ==-=+-⎰则(A)123S S S <<(B)213S S S <<(C)312S S S <<(D)231S S S <<(3)设2sin ()e sin ,x t xF x tdt π+=⎰则()F x (A)为正常数(B)为负常数(C)恒为零(D)不为常数(4)设111122232333,,,a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ααα则三条直线1112223330,0,0a x b y c a x b y c a x b y c ++=++=++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是:(A)123,,ααα线性相关(B)123,,ααα线性无关(C)秩123(,,)r =ααα秩12(,)r αα(D)123,,ααα线性相关12,,αα线性无关(5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是(A)8(B)16(C)28(D)44三、(本题共3小题,每小题5分,满分15分)(1)计算22(),I xy dv Ω=+⎰⎰⎰其中Ω为平面曲线220y zx ==绕z 轴旋转一周所成的曲面与平面8z =所围成的区域.(2)计算曲线积分()()(),cz y dx x z dy x y dz -+-+-⎰ 其中c 是曲线2212x y x y z +=-+=从z轴正向往z 轴负向看c 的方向是顺时针的.(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为,N 在0t =时刻已掌握新技术的人数为0,x 在任意时刻t 已掌握新技术的人数为()(x t 将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求().x t 四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分)(1)设直线:l 030x y b x ay z ++=+--=在平面π上,而平面π与曲面22z x y =+相切于点(1,2,5),-求,a b 之值.(2)设函数()f u 具有二阶连续导数,而(e sin )xz f y =满足方程22222e ,xz z z x y∂∂+=∂∂求().f u五、(本题满分6分)设()f x 连续1,()(),x f xt dt ϕ=⎰且0()lim(x f x A A x→=为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11110,(1,2,),2n n na a a n a +==+= 证明(1)lim n x a →∞存在.(2)级数11(1)nn n a a ∞=+-∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分)(1)设B 是秩为2的54⨯矩阵123,[1,1,2,3],[1,1,4,1],[5,1,8,9]TTT==--=--ααα是齐次线性方程组x =B 0的解向量,求x =B 0的解空间的一个标准正交基.(2)已知111⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ξ是矩阵2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 的一个特征向量.1)试确定,a b 参数及特征向量ξ所对应的特征值.2)问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为.B (1)证明B 可逆.(2)求1.-AB 九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是2.5设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为()f x =(1)0x θθ+01x <<其它其中1θ>-是未知参数12,,,,n X X X 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2112limx x→-=_____________.(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y ∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰ =_____________.(4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()x d tf x t dt dx-⎰=(A)2()xf x (B)2()xf x -(C)22()xf x (D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是(A)3(B)2(C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy x α∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π(B)π(C)4eπ(D)4eππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点(B)重合(C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有(A)(|)(|)P A B P A B =(B)(|)(|)P A B P A B ≠(C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j 为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦ 八、(本题满分5分)设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11(1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组kx =A 0有解向量,α且1.k -≠A α0证明:向量组1,,,k -αAαAα 是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).TTTn n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n nb y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附:标准正态分布表22()t zx dt -Φ=⎰z1.28 1.645 1.962.33()x Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附:t 分布表{()()}p P t n t n p≤=0.950.97535 1.6896 2.0301361.68832.02811999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2011lim(tan x x x x→-=_____________.(2)20sin()x d x t dt dx-⎰=_____________.(3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是_____________.(5)设两两相互独立的三事件,A B和C满足条件:1,()()(),2ABC P A P B P C =∅==<且已知9(),16P A B C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则(A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数(D)当()f x 是单调增函数时,()F x 必是单调增函数(2)设20()() 0x f x x g x x >=≤⎩,其中()g x 是有界函数,则()f x 在0x =处(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑其中102()cos n a f x n xdx π=⎰(0,1,2,)n = ,则5()2S -等于(A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB (B)当m n >时,必有行列式||0=AB (C)当n m >时,必有行列式||0≠AB (D)当n m >时,必有行列式||0=AB (5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤=(B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =到点(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点。

2021考研数一真题解析(1)

2021考研数一真题解析(1)

⎨⎨ ⎨ ⎨ ⎩ ⎩2016 全国研究生入学考试考研数学一解析本试卷满分 150,考试时间 180 分钟一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.(1)若反常积分+∞1 0x a(1+ x )bdx 收敛,则( )( A )a < 1且b > 1 【答案】: (C )(B ) a > 1且b > 1(C )a < 1且a + b > 1 (D )a > 1且a + b > 11【解析】:注意到xa在 x = 0 为瑕积分,在 x =∞ 为无穷限反常积分, 1(1+ x )b仅在 x =∞ 为无穷限反常积分,所以a < 1, a + b > 1(2)已知函数 f (x ) = ⎧2(x -1), x < 1,则 f (x )一个原函数是( )⎨ln x , x ≥ 1⎧ 2( A ) F (x ) = ⎧⎪(x -1)2 , x < 1 (B ) F (x )= ⎪ (x -1) , x < 1⎪⎩x (ln x -1), x ≥ 1 ⎪ x (ln x +1)-1, x ≥ 1(C ) F (x ) = ⎧⎪(x -1)2 , x < 1(D )F (x ) = ⎧⎪(x -1)2 , x < 1⎪⎩x (ln x +1)+1, x ≥ 1【答案】: (D )⎪⎩x (ln x -1)+1, x ≥ 1【解析】:由于原函数一定是连续,可知函数 F (x ) 在 x = 1连续,而( A )、(B )、(C )中的函数在 x = 1处均不连续,故选(D )。

(3)若 y = (1+ x2 )2-则q (x )= ( ) y = (1+ x 2 )2+ y ' + p (x ) y = q (x )两个解,( A )3x (1+ x 2 ) (B )- 3x (1+ x 2 )(C )x1+ x 2(D )-x 1+ x 2⎰1+ x 2 【答案】: ( A ) 【解析】:分别将 y = (1+ x2 )2-,y = (1+ x 2 )2+带入微分方程 y ' + p (x ) y = q (x ),两式做差,可得 p (x ) =- x . 两式做和,并且将 p (x ) =- x 带入,可得 q (x ) = 3x (1+ x2)1+ x 2 ⎧ x , x ≤ 01+ x 2 (4)已知函数 f (x ) = ⎪ 1 1 1 ,n = 1, 2, ( ) ⎨ ,⎩ n n +1 < x ≤ n(A ) x = 0 是 f (x )第一类间断点(B ) x = 0 是 f (x )第二类间断点(C ) f (x ) 在 x = 0 处连续但不可导(D ) f (x )在 x = 0 处可导【答案】: (D ) 【解析】: f '(x ) = limf ( x ) - f (0)= lim x= 1 -x →0-x - 0x →0-xf ' (x ) = limf ( x ) - f (0)= lim f ( x ) 。

考研数学一高等数学-试卷146_真题(含答案与解析)-交互

考研数学一高等数学-试卷146_真题(含答案与解析)-交互

考研数学一(高等数学)-试卷146(总分52, 做题时间90分钟)3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。

1.设z=f(x,y)满足=2x,f(x.1)=0,=sinx,求f(x,y).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:=2xy+φ(x),(x)为x的任意函数f(x,y)=xy 2+φ(x)y +ψ(x),ψ(x)也是x的任意函数.由=sinx,得[2xy+=sinx,则φ(x)=sinx.由f(x,1)=0,得[xy 2+φ(x)y+φ(x)]|y=0=x+sinx+ψ(x)=0,则ψ(x)=一x一sinx.因此,f(x,y)ψ(x)]|y=1=xy 2+ysinx一x一sinx.2.设,求.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:3.设u=u(x,y)由方程u=φ(u)+P(t)dt确定,其中φ可微,P连续,且φ'(u)≠1,求.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:将原方程对x求导将原方程对y求导考由①×P(y)+②×P(x)得由于φ'(u)≠14.设函数u(x,y)有连续二阶偏导数,满足,又满足下列条件:u(x,2x)=x,u'x (x,2x)=x 2 (即u'x(x,y)|y=2x=x 2 ),求u''xx(x,2x),u''xy (x,2x),u''yy(x,2x).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:将u(x,2x)=x两边对x求导,由复合函数求导法及ux'(x,2x)=x 2得 ux '(x,2x)+2uy'(x,2x)=1,uy'(x,2x)=(1一x2 ).现将ux '(x,2x)=x 2,uy'2=1(1一x 2 )分别对x求导得 uxx ''(x,2x)+2uxy''(x,2x)=2x, uyx''(x,2x)+2uyy''(x,2x)=一x.① ①式×2一②式,利用条件uxx ''(x,2x)一uyy''(x,2x)=0及uxy''(x,2x)=uyx ''(x,2x)得② 3uxy''(x,2x)=5x,uxy''(x,2x)=.代入①式得uxx ''(x,2x)=uyy''(x,2x)=.5.设z=f(xy)+yφ(x+y),且f,φ具有二阶连续偏导数,求.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:先求.由于f(xy)是一元函数f(u)与二元函数u=xy的复合,u 是中间变量,φ(x+y)是一元函数φ(v)与二元函数v=x+y的复合,v是中间变量.由题设知方便,由复合函数求导法则得6.设,求du及.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:u是u=f(s,t)与复合而成的x,y,z的三元函数.先求du.由一阶全微分形式不变性及全微分四则运算法则,得进一步由已知函数f(x,y,z)=x 3 y 2 z及方程x+y+z—3+e —3=e —(x+y+z), (*) (I)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=fx(y,z),y,z),求(Ⅱ)如果z=z(x,y)是由方程(*)确定的隐函数满足z(1,1)=1,又w=f(x,y,z(x,y)),求SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:(I)依题意,为f[x(y,z),y,z]对y的偏导数,故有① 因为题设方程(*)确定x为y,z的隐函数,所以在(*)两边对y求导数时应将z看成常量,从而有由此可得=一1.代入①式,得(Ⅱ)同(I)一样,求得在题设方程(*)中将x看成常量,对y求导,可得=一1,故有8.设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u 5—5xy+5u=1确定.求SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:将方程u 5—5xy+5u=1两端对x求导数,得5u 4 ux'一5y+5ux '=0,解得,故在上式对x求导数时,应注意其中的f1',f3'仍是x,y,u的函数,而u又是x,y的函数,于是9.设y=f(x,t),且方程F(x,y,t)=0确定了函数t=t(x,y),求.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:由y=f(x,t)知② 由F(x,y,t)=0知,将dt的表达式代入②式并整理可得若可微函数z=f(x,y)在极坐标系下只是θ的函数,求证(r≠0).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:由z=f(rcosθ,rsinθ)与r无关11.作自变量与因变量变换:u=x+y,v=x—y,w=xy—z,变换方程为w关于u,v的偏导数满足的方程,其中z对x,y有连续的二阶偏导数.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:由于z=xy—w,则12.设u=u(x,y),v=v(x,y)有连续的一阶偏导数且满足条件:F(u,v)=0,其中F有连续的偏导数且SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:将方程F(u,v)=0分别对x,y求偏导数,由复合函数求导法得按题设,这个齐次方程有非零解,其系数行列式必为零,即13.设z=f(x,y),满足,又,由z=f(x,y)可解出y=y(z,x).求:(I);(Ⅱ)y=(z,x).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:(I)以z,x为自变量,y为因变量y=y(z,x),它满足z=f(x,y(z,x)).将z=f(x,y)对x求偏导数,得.再对x求偏导数,得将代入上式,得利用条件得(Ⅱ)因y=y(z,x),y=xφ(z)+ψ(z)·14.设f(x,y)=2(y一x 2 ) 2一x 7一y 2, (I)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:(I)解即驻点为(0,0)与(一2,8).在(一2,8)处,,AC一B 2>0,A>0 (—2,8)为极小值点. 在(0,0)处,AC 一B 2=0,该方法失效·但令x=0 f(0,y)=y 2这说明原点邻域中y轴上的函数值比原点函数值大,又令y=x 2,f(x,x 2 )=,这说明原点邻域中抛物线y=x 2上的函数值比原点函数值小,所以(0,0)不是极值点.15.求z=2x+y在区域D:≤1上的最大值与最小值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:令F(x,y,λ)=2x+y+λ(x 2+一1),解方程组由①,②得y=2x,代入③得相应地因为z在D存在最大、最小值z在D的最大值为,最小值为.16.设函数z=(1+e y )cosx一ye y,证明:函数z有无穷多个极大值点,而无极小值点.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:(I)先计算(II)求出所有的驻点.由解得(x,y)=(2nπ,0) 或 (x,y)=((2n+1)π,一2),其中n=0,±1,±2, (Ⅲ)判断所有驻点是否是极值点,是极大值点还是极小值点.在(2nπ,0)处,由于=(一2)×(一1)一=2>0,一2<0,则(2nπ,0)是极大值点.在((2n+1)π,—2)处,由于则((2n+1)π,一2)不是极值点.因此函数z有无穷多极大值点(2nπ,0)(n=0,±1,±2,…),而无极小值点.17.设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:计算可得将x=1与y=1代入并利用g(1)=2,g'(1)=0 即得18.设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f'y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0, f'x(a,b)=0,且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:y=φ(x)在x=a处取得极值的必要条件是φ'(a)=0.按隐函数求导法,φ'(x)满足 f'x (x,φ(x))+f'y(x,φ(x))φ'(x)=0. (*) 因b=φ(a),则有 f(a,b)=0,φ'(a)=于是fx'(a,b)=0.将(*)式两边对x求导得 f''xx (x,φ(x))+f''xy(x,φ(x))φ'(x)+[f'y(x,φ(x))]φ'(x)+f'y(x,φ(x))φ''(x)=0,上式中令x=a,φ(x)=b,φ'(a)=0,得因此当时,φ''(a)<0,故b=φ(a)是极大值;当时,φ''(a)>0,故b=φ(a)是极小值.19.建一容积为V的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:化为无条件最值问题.由条件解出,代入S表达式得S=xy+=xy+2V(x>0,y>0) 解得x=y=因该实际问题存在最小值,所以当长、宽、高分别为时无盖长方体水池的表面积最小.20.已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:设旋转边上的高为z,分该边长为x与y,见图8.2,于是该三角形的周长为l=x+y+,该旋转体的体积V=π(x+y)z 2.问题化成求V在条件l一2p=0下的最大值点求(x+y)z 2在条件l一2p=0下的最大值点求ln(x+y)+2lnz在条件x+y+—2p=0下的最大值点.用拉格朗日乘子法.令F(x,y,z,λ)=ln(x+y)+2lnz+λ(x+y+),解方程组由①,② x=y,再由④ ⑤ 由实际问题知,最大体积一定存在,以上又是方程组的唯一解,因而三角形的三边长分别为,旋转边为时旋转体的体积最大.21.证明条件极值点的必要条件(8.9)式,并说明(8.9)式的几何意义.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:由所设条件,φ(x,y)=0在x=x的某邻域确定隐函数y=y(x)满足y0=y(x),于是P(x,y)是z=f(x,y)在条件φ(x,y)=0下的极值点z=f(x,y(x))在x=x0取极值f'x(x,y)+f'y (x,y)y'(x)=0 ① 又由φ(x,y(x))=0,两边求导得φ'x(x0,y)+φ'y(x,y))=0,解得y'(x2)=一φ'x(x,y0 )/φ'y(x,y).② 将②式代入①式得f'x(x,y)—f'y(x0,y)φ'(x,y)/φ'y(x,yn)=0.因此在Oxy平面上看,φ(x,y)=0是一条曲线,它在P0 (x,y)的法向量是(φ'x(P0 ),φ'y(P)),而f(x,y)=f(x,y)是一条等高线,它在P的法向量是(f'x (P),f'y(P)),(8.9)式表示这两个法向量平行,于是曲线φ(x,y)=0与等高线f(x,y)=f(P0 )在点P处相切.22.求函数u=xy+yz+zx在M(2,l,3)处沿与各坐标轴成等角方向的方向导数.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:先求出所设方向的方向余弦.设所求方向与各坐标轴的夹角为α,由方向余弦的性质得 cos 2α+cos 2α+cos 2α=1 cosα=± .均与各坐标轴成等角.23.求椭球面S:x 2+y 2+z 2一yz一1=0上具有下列性质的点(x,y,z)的轨迹:过(x,y,z)的切平面与Oxy平面垂直.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:椭球面S上点x,y,z)处的法向量n={2x,2y一z,2z—y}.点(x,y,z)处切平面上Oxy平面,则n·k=0,即2z—y=0.又(x,y,z)在S上x 2+y 2+z 2一yz一1=0.因此所求点的轨迹:.它是圆柱面x 2+=1与平面2x一y=0的交线.24.过球面x 2+y 2+z 2=169上点M(3,4,12)分别作垂直于x轴与y轴的平面,求过这两平面与球面的截线的公共点的两截线的切线方程,并求通过这两条切线的平面方程.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:过M点分别与x、y轴垂直的平面是z=3与y=4,与球面的截线它们的交点是M1 (3,4,12), M2(3,4,一1 2).г1在M1的切向量={0,24,一8}=8{0,3,一1},г2在M1的切向量={一24,0,6}=6{一4,0,1}.г1,г2在M1点的切线方程分别为过这两条切线的平面方程是,即3(x一3)+4(y一4)+12(z—12)=0.又г2在M2的切向量={0,一24,一8}=8{0,一3,一1},г2在M2的切向量={24,0,6}=6{4,0,1},г1,г2在M2点的切线方程分别为过两条切线的平面方程是,即3(x一3)+4(y 一4)一12(z+12)=0.25.设a,b,c>0,在椭球面的第一卦限部分求一点,使得该点处的切平面与三个坐标面所围成的四面体的体积最小.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2答案:正确答案:先写出椭球面上点(x,y,z)处的切半面方程,然后求出它在三条坐标轴上的截距,由此可写出四面体的体积表达式V(x,y,z).问题化为求V(x,y,z)在条件下的最小值点.将椭球面方程改写成G(x,y,z) 椭球面第一卦限部分上点(x,y,z)处的切平面方程是其中(X.Y.Z)为切平面上任意点的坐标.分别令Y=Z=0,Z=X=0,X=Y=0,得该切平面与三条坐标轴的交点分别为四面体的体积为V(x,y,z)=为了简化计算,问题转化成求V=xyz(x>0,y>0,z>0)在条件下的最大值点.令F(x,y,z,λ)=xyz+,求解方程组因实际问题存在最小值,因此椭球面上点(x,y,z)=处相应的四面体的体积最小.1。

考研数学一真题

考研数学一真题

考研数学一真题2021年全国硕士研究生入学统一考试数学一真题一、选择题部分1. 设数列 $\{a_n\}$ 满足 $a_1=1$,$a_n=(n-1)a_{n-1}+1$ $(n\geq2)$,则 $\sum\limits_{n=1}^{m}a_n$ 的通项公式为()。

A. $\sum\limits_{n=1}^{m}a_n=m!$B. $\sum\limits_{n=1}^{m}a_n=(m+1)!-1$C. $\sum\limits_{n=1}^{m}a_n=m\cdot m!$D. $\sum\limits_{n=1}^{m}a_n=(m+1)!$解:由 $a_n=(n-1)a_{n-1}+1$ 可以得到:$$a_2=1+1!=2,a_3=2+2!=4,a_4=6+3!=9,a_5=24+4!=48$$可以推测出 $\sum\limits_{n=1}^{m}a_n$ 的通项公式为:$$\sum\limits_{n=1}^{m}a_n=(m+1)!-1$$故选 B。

2. 数列 $\{a_n\}$ 满足 $a_1=1$,$a_{n+1}=a_n+\frac{1}{a_n}$ $(n\in N^+)$。

则$\lim\limits_{n\to\infty}\frac{a_n^2}{n}$ 的值为()。

A. $\frac{1}{2}$B. $1$C. $2$D. $+\infty$解:可以通过递推式将 $a_{n+1}$ 表示为 $a_n$ 和$a_{n-1}$ 的形式。

不过这里我们先注意到数列的变化形式与几何平均数的重合。

因为 $a_{n+1}$ 可以理解为将 $a_n$ 和$\frac{1}{a_n}$ 取几何平均数的结果。

所以可以先推导出几何平均数的递推公式:$$x_{n+1}=\sqrt{x_n\cdot\frac{1}{x_n}}=\frac{1}{2}(x_n+\ frac{1}{x_n})$$将 $a_n$ 和 $\sqrt{n}$ 作比较:$$a_{n+1}=a_n+\frac{1}{a_n}\geq2\sqrt{a_n\cdot\frac{1}{a _n}}=2$$即 $a_n\geq2(n-1)$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021研究生入学考试考研数学试卷(数学一)
一、选择题(1-10小题,每题5分,共计50分) 1.函数1
,0()1,0x e x f x x x ⎧-≠⎪
=⎨⎪=⎩
,在0x =处( )
(A )连续且取得极大值 (B )连续且取得极小值 (C )可导且导数等于零 (D )可导且导数不为零
2.设函数(,)f x y 可微,且222(1,)(1),(,)2ln x f x e x x f x x x x +=+=,则(1,1)df =( ) (A )dx dy + (B )dx dy - (C )dy (D )dy -
3.设函数2
sin ()1x
f x x
=
+在0x =处的3次泰勒多项式为23ax bx cx ++,则( ) (A )71,0,6a b c ===- (B )7
1,0,6a b c ===
(C )71,1,6a b c =-=-=- (D )7
1,1,6
a b c =-=-=
4.设函数()f x 在区间[0,1]上连续,则1
0()f x dx =⎰( )
(A )1211lim 22n
n k k f n n →∞=-⎛⎫⋅ ⎪⎝⎭∑ (B )1
211
lim 2n
n k k f n n →∞=-⎛⎫⋅ ⎪⎝⎭∑ (C )2111lim 2n n k k f n n →∞=-⎛⎫⋅ ⎪⎝⎭∑ (D )21
2
lim 2n
n k k f n n →∞
=⎛⎫⋅ ⎪⎝⎭∑ 5. 二次型222123122331(,,)()()()f x x x x x x x x x =+++--的正负惯性指数依次为( ) (A )2,0 (B )1,1 (C )2,1 (D )1,2
6.已知1231130,2,1112ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪
=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,记11βα=,221k βαβ=-,331122l l βαββ=--,若1β,
2β,3β两两正交,则12,l l 依次为( )
(A )51,22 (B )51
,22-
(C )51,22- (D )51,22
--
7.设A 、B 为n 阶实矩阵,下列不成立的是( )
(A )T 2()A
O r r A O
A A ⎛⎫=
⎪⎝⎭ (B )T 2()A
AB r r A O
A ⎛⎫
= ⎪⎝⎭
(C )T 2()A
BA r r A O AA ⎛⎫=
⎪⎝⎭ (D )T 2()A
O r r A BA A ⎛⎫
= ⎪⎝⎭
8.设A 、B 为随机事件,且0()1P B << ,下列为假命题的是( ) (A )若()()P A B P A =,则()()P A B P A = (B )若()()P A B P A >,则()()P A B P A > (C )若()()P A B P A B >,则()()P A B P A > (D )若()()P A A B P A A B ⋃>⋃,则()()P A P B > 9.设1122(,),(,),
,(,)n n X Y X Y X Y 为来自总体22
1212(,;,;)N μμσσρ的简单随机样本,令
12θμμ=-,11
11,n n
i i i i X X Y Y n n ====∑∑,ˆX Y θ
=-,则( ) (A )则ˆθ是θ的无偏估计,且22
12
ˆ()D n σσθ+=
(B )则ˆθ不是θ的无偏估计,且22
12
ˆ()D n σσθ+=
(C )则ˆθ是θ的无偏估计,且22
1212
2ˆ()D n σσρσσθ+-=
(D )则ˆθ不是θ的无偏估计,且22
1212
2ˆ()D n
σσρσσθ+-=
10.设1216,,,X X X 是来自总体(,4)N μ的简单随机样本,考虑假设检验问题:
01:10,:10H H μμ≤>,()x Φ表示标准正态分布函数,若该检验问题的拒绝域为{11}W X =≥,其中16
1
116i i X X ==∑,则11.5μ=时,该检验犯第二类错误的概率为( )
(A )1(0.5)-Φ (B )1(1)-Φ (C )1(1.5)-Φ (D )1(2)-Φ 二、填空题(11-16小题,每小题5分,共计30分) 11.20
______22
dx
x x +∞=++⎰
12.设函数()y y x =由参数方程2
21
4(1)t
t x e t y t e t ⎧=++⎪⎨=-+⎪⎩确定,则22
_____t d y dx == 13.欧拉方程240x y xy y '''+-=满足条件:(1)1y =,(1)2y '=的解为_____y =
14.设∑为空间区域22{(,,)|44,02}x y z x y z +≤≤≤表面的外侧,则曲面积分
22
____x dydz y dzdx zdxdy ∑
++=⎰⎰
15.设方阵33A ⨯,ij A 为元素ij a 的代数余子式,A 的各行元素之和为2,且行列式3A =,试
求112131______A A A ++=
16.甲、乙两袋中各有2个红球和2个白球,现从甲袋中任取1球,观察颜色后放入乙袋,再从乙袋中取出一球,记甲袋取出的红球个数为X ,乙袋取出的红球个数为Y ,则,X Y 的相关系数为_______
三、解答题(共计70分)
17.(本题满分10分)试求极限:20011lim 1sin x t x x e dt e x →⎛⎫
+ ⎪- ⎪- ⎪
⎝⎭
⎰ 18.(本题满分12分)设1()(1,2,)(1)n nx
x u x e n n n +-=+=+,求级数1
()n u x ∞
=∑的收敛域及和函数
19.(本题满分12分)已知曲线2226
:4230x y z C x y z ⎧+-=⎨++=⎩
,求C 上的点到xoy 坐标面距离的最大

20(本题满分12分)设2D R ⊂是有界单连通闭区域,22()4D
I D x y dxdy =--⎰⎰取得最大值
的积分区域记为1D (1)求1()I D 的值 (2)计算
2
2
2
2
1
4422
()(4)4x
y x
y D xe y dx ye x dy
x y ++∂++-+⎰
,其中1D ∂为1D 的正向边界
21(本题满分12分)已知111111a A a a -⎡⎤
⎢⎥=-⎢⎥
⎢⎥--⎣⎦
(1)求正交矩阵P ,使得T P AP 为对角矩阵; (2)求正定矩阵C ,使得2(3)C a E A =+-
22. (本题满分12分)在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记作X ,较长的一段长度记作Y ,令Y Z X
= (1)求X 的概率密度
(2)求Z 的概率密度
(3)求X E Y ⎛⎫
⎪⎝⎭。

相关文档
最新文档