最新对中国经济增长影响因素的实证分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对中国经济增长影响因素的实证分析
对中国经济增长影响因素的实证分析
摘要:改革开放三十三年以来,中国的社会经济取得了飞速发展,经济増长速度更是举世瞩目。
本文根据计量经济学、西方经济学和Eviews软件相关知识,采用时间序列数据模型和多元线性回归分析方法对1980-2009年(中国统计年鉴数据截止到2009年)三十年间中国经济増长因素进行研究,分析了物质资本、劳动力、消费对国内生产总值(GDP)的影响,建立计量经济学模型,寻求这些变量与国内生产总值的数量关系,进行定量分析,对模型进行检验,最终得出结论。
关键词:劳动力、投资、消费、经济増长、最小二乘法。
1. 背景
经济増长是指一个国家生产商品和劳务能力的扩大。
在实际核算中,常以
—国生产的商品和劳务总量的増加来表示,即以国民生产总值(GDP)和国内生产总值的的増长来计算。
古典经济増长理论以社会财富的増长为中心,指出生产劳动是财富増长的源泉。
现代经济増长理论认为知识、人力资本、技术进步是经济増长的主要因素。
从古典増长理论到新増长理论,都重视物质资本和劳动的贡献。
物质资本是指经济系统运行中实际投入的资本数量•然而,由于资本服务流量难以测度,在这里我们用全社会固定资产投资总额(亿元)来衡量物质资本。
中国拥有十
三亿人口,为经济増长提供了丰富的劳动力资源。
因此本文用总就业人数(万人)来衡量劳动力。
居民消费需求也是经济増长的主要因素。
经济増长问题既受各国政府和居民的关注,也是经济学理论研究的一个重要方面。
在1978—2008年的31年中,我国经济年均増长率高达9. 6%,综合国力大大増强,居民收入水平与生活水平不断提高,居民的消费需求的数量和质量有了很大的提高。
但是,我国目前仍然面临消费需求不足问题。
本文将以中国经济増长作为研究对象,选择时间序列数据的计量经济学模型方法,将中国国内生产总值与和其相关的经济变量联系起来,建立多元线性回归模型,研究我国中国经济増长变动趋势,以及重要的影响因素,并根据所得的结论提出相关的建议与意见。
用计量经济学的方法进行数据的分析将得到更加具有说服力和更加具体的指标,可以更好的帮助我们进行预测与决策。
因此,对我国经济増长的计量经济学研究是有意义同时也是很必要的。
2. 模型的建立
为了具体分析各要素对我国经济增长影响的大小,我们可以用国内生产总值(Y )这个经济指标作为研究对象;用总就业人员数(XQ衡量劳动力;用固定资产投资总额
(XJ衡量资本投入:用价格指数(X3)去代表消费需求。
运用这些数据进行回归分析。
这里的被解释变量是,Y:国内生产总值,
与Y-国内生产总值密切相关的经济因素作为模型可能的解释变量,共计3 个,它们分别为:
X|代表社会就业人数,
X,代表固定资产投资,
X)代表消费价格指数,
“代表随机干扰项。
模型的建立大致分为理论模型设置、参数估计、模型检验、模型修正儿个步骤。
如果模型符合实际经济理论并且通过各级检验,那么模型就可以作为最终模型,可以进行结构分析和经济预测。
2.1理论模型的确定
通过变量的试算筛选,最终确定以以下变量建立回归模型。
被解释变量Y :国内生产总值,
解释变量X,:代表社会就业人数,
X,:代表固定资产投资,
£
X3:代表消费价格指数,
另外,从经济意义上来说,社会就业人数、固定资产投资和消费价格指数这三个宏观经济指标基本反映了我国经济发展状况,因此也就很大程度上决定了经济増长水平。
单从经济意义上讲,变量的选择是正确的。
而且,就直观上来说,解释变量与被解释变量都是相关的,这三个解释变量都是经济増长的“良性”变量,它们的增长都对我国经济增长起着积极的推动作用.这一点可以作为模型经济意义检验的依据。
表1 :被解释变量与解释变量1980-20009数据
资料来源:《中国统计年鉴》。
首先,检查被解释变量和解释变量之间的线性关系是否成立。
观察被解释变量与解释变量之间的散点图。
图1 :被解释变量Y与解释变量£的散点图
由图中趋势线可以判断,被解释变量Y与解释变量£之间基本呈线性关系。
图2:被解释变咼Y与解释变量X.的散点图
由图中趋势线可以判断,被解释变量Y与解释变量X]之间基本呈线性关系。
Y
图3 :被解释变量Y与解释变量Xj的散点图
由图中趋势线可以判断,被解释变量Y与解释变量X3之间基本呈线性关系。
再通过变量之间的相关系数判断。
表2 :被解释变量与解释变量相关系数表
Covariance Analysis: Ordinary
Date: 1/7/15 Time: 13:05
Sample: 1980 2009
Included observations: 30
Covariance
Correlation Y X1 X2 X3 Y 8.85E+09
1.000000
X1 8.91 E+08 1.33E+08
0.820679
1.000000
X2 5.05E+09
0.981058 4.52E+08
0.717394
2.99E+09
1.000000
X3 ・197583.1
-0.325058 -20469.67
-0.274607
・102814.7
-0.291137
41.73889
1.000000
125
120-
115-
52 110-
105-
100-
95
0 100,000 200,000 300,000 400,000
看到被解释变量Y与解释变量X- X2,兀之间具有较高的相关性。
通过散点图和相关系数表的判断,可以判断被解释变量和解释变量之间具有明显的相关线性关系。
同时通过被解释变量与解释变量的相关图形分析,设置理论模型为:
y = P\ +卩+03X2 +"4X3+“
2. 2建立初始模型一LS
2. 2.1使用OLS法进行参数估计
表3:普通最小二乘法参数估计输出结果
Dependent Variable: Y
Method: Least Squares
Date: 1/7/15 Time: 14:23
Sample: 1980 2009
Included observations: 30
Coefficient Std. Error t-Statistic Prob.
X1 1.934840 0.215990 8.957997 0.0000
X2 1.382559 0.045823 30.17169 0.0000
X3 -379.2654 280.8999 -1.350180 0.1886
C -49822.31 33676.59 -1.479434 0.1510
R-squared 0.991233 Mean dependent var 85749.31
Adjusted R-squared 0.990221 S.D. dependentvar 95692.85
S.E. of regression 9462.951 Akaike info criterion 21.27172
Sum squared resid 2.33E+09 Schwarz criterion 21.45855
Log likelihood ・315.0758 Hannan-Quin n criter. 21.33149
F-statistic 979.8468 Durbin-Watson stat 1.178143
Prob(F-statistic)
0.000000
得到初始模型为:
y = -49822 .31+1.934840 X】+1.382559 X2一379.2654 X3
2. 2. 2对初始模型进行检验
要对建立的初始模型进行包括经济意义检验、统计检验、计量经济学检
验、预测检验在内的四级检验。
(1)经济意义检验
解释变量的系数分别为A二1.934840、伙二1382559。
两个解释变量系数均为正,符合被解释变量与解释变量之间的正相关关系,符合解释变量增长带动被解释变量增长的经济实际,民二379.2654,符合被解释变量与解释变量之间的负相关关系。
与现实经济意义相符,所以模型通过经济意义检验。
(2)统计检验
①拟合优度检验:R’检验,R-squared=0.991233; Adjusted R-
squared二0.990221 ;可见拟合优度很高,接近于1,方程拟和得很好。
②变量的显著性检验:t检验,
表4:模型系数显著性检验,t检验结果
Coefficient Std. Error t-Statistic Prob.
X1 1.934840 0.215990 8.957997 0.0000
X2 1.382559 0.045823 30.17169 0.0000
X3 -379.2654 280.8999 -1.3501800.1886
C -49822.31 33676.59 -1.4794340.1510
从检验结果表中看到,包括常数项在内的所有解释变量系数的t检验的伴随概率均小于5%,所以,在5%的显著水平下&、X2S X3的系数显著不为零,通过显著性检验,常数项也通过显著性检验,保留在模型之中。
@方程的显著性检验:F检验,方程总体显著性检验的伴随概率小于
0. 00000,在熬显著水平下方程显著成立,具有经济意义。
(3)计量经济学检验:
方程通过经济意义检验和统计检验,下面进行居于计量经济学模型检验核 心的计量经济学检验。
①]进行异方差性检验:
首先用图示法对模型的异方差性进行一个大致的判断。
令X 轴为方程被解 释变量,
Y 轴为方程的残差项,做带有回归线的散点图。
.000.000.000
「
800,000.000 -
600,000.000 -
400,000.000 -
cxj LD
200,000.000 -
0 - _____ 40.000
50.000 60,000
70.000
80.000
X1
图4 :初始模型的异方差性检验散点图
图5 :初始模型的异方差性检验散点图
图6 :初始模型的异方差性检验散点图
通过图形看到,回归线向上倾斜,大致判断存在异方差性,但是,图示法 并不准确,下面使用White 异方差检验法进行检验,分别选择不带有交叉项和 带有交叉项的White 异方差检验法。
得到下面的检验结果:
表5 :不带有交叉项的White 异方差检验结果
Heteroskedasticity Test: White
Test Equation:
Dependent Variable: RESID A 2 Method: Least Squares Date: 1/7/15 Time: 17:53 Sample: 1980 2009
Included observations: 30
Coefficient
Std. Error t-Statistic Prob. C 1.51E+08 1.08E+08 1.398492 0.1738 X1A 2 -0.029775 0.009593 -3.103868 0.0046 X2A 2 0.017419 0.001245 13.98776 0.0000 X3A 2
-2715.996 8243.375
-0.329476
0.7444 R-squared
0.897150 Mean depe ndent var 77607780 Adjusted R-squared 0.885283 S.D ・ dependentvar 1.80E+08 S.E. of regression 61075426 Akaike info criterion 38.81668 Sum squared resid
9.70E+16
Schwarz criteri on
39.00351
F-statistic Obs*R-squared Scaled explained SS
75.59849 Prob F(3,26) 26.91450 Prob. Chi-Square ⑶ 52.75104 Prob Chi-Square ⑶ 0.0000 0.0000 0.0000
-578.2502 Hannan-Quinn enter. 75.59849 Durbin-Watson stat 0.000000
表6 :带有交叉项的White 异方差检验结果
Heteroskedasticity Test: White
Test Equation:
Dependent Variable: RESID A 2 Method: Least Squares Date: 1/7/15 Time: 17:54 Sample: 1980 2009
In eluded observations: 30
Coefficient
Std. Error t-Statistic Prob. C -2.08E+09 4.06E+09 -0.512912 0.6136 X1 -34576.99 39720.32 -0.870512 0.3943 X1A 2 0.189719 0.224091 0.846615 0.4072 xrX2 -0.297299 0.442472 -0.671906 0.5093 xrx3 127.5161 329.2824 0.387254 0.7027 X2 29147.14 35662.29 0.817310 0.4234 X2A 2 0.033135 0.007760 4.270053 0.0004 X2-X3 -97.11637 96.87489 -1.002493 0.3281 X3 55473498 68538734 0.809374 0.4278 X3A 2
-283697.5 290382.6
-0.976978
0.3403 R-squared
0.937930 Mean dependent var 77607780 Adjusted R-squared 0.909998 S.D. dependentvar 1.80E+08 S ・E. ofregressi on 54097636 Akaike info criterion 38.71168 Sum squared resid 5.85E+16 Schwarz criterion 39.17875 Log likelihood -570.6752 Hannan-Quin n criter. 38.86110 F-statistic
33.57944
Durbin-Watson stat
2.262413
Prob(F-statistic) 0.000000
Log likelihood
F-statistic
Prob(F-statistic) 38.87645 1.947056
F-statistic
33.57944 Prob F(9,20) 0.0000 Obs*R-squared
Scaled explained SS
28.13789 Prob Chi-Square ⑼ 55.14882 Prob. Chi-Square ⑼
0.0009 0.0000
使用White检验法不论是否带有交叉项,所得的检验伴随概率均小于5%, 均在5%的显著水平下拒绝方程不存在异方差性的原假设,认为模型具有比较严重的异方差性。
需要对模型进行修正。
②多重共线性检验:
用逐步回归法检验如下
以Y为被解释变量,逐个引入解释变量召、X- X3)构成回归模型,进
行模型估计。
表7:被解释变量Y与£最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1/7/15 Time: 18:32
Sample: 1980 2009
Included observations: 30
Coefficient Std. Error t-Statistic Prob
X1 6.692086 0.880526 7.600101 0.0000
C -334986.1 56283.70 -5.951743 0.0000
R-squared0.673513Mean dependent var 85749.31
Adjusted R-squared 0.661853 S.D. dependentvar 95692.85
S.E. of regression 55645.78 Akaike info criterion 24.75574
Sum squared resid 8.67E+10 Schwarz criterion 24.84915
Log likelihood -369.3361 Hannan-Quin n criter. 24.78562
F-statistic 57.76153 Durbin-Watson stat 0.096883
Prob(F-statistic)
0.000000
表8:被解释变量Y与X?最小二乘估计结果
Dependent Variable: Y Method: Least Squares Date: 1/7/15 Time: 18:34 Sample: 1980 2009
In eluded observations: 30
Coefficient Std. Error t-Statistic Prob.
X2 1.688594 0.063011 26.79831 0.0000
C 19746.45 4234.328 4.663420 0.0001
R-squared0.962474Mean dependent var 85749.31
Adjusted R-squared 0.961134 S.D. dependentvar 95692.85
S.E. ofregression 18865.38 Akaike info criterion 22.59239
Sum squared resid 9.97E+09 Schwarz criterion 22.68580
Log likelihood -336.8858 Han nan-Quin n criter. 22.62227 F-statistic 718.1495 Durbin-Watson stat 0.402624 Prob(F-statistic)
0.000000
表9:被解释变量Y与X,最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1/7/15 Time: 18:36
Sample: 1980 2009
Included observations: 30
Coefficient Std. Error t-Statistic Prob.
X3 ・4733.789 2602.669 -1.818821 0.0797
C 586426.4 275788.7 2.126361 0.0424
R-squared0.105663Mean dependent var 85749.31
Adjusted R-squared 0.073722 S.D.dependentvar 95692.85
S・E. ofregressi on 92097.98 Akaike info criterion 25.76343
Sum squared resid 2.37E+11 Schwarz criterion 25.85685
Log likelihood -384.4515 Hannan-Quinn criter. 25.79332
F-statistic 3.308109 Durbin-Watson stat 0.120717
Prob(F-statistic) 0.079650
由图可以看出,Y与兀的拟合优度是最大的,R・squared』.962474。
再做Y与&和X?的回归模型。
表10:被解释变量Y与X】和X?的最小二乘估计结果
Dependent Variable: Y Method: Least Squares Date: 1/7/15 Time: 18:47 Sample: 1980 2009
In eluded observations: 30
Coefficient Std. Error t-Statistic Prob.
X1 1.963607 0.218188 8.999617 0.0000
X2 1.391253 0.046055 30.20878 0.0000
C -92084.42 12611.85 -7.301423 0.0000
R-squared0.990618Mean depe ndent var 85749.31
Adjusted R-squared 0.989923 S.D. dependentvar 95692.85
S.E. of regression 9606.088 Akaike info criterion 21.27282
Sum squared resid 2.49E+09 Schwarz criteri on 21.41294
Log likelihood -316.0923 Han nan-Quin n criter. 21.31765
F-statistic 1425.411 Durbin-Watson stat 0.956357
Prob(F-statistic)
0.000000
再做Y与£和X—的回归模型。
表门:被解释变量Y与&和X?、X3的最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1/7/15 Time: 18:51
Sample: 1980 2009
In eluded observations: 30
Coefficient Std. Error t-Statistic Prob.
X1 1.934840 0.215990 8.957997 0.0000
X2 1.382559 0.045823 30.17169 0.0000
X3 -379.2654 280.8999 -1.350180 0.1886
C -49822.31 33676.59 -1.479434 0.1510
R-squared0.991233Mean dependent var 85749.31
Adjusted R-squared 0.990221 S.D. dependentvar 95692.85
S・E. ofregression 9462.951 Akaike info criterion 21.27172
Sum squared resid 2.33E+09 Schwarz criterion 21.45855
Log likelihood ・315.0758 Han nan-Quin n criter. 21.33149
F-statistic 979.8468 Durbin-Watson stat 1.178143
Prob(F-statistic)
0.000000
观察Y与£和X]最小二乘估计的拟合优度(R-squared二0.990618), 与Y与£最小二乘估计的拟合优度(R-squared二0.673513)比较,变化明显,说明&对y的影响显著。
观察Y与召和X,、X3最小二乘估计的拟合优度
(R-squared =0.991233),与Y与召和兀最小二乘估计的拟合优度(R- squared =0.990618)比较变化不明显•说明X3对y影响不显著。
:3序列相关性检验:
方程含有截距项,因此,可以使用DW检验法来检验方程是否具有序列相关性。
该模型中,样本量n=30,解释变量的个数为3个,查DW检验表知5%的上
下界为dl二1.2& 4-dl二2. 72, du二1. 57, 4-du二2. 43, ; 1%的上下界为
dl二1.07, 4-dl二2. 93, du=l. 34, 4-du二2. 66。
本模型的DW检验值为:DW=1.178143,在5%的水平下,0<DW<dl,落在正自相关区;在1%的水平下,dl<DW<du,落在无结论区,无法判断。
-20,000
RESID1
由于DW值在5%的上下界条件下正自相关,说明模型存在序列相关性,所以需要对模型进行修正。
(4)预测检验
Forecast: YFOLS Actual: Y
Forecast
sample: 1980 2009 Included
observations: 30
图9 :模型预
测检验结果图
预测误差NIAPE=28. 52734%, MAPE 大于10,预测效果。
通过参数估计和四级检验,得到的初始模型是:
y = -49822 .31+1.934840 X,+1.382559 X,-379.2654 X 3 t= (-1.479434) (8.957997) (30.17169) (-1.350180)
p= (0.1510)
(0.0000)
(0.0000)
(0.1886)
R-squared=0.991233 Adjusted R-squared=0.990221
2. 3建立修正模型一WLS
加权最小二乘法估计模型系数建立模型能够有效地消除模型的异方差性, 同时也可以在一定程度上克服序列相关性,因此,使用WLS 方法估计模型参数 是修正模型的常用方法。
2. 3.1使用WLS 法进行参数估计
表12 :加权最小二乘法估计模型参数结果输出表
Dependent Variable: Y Method: Least Squares Date: 1/8/15 Time: 13:09 Sample: 1980 2009
In eluded observations: 30
8809.528 6185.430 28.52734 0.034643 0.000000 0.002202 0.997798
Root Mean Squared Error Mean Absolute Error Mean Abs. Percent Error Theil Inequality Coefficient Bias Proportion
Varianee Proportion Covariance Proportion
Weighting series: 1/RESID A2
Coefficient Std. Error t-Statistic Prob.
X1 1.708496 0.075998 22.48069 0.0000
X2 1.574969 0.058315 27.00773 0.0000
X3 -332.6186 13.90237 ・23.92532 0.0000
C -43825.71 2255.915 -19.42702 0.0000
Weighted Statistics
R-squared0.999841Mean dependent var 14463.34
Adjusted R-squared 0.999823 S.D. dependentvar 31652.85
S.E. of regression 253.3304 Akaike info criterion 14.03083
Sum squared resid 1668584. Schwarz criteri on 14.21766
Log likelihood -206.4625 Han nan-Quin n criter. 14.09060
F-statistic 54656.07 Durbin-Watson stat 1.063337
Prob(F-statistic)
0.000000
Unweighted Statistics
R-squared 0.980555 Mean dependent var 85749.31
Adjusted R-squared 0.978311 S.D. dependentvar 95692.85
S.E. of regressio n 14092.91 Sum squared resid 5.16E+09
Durbin-Watson stat 0.708654
y =-43825.71 +1.708496 +1.574969 X2-332.6186 X3
2. 3. 2对修正模型进行检验
要对使用加权最小二乘法估计参数建立的新模型进行包括经济意义检验、
统计检验、计量经济学检验、预测检验在内的四级检验。
(1)经济意义检验
解释变量的系数分别为01二1.708496、卩2二1.574969。
两个解释变量系数均为正,符合被解释变量与解释变量之间的正相关关系,符合解释变量増长带动被解释变量増长的经济实际,与现实经济意义相符;卩3二332.6186,符合被解释变量与解释变量之间的正相关关系,所以模型通过经济意义检验。
对于常数项的意义将在模型经济意义的分析中讨论。
(2)统计检验(显著水平瑰)
①拟合优度检验:R’检验,R-squared二0.999841 ;Adjusted R-
squared=0.999823 ;可见拟合优度较初始使用0LS法估计建立的模型有所改善,拟和优度相当高,新方程拟和得很理想。
②变量的显著性检验:t检验,
表13 : WLS模型系数显著性检验,t检验结果
Coefficient Std. Error t-Statistic Prob.
X1 1.708496 0.075998 22.48069 0.0000
X2 1.574969 0.058315 27.00773 0.0000
X3 -332.6186 13.90237 ・23.92532 0.0000
C -43825.71 2255.915 -19.42702 0.0000
所有系数的t检验伴随概率均远远小于5牝所以,解释变量的系数显著不为零,通过显著性检验,常数项同时也通过显著性检验,保留在模型当中不必剔除。
方程的显著性检验:F检验,方程总体显著性检验的伴随概率小于
0. 00000,方程在很高的置信水平下显著成立,具有经济意义。
(3)计量经济学检验
方程通过经济意义检验和统计检验,下面进行居于计量经济学模型检验核心的计量经济学检验。
异方差性检验:
下面用White异方差检验法准确检验新方程的异方差性,分别选择不带有交叉项和带有交叉项的White检验。
得到下面的检验结果:
表14 :不带有交叉项的White异方差检验
Heteroskedasticity Test: White
F-statistic 4.55E+29 Prob. F(2,27) 0.0000
Obs*R-squared 30.00000 Prob. Chi-Square(2) 0.0000
Scaled explained SS 0.000713 Prob. Chi-Square⑵0.9996
Test Equation:
Dependent Variable: WGT__RESID A2
Method: Least Squares
Date: 1/8/15 Time: 13:41
Sample: 1980 2009
Included observations: 30
Collinear test regressors dropped from specification
Coefficient Std. Error t-Statistic Prob.
C 4.57E-13 4.80E-13 0.950545 0.3503
WGT 85.71131 2.22E-12 3.85E+13 0.0000
WGT A2 2.06E-11 7.73E-14 267.2729 0.0000 R-squared 1.000000 Mean dependent var 85.71131 Adjusted R-squared 1.000000 S.D. dependentvar 450.1754 S・E. ofregressi on 2.54E-12 Akaike info criterion -50.46374 Sum squared resid 1.74E-22 Schwarz criterion -50.32362 Log likelihood 759.9561 Hannan-Quin n criter. -50.41892 F-statistic 4.55E+29 Durbin-Watson stat 2.067149
Prob(F-statistic)
0.000000
表15 :带有交叉项的White异方差检验Heteroskedasticity Test: White
F-statistic 4.55E+29 Prob. F(2,27) 0.0000 Obs# R-squared 30.00000 Prob. Chi-Square(2) 0.0000 Scaled explained SS 0.000713 Prob. Chi-Square(2) 0.9996
Test Equation:
Dependent Variable: WGT__RESID A2
Method: Least Squares
Date: 1/8/15 Time: 13:42
Sample: 1980 2009
In eluded observations: 30
Collin ear test regressors dropped from specification
Coefficient Std. Error t-Statistic Prob.
C 4.57E-13 4.80E-13 0.950545 0.3503
WGT 85.71131 2.22E-12 3.85E+13 0.0000
WGT A2 2.06E-11 7.73E-14 267.2729 0.0000
R-squared 1.000000 Mean depe ndent var 85.71131 Adjusted R-squared 1.000000 S.D. dependentvar 450.1754 S・E. of regression 2.54E-12 Akaike info criterion -50.46374 Sum squared resid 1.74E-22 Schwarz criterion ・
Log likelihood 759.9561 Han nan-Quin n criter. ・
F-statistic 4.55E+29 Durbin-Watson stat 2.067149
Prob(F-statistic) 0.000000
使用White异方差检验法,不论是否带有交叉项,均在很高的的置信水平下接受方程不存在异方差性的原假设,使用加权最小二乘法估计模型参数几乎完全消除了初始方程的异方差性。
②多重共线性检验:
用逐步回归法检验如下:
以Y为被解释变量,逐个引入解释变量召、X- X3)构成回归模型,进行模型估计。
表16被解释变量Y与X,最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1/8/15 Time: 13:49
Sample: 1980 2009
In eluded observations: 30
Weighting series: 1/RESID A2
Coefficient Std. Error t-Statistic Prob.
X1 6.271774 0.153142 40.95402 0.0000
C ・311439.0 7873.862 -39.55353 0.0000
Weighted Statistics
R-squared0.983580Mean dependent var 22359.80
Adjusted R-squared 0.982994 S.D. dependentvar 56275.68
S・E. ofregression 5204.581 Akaike info criterion 20.01681
Sum squared resid 7.58E+08 Schwarz criterion 20.11022
Log likelihood -298.2521 Han nan-Quin n criter. 20.04669
F-statistic 1677.232 Durbin-Watson stat 1.137013
Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.669921 Mean dependent var 85749.31
Adjusted R-squared 0.658132 S.D. dependentvar 95692.85
S.E. of regression 55951.10 Sum squared resid 8.77E+10
Durbin-Watson stat 0.094031
表17被解释变量Y与X2最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1/8/15 Time: 13:54
Sample: 1980 2009
Included observations: 30
Weighting series: 1/RESID A2
Coefficient Std. Error t-Statistic Prob.
X2 2.216738 4.32E-10 5.13E+09 0.0000
C 3356.827 1.35E-06 2.49E+09 0.0000
Weighted Statistics
R-squared 1.000000 Mean depe ndenl var 10277.45 Adjusted R-squared 1.000000 S.D. dependentvar 56273.32 S.E. of regression 1.80E-08 Akaike info criterion -32.76770 Sum squared resid 9.03E-15 Schwarz criteri on -32.67429 Log likelihood 493.5155 Hannan-Quinn criter. -32.73782 F-statistic 2.63E+19 Durbin-Watson stat 2.000003
Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.866275 Mean dependent var 85749.31 Adjusted R-squared 0.861499 S.D.dependentvar 95692.85 S.E. ofregressi on 35612.81 Sum squared resid 3.55E+10 Durbin-Watson stat 0.265495
表18:被解释变量Y与X,最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1 ⑻ 15 Time: 14:00
Sample: 1980 2009
Included observations: 30
Weighting series: 1/RESID A2
Sum squared resid 4047660. Schwarz criterion 14.87708
Log likelihood ・219.7549 Han nan-Quin n criter. 14.81355
F-statistic 1483.619 Durbin-Watson stat 0.701247
Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared -0.694244 Mean dependent var 85749.31
Adjusted R-squared -0.754753 S・D. dependentvar 95692.85
S・E. of regression 126761.5 Sum squared resid 4.50E+11
Durbin-Watson stat 0.020367
由图可以看岀,Y与X?的拟合优度是最大的,R-squared=1.000000o再做Y与&和X』的回归模型。
表19:被解释变量丫与&和X?的最小二乘估计结果
Dependent Variable: Y
Method: Least Squares
Date: 1/8/15 Time: 14:02
Sample: 1980 2009
In eluded observations: 30
Weighting series: 1/RESID A2
R-squared 0.999292 Mean dependent var 7087.930
Adjusted R-squared 0.999239 S.D. dependentvar 16692.75
S・E. of regression 123.6844 Akaike info criterion 12.56798
Sum squared resid 413041.5 Schwarz criterion 12.70810
Log likelihood -185.5197 Han nan-Quin n criter. 12.61281
F-statistic 19043.32 Durbin-Watson stat 2.390725
Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.403224 Mean dependent var 85749.31
Adjusted R-squared 0.359018 S.D. dependentvar 95692.85
S.E. of regression 76612.97 Sum squared resid 1.58E+11
Durbin-Watson stat 0.130406
再做Y与£和X- X3的回归模型。
表20:被解释变量Y与&和X?、X-,的最小二乘估计结果
Dependent Variable: Y
Method: Least Squares Date: 1/8/15 Time: 14:02
Sample: 1980 2009
Included observations: 30
Weighting series: 1/RESID A2
Coefficient Std. Error t-Statistic Prob.
X1 0.043231 0.007036 6.144351 0.0000
X2 2.821574 0.018699 150.8920 0.0000
X3 32.47116 5.899717 5.503851 0.0000
C -3346.513 908.6591 -3.682914 0.0011
Weighted Statistics
R-squared 0.999994 Mean dependent var 5046.045
Adjusted R-squared 0.999993 S・D. dependentvar 21322.69
S・E. of regression 5.497988 Akaike info criterion 6.370207
Sum squared resid 785.9246 Schwarz criterion 6.557034
Log likelihood ・91.55311 Han nan-Quin n criter. 6.429975
F-statistic 1473142. Durbin-Watson stat 1.879944
Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.441593 Mean dependent var 85749.31
Adjusted R-squared 0.377162 S・D. dependentvar 95692.85
S・E. of regression 75520.90 Sum squared resid 1.48E+11
Durbin-Watson stat 1.083962
观察Y与£和X?最小二乘估计的拟合优度(R-squared二0.999292), 与Y与&最小二乘估计的拟合优度(R-squared =0.983580)比较,变化比较明显,说明£对y的影响比较显著n观察Y与%和X:、最小二乘估计的拟合优度(R-squared二0.999994),与Y与£和X?最小二乘估计的拟合优度(R-squared =0.999292)比较,变化不明显,说明X】对y影响不显著。
③序列相关性检验:
方程含有截距项,因此,可以使用DW 检验法来检验方程是否具有序列相关 性。
该模型中,样本量沪30,解释变量的个数为3个,查DW 检验表知熬的上 下界为 dl 二 1.2& 4-dl 二2. 72, du 二 1. 57, 4-du 二2. 43,
; 1%的上下界为
dl 二 1.07, 4-dl=2. 93, du=l. 34, 4-du 二2. 66。
本模型的DW 检验值为:DW 二1.083337,在5%的水平下,0<DW<dl,落在正 自相关区;在1%的水平下,dl<DW<du,落在无结论区,无法判断。
由于新模型的性质很好,因此在1%的水平下检验模型的各种性质,认为新 模型不再具有序列相关性。
(4) 预测检验
图10 : WLS 估计修正模型的预测检验结果图
|一YFWOLS ——±2SE
预测误差MAPE=24. 88907%,大于10%,预测的误差较修正前有所改善,预 测精度
不高,预测效果一般,模型的预测效果较修正前要好得多,但是,还需 要进一步修正。
最后得到的使用加权最小二乘法估计参数的模型是:
>• = -43825.71 +1.708496 X,+1.574969 X 2 - 332.6186 X 3
2.0E+18 ----------------------------------------------------------------------------------- 1.5E+18- 1.0E+18- 5.0E+17-
O.OE+OO ----------------------------------------------------------------------- ・y"
、
•5.0E+17 ・ -1.0E+18. -1.5E+18-
」 - -
Forecast: YFWOLS Actual: Y
Forecast sample: 1980 2009 Included observations: 30
Root Mean Squared Error Mean Absolute Error Mean Abs. Percent Error Theil inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion 13119.79 6076.408 24.88907 0.049850 0.103493 0.349199 0.547308
t= (-19.42702) (22.48069) (27.00773) (-23.92532)
p二(0.0000) (0.0000) (0.0000) (0.0000)
R-0.999841 R '二0.999823 D. W.二1.083337
通过上面的四级检验,可以看到,模型在很高的置信水平(99%)下通过统计检验,计量经济学检验,模型不再具有异方差性和序列相关性,模型预测检验显示模型的预测效果比较理想。
另外赤池检验值为8. 063,施瓦茨检验值为8.259,二者都较修正前要小(修正前两者分别是11.358和11. 555),表明模型的建立效果要好于修正之前。
3. 模型经济意义分析与预测
建立模型的最终目的就是要通过模型获得有用的信息,计量经济模型提供了结构分析和经济预测两大应用。
3」模型的经济意义分析——结构分析
通过对最初的使用普通最小二乘估计参数得到的模型进行加权修正,得到的使用加权最小二乘法估计参数的模型是:
>* = -43825.71 +1.708496 X】+1.574969 X2-332.6186 X3
t= (-19.42702) (22.48069) (27.00773) (-23.92532)
p二(0.0000) (0.0000) (0.0000) (0.0000)
R:=0.999841 R '二0.999823 D. W. = 1.083337
模型具有较好的性质,通过了包括经济意义检验、统计检验、计量经济学检验和预测检验在内的四级检验,模型符合现实经济理论和计量经济学的相关假设,可以较好的
提供经济信息和预测研究对象的趋势。
模型是可以应用于经济意义分析和预测。
3.2利用模型进行预测
使用修正过一次的WLS法估计参数建立的模型对农村居民家庭人均收入的变动趋势进行预测,外推五年,预测的时间为20010年-20014年,以期得到比较具体的数据和结论。
3. 2.1被解释变量Y的点预测
⑴解释变量XI、X2、X3的点预测
X2
图12
X3
图13
首先观察解释变量的变动趋势。
画出各解释变量的曲线图。
可以使用霍尔特一温特斯指数平滑法,对解释变量进行预测,可以得到相对合理的解释变量的预测值。
扩展观察年限至2014年,利用霍尔特—温特斯指数平滑法预测。
alpha, beta, gamma由系统选取。
得到的预测结果中最下面有mean和trend项,有如下关系F (t) =trend+mean*t。
表21 :解释变量XI、X2、X3, 2010-2014年霍尔特-温特斯指数平滑预测值
年份xl x2 x3
2010 78911.15 276369.2 99. 94
2011 156906.2 500968 199.24
2012 234901.2 725566. 8 298. 54
2013 1092846 950165.6 397. 84
2014 1170841 1174764 497. 14
(2)被解释变量Y的点预测
图14:被解释变量Y的预测情况
表22 :被解释变量Y2005-2009年点预测值
年份y
2010370700. 6
2011714165. 3
20121057630
20131401095
20141744559
从图14最后扩展出的五年的预测曲线的趋势和所得到的点预测的预测值曲线,看到预测基本上成功揭示了研究对象未来的发展趋势,预测结果是比较合理的。
4.结论
4.1主要结论
1、固定资产投资是经济增长的重要原动力。
经济发展取决于投入资金的数量和资金的利用效率。
固定资产投资是经济増长的重要原动力,它对经济运行具有先导作用,并以其乘数效应拉动经济増长。
2、劳动力对GDP有一定的促进作用但对经济増长的贡献率却微不足道。
这是因为我国劳动力结构总量巨大、供给充足、流动性强,对GDP影响很大。
但是劳动力的人力资本含量、高技术含量偏低,劳动力素质结构存在严重缺陷,会直接影响了经济的増长。
3、消费需求对经济的拉动作用
消费需求是三大需求要素中所占份额最大、波动幅度最小的部分,是国民经济的重要支柱和最主要的组成部分,同时也是明显地反映经济自发增长态势的宏观经济指标。
4・2政策建议
就业是民生之本,有效促进就业,保持经济増长良好势头成为我国当前乃至今后一段时期的重要课题。
针对目前劳动力数量庞大且总体素质不高的现状,应通过多种途径,
一方面加强就业培训的投入力度,提高劳动者就业及再就业能力,降低失业率;另一方面,加强各地区间人才交流及促进劳动力自由流动,并通过合理技术壁垒方式,阻止外来流动人员的无序进入。
同时,鼓励灵活就业,以减轻就业压力。
劳动力的人力资本含量、高技术含量偏低,劳动力素质结构存在严重缺陷,直接影响了经济的増长。
因此应当控制人口数量,优化劳动力结构,提升劳动力素质。
物质资本对我国的经济増长也起到了一定的影响作用,应加强对投资的科学管理,提高投资效率。
参考文献:
[1〕《中国统计年鉴》中国国家统计局网站1980-2010年
[2]中国劳动人事网全国从业人员年末人数1980-1990年
[3]中国企业劳动维权网全国从业人员年末人数1980-1990年
[4]中国人民大学经济论坛http://bbs. pinggu. org
[5]《计量经济学》第二版李子奈潘文卿。
北京:高等教育出版社,2005. 3
[6]《数据分析与Eviews应用》易丹辉。
北京:中国统计出版社,2002. 10
[7]《西方经济学(微观部分)》第四版高鸿业。
北京:中国人民大学出版
社,2010. 1
[8]《西方经济学(宏观部分)》第四版高鸿业。
北京:中国人民大学出版
社,2010. 7。