探讨自卸车油缸回落的原因

探讨自卸车油缸回落的原因
探讨自卸车油缸回落的原因

探讨自卸车油缸回落的原因

摘要:自卸车属于专用汽车的一种,不仅能够自动卸货还可以进行车体复位。简单来说,自卸车内部具有举升机构,驱动该结构的正是自卸车自身所具有的动力,而举升结构的驱动又能够使自卸车实现倾卸和复位的功能。本文对自卸车油缸回落的问题进行了探讨。

关键词:自卸车;油缸回落;原因

自卸车在我国专用车领域具有良好的应用市场,它不仅货物装载量大,而且举升的力量也非常大,完全适合市场的需求。尤其是自卸车中的前举升自卸车,被广泛应用到建筑工程的施工中,特别是砂石的运输、建筑垃圾的运输、便于倾卸的各种物料的运输,都需要用到前举升自卸车。不过,自卸车在运用过程中也时常会有一些问题出现,比如当运输粘土和湿性灰渣等不易倾卸的材料时,自卸车的举升过程很容易发生油缸回落的状况。

1.自卸车油缸回落的现象

根据大量的用户反馈资料以及试验分析材料可以知道,自卸车在使用时很有可能会发生油缸回落的状况。而自卸车发生油缸回落状况主要有以下几种表现:

(1)首先,自卸车油缸回落状况的发生并不是经常性或每次都存在的,只有在车辆流动性较差、装载重型货物的时候才会偶尔发生几次。如果是在不载货物的情况下进行自卸车举升的话,一般就不会出现油缸回落现象。

(2)另外,当车体装载的货物为不易进行倾卸的材料时,也会发生油缸回落状况。至于不易卸下的货物主要包括粘土、湿润的沙子、矿粉以及淤泥等。

(3)自卸车的油缸回落现象在发生时,其油缸举升情况一般是刚刚升至第三或第四节,且厢体在举升时的角度在25°~35°的范围内。这种时候,车厢内大部分所载货物也都会分布在车厢的靠前部分。

2.自卸车油缸回落引发的问题

自卸车内部有液压缸,液压缸具有活塞,而活塞在自卸车的升举中会经过车内的卸油槽。这一点表明,自卸车液压缸的活塞必须满足一定的要求,要具备良好的密封性能,并且在经过车内卸油槽的时候不会划伤密封件。但就目前的情况来看,一般的密封件在路过卸油槽时非常容易划坏,尤其是在高温的情况下,常常会导致车内液压缸发生泄漏,从而对液压缸造成损坏。所以现在被广泛使用的自卸车内,其液压缸的结构采用的是金属活塞环式密封圈,该类型的密封圈可以有效控制密封件被划坏的状况。虽然如此,但是在使用过程中仍然会存在一些问题。

液压缸设计与计算

液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。 1.液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。 根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时 (4-32) ②以有杆腔作工作腔时 (4-33) 式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax 为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34) 也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。 受压力作用时: pI<5MPa时,d=0.5~0.55D 5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D (3)缸筒长度L。缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C 式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导

模板受力分析

模板台车受力分析 1、台车构成 隧道全断面衬砌台车主要由门型框架(纵梁、横梁、底梁、竖撑、顶推螺杆斜撑)、面板(顶模板、边模板、加强肋)、行走系统(滑动钢轮、电动机)、液压系统、连接件及紧固装置构成。各构(杆)件采用M20螺栓连接,螺栓孔均采用机械成孔,孔径较螺栓杆体大2mm。。。。。。。 台车构造具体见图一、图二。 图一:全断面衬砌台车构造图

图二:9m长衬砌台车侧视图整体式衬砌台车总体构造如下所示: 顶模总成:2组; 顶部架体:1组; 升降油缸:4件; 平移装置:2组; 门架体:1组; 边模总成:2组; 边模丝杠:26件; 边模通梁:8件; 边模油缸:4件; 底部丝杠体:14件。

台车标准长度为9m时,设置12个工作窗口。 二、台车结构受力检算 模板支架如图1所示。 计算参照《建筑结构荷载规范》(GB50009-2001)、《混凝土结构工程施工质量验收规范》(GB50204-2002)、《铁路混凝土与砌体工程施工规范》(TB10210-2001)、《钢结构设计规范》(GB50017-2003)、《砼泵送施工技术规程》(JG/T3064-1999)。 1、荷载计算 (1)、荷载计算 1)、上部垂直荷载 永久荷载标准值: 上部混凝土自重标准值:1.9×0.6×11.0×24=200.64KN 钢筋自重标准值:9.8KN 模板自重标准值:1.9×11.0×0.01×78.5=16.4KN 弧板自重标准值:(11.0×0.3×0.01×2+11.0×0.3×0.01)×78.5=7.77KN 台梁立柱自重:0.0068×(1.15+1.45)×2×78.5=2.78KN 上部纵梁自重:(0.0115×8.2+0.015×1.9×2)×78.5=11.88KN 可变荷载标准值: 施工人员及设备荷载标准值:2.5 振捣混凝土时产生的荷载标准值:2.0

探讨自卸车油缸回落的原因

探讨自卸车油缸回落的原因 摘要:自卸车属于专用汽车的一种,不仅能够自动卸货还可以进行车体复位。简单来说,自卸车内部具有举升机构,驱动该结构的正是自卸车自身所具有的动力,而举升结构的驱动又能够使自卸车实现倾卸和复位的功能。本文对自卸车油缸回落的问题进行了探讨。 关键词:自卸车;油缸回落;原因 自卸车在我国专用车领域具有良好的应用市场,它不仅货物装载量大,而且举升的力量也非常大,完全适合市场的需求。尤其是自卸车中的前举升自卸车,被广泛应用到建筑工程的施工中,特别是砂石的运输、建筑垃圾的运输、便于倾卸的各种物料的运输,都需要用到前举升自卸车。不过,自卸车在运用过程中也时常会有一些问题出现,比如当运输粘土和湿性灰渣等不易倾卸的材料时,自卸车的举升过程很容易发生油缸回落的状况。 1.自卸车油缸回落的现象 根据大量的用户反馈资料以及试验分析材料可以知道,自卸车在使用时很有可能会发生油缸回落的状况。而自卸车发生油缸回落状况主要有以下几种表现: (1)首先,自卸车油缸回落状况的发生并不是经常性或每次都存在的,只有在车辆流动性较差、装载重型货物的时候才会偶尔发生几次。如果是在不载货物的情况下进行自卸车举升的话,一般就不会出现油缸回落现象。 (2)另外,当车体装载的货物为不易进行倾卸的材料时,也会发生油缸回落状况。至于不易卸下的货物主要包括粘土、湿润的沙子、矿粉以及淤泥等。 (3)自卸车的油缸回落现象在发生时,其油缸举升情况一般是刚刚升至第三或第四节,且厢体在举升时的角度在25°~35°的范围内。这种时候,车厢内大部分所载货物也都会分布在车厢的靠前部分。 2.自卸车油缸回落引发的问题 自卸车内部有液压缸,液压缸具有活塞,而活塞在自卸车的升举中会经过车内的卸油槽。这一点表明,自卸车液压缸的活塞必须满足一定的要求,要具备良好的密封性能,并且在经过车内卸油槽的时候不会划伤密封件。但就目前的情况来看,一般的密封件在路过卸油槽时非常容易划坏,尤其是在高温的情况下,常常会导致车内液压缸发生泄漏,从而对液压缸造成损坏。所以现在被广泛使用的自卸车内,其液压缸的结构采用的是金属活塞环式密封圈,该类型的密封圈可以有效控制密封件被划坏的状况。虽然如此,但是在使用过程中仍然会存在一些问题。

高压液压缸受力变形研究

龙源期刊网 https://www.360docs.net/doc/9e13105855.html, 高压液压缸受力变形研究 作者:陈勇 来源:《中国新技术新产品》2011年第13期 摘要:本文介绍了某种高压液压缸的受力变形问题,其中包括高压液压缸的结构以及各零件的材料,液压缸工况及配合性质,液压缸工作过程中的受力状态。重点分析了液压缸主要部件的受力与变形位移以及变形位移对液压缸配合性质的影响。综合以上分析结果,归纳出高压液压缸的设计研究过程中需要注意的问题。 关键词:高压;液压缸;变形;设计 中图分类号:TG315.4 文献标识码:A 高压液压缸是某种核电辅具中的关键部件,其运行速度低、活塞杆承受轴向压力的作用、保压时间长、使用频繁。目前,国内核电现场所用的国产高压液压缸存在的问题是内泄大、不能长时间保压及使用寿命低等。由于核电现场要求的特殊性以及精度控制要求严格,目前国内使用的高压液压缸主要依靠进口,费用极高并且受到各方面的限制。因此,开发出结构合理,使用寿命长的高压液压缸是完善这种核电辅具的重要课题,并且可以为实现该种辅具的国产化奠定基础。 1 高压液压缸简介 1.1 液压缸主体结构 该种核电辅具所用液压缸为柱塞式液压缸,它是一种单作用式液压缸,靠液压力实现一个方向的运动。 其结构主要由三部分组成: (1)活塞。材料为30CrNiMo8V,力学性能如下:抗拉强度Rm840-940N/mm2;屈服强度Re≥640 N/mm2;断后伸长率A5≥12%;冲击功KV≥45J;硬度248-278 HB30 (2)缸体。材料为42CrMo,力学性能如下:抗拉强度Rm560-760N/mm2;屈服强度 Re≥360 N/mm2;断后伸长率A5≥12%;冲击功KV≥45J;硬度166-225 HB30 (3)缸盖。材质为42CrMo,材料力学性能如下:抗拉强度Rm840-940N/mm2;屈服强 度Re≥640N/mm2;断后伸长率A5≥12%;冲击功KV≥45J;硬度248-278 HB30 1.2 液压缸的工况及结构分析

油缸受力分析

油缸受力分析 1.容许压缩负载(最伸长时) 式中:Wa:许容压缩负载 Pk:压曲负载 S:安全率,通常考虑为 1.5~2.5 以上。 2. 压曲负载 根据支撑部的形式,有仅仅活塞杆承受负载的场合(单柱)和缸体承受负载的场合(台阶柱)。压曲的计算分别如下: 本场合只有适合台阶柱的场合: 一端固定,另一端回转的场合: 一端固定,另一端自由的场合: 两端回转的场合: 式中 l:柱子的长度 I:柱子端面 2 次力矩 A:柱子的断面积 N:端末系数 E:弹性模量 δY:柱子的屈服点(Yield point of column) ??kgf/mm2 负载条件 Loading condition ●一段固定另一端回转One terminal fixing and the other returning ●一段固定另一端自 One terminal fixing and the other free ●两端自由 Both ends are free

支撑部形式 Forms of supporting parts ●头部耳环尾部法兰型 Head clevis and rear flanged ●头部活塞杆尾部法兰型 Head rod and rear flanged ●头部耳环尾部双耳环型 Head and rear clevis ●头部耳环中间轴销型 Head clevis and intermediate trunnion

K值选择图表 Choosing of value of K 3.计算结果: 条件:油缸压力14mpa。 1 .对于头部耳环尾部双耳环型内径80的油缸。最大受力7T。 行程420mm,PK=2250X0.2KN=12T,W A=8T符合要求。 2.对于头部活塞杆尾部法兰型内径100的油缸。(最大受力10T) 行程420mm,PK=5000X0.2KN=100T,W A=60T符合要求。

自卸汽车液压缸与液压系统设计

本科毕业设计说明书 自卸汽车液压缸及液压系统设计 DUMP TRUCKS HYDRAULIC CYLINDER AND HYDRAULIC SYSTEM DESIGN 学院(部):机械工程学院 专业班级:机设07-7班 学生姓名:邬亚兰 指导教师:许贤良教授 2011 年06 月01 日

安徽理工大学 毕业设计(论文)任务书 专业、班级机设07-7姓名邬亚兰日期2011.06.01 1.设计题目自卸汽车液压缸及液压系统设计(一)2. 设计原始资料及要求:1)推举力=2T 2)行程S=800mm 3)速度u=9m/min 3. 说明书:一份 图纸:A1图纸一张 A2图纸6张 A4图纸2张 4.设计(论文)任务下达日期:2011年03月22日5.设计(论文)完成日期:2011年06月01日 6.设计(论文)各章节答疑人: 部分部分 部分部分 部分部分 7.指导教师许贤良教授 8.教研室负责人张立祥教授 9.院系负责人

自卸汽车液压缸及液压系统设计 摘要 自卸汽车是利用发动机动力驱动液压举升机构,将货箱倾斜一定角度从而达到自动卸货的目的,并依靠货箱自重使其复位。因此,液压举升机构是自卸汽车的重要工作系统之一,其结构形式、性能好坏直接影响自卸汽车的使用性能和安全性能。本论文首先对自卸式汽车进行了说明,同时根据设计需要对液压系统进行了简要的阐述,并设计液压举升机构及液压系统。液压缸是一种配置灵活、设计制造比较容易而应用广泛的液压执行元件。尽管液压缸有系列化标准的产品和专用系列产品,但由于用户对液压机械的功能要求千差万别,因而非标准液压元件的设计是不可避免的。本次毕业设计的主要内容集中于自卸汽车液压缸及液压系统的设计,介绍了液压设计的前期准备工作:设计的依据、设计的一般原则和设计步骤。 关键词:自卸汽车,液压缸设计,液压系统设计

艾柯夫采煤机摇臂升降油缸的结构和受力分析

艾柯夫采煤机摇臂升降油缸的结构和受力分析 艾柯夫SL500采煤机摇臂升降油缸,工作环境恶劣,受力复杂,是采煤机割煤重要的部件之一。原进口油缸活塞杆由于设计结构存在问题,实际使用中曾多次发生断裂,故障率较高。给公司生产带来很大的损失。文章针对油缸活塞杆改进前后的结构状况,分析了活塞杆与活塞头连接处的结构,密封以及受力情况,提出了解决方法。 标签:SL500采煤机;摇臂升降油缸;活塞和活塞杆;应力集中;疲劳断裂 1 前言 艾柯夫SL500采煤机是一个集机械、电气和液压系统为一体的大型复杂设备。工作环境非常恶劣,载荷变化很大,一些部位在工作中很容易发生过载,并且出现异常情况。若井下发生轻度的损伤情况,工作人员不易发现,设备带病运行。一旦采煤机不能运转,影响到生产情况时,将造成了很大的经济损失,并且给我们维修单位造成了一定的压力,因此,对SL500采煤机的故障进行分析是十分必要的。采煤机发生故障率较高的部分是液压系统和机械部分,根据实际工作情况和我多年的工作经验证实,采煤机的故障有70%以上是由液压系统和机械部分引起的。液压系统虽然有自动调速等装置进行过载保护,但仍避免不了发生故障,且发生故障的原因和故障部位及相互关系也是非常复杂的,而液压系统中摇臂升降油缸的故障也是非常明显的,特别是活塞杆端部环行密封槽由于应力集中而造成的疲劳断裂。为此,我们对活塞杆端部受力状况进行了分析,对原有结构进行了改进,取得了较好的效果。 本文简要地对活塞杆改造前后的结构设计、加工工艺、受力情况进行分析和比较,只是我对艾柯夫SL500采煤机的大修过程的一些粗浅的认识。 2 油缸的结构分析 艾柯夫SL500采煤机摇臂升降油缸是一个单缸双作用活塞式液压缸,安装在采煤机底托架与摇臂座之间,两端采用绞接销结构形式连接。工作环境恶劣,受力状况复杂。 升降油缸主要由缸筒、缸盖和活塞组件、阀组等组成。活塞组件由活塞、密封件、活塞杆和连接件等组成。活塞和活塞杆是活塞组件中的重要零部件,直接受到来自采煤机割煤时的外力的作用,很容易造成疲劳损坏(裂纹、断裂)。 2.1 活塞与活塞杆的连接形式 如图1所示,活塞与活塞杆的连接形式为螺纹连接,其结构简单,装拆方便,并有防松装置。艾柯夫采煤机升降油缸在活塞和活塞杆连接上采用的防松方法是在活塞杆和活塞的螺纹连接处加工有两个螺纹孔,用螺栓防松固定。

液压缸计算公式.doc

1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235液压缸内径: p F D π4= =? ?14.34=F:负载力(N)A:无杆腔面积(2mm )P:供油压力(MPa)D:缸筒内径 (mm)1D :缸筒外径 (mm) 2、缸筒壁厚计算π×/≤≥ηδσψμ1)当δ/D≤0.08时 p D p σδ2max 0> (mm)2)当δ/D=0.08~0.3时 max max 03-3.2p D p p σδ≥ (mm) 3)当δ/D≥0.3时 ??? ? ?? -+≥max max 03.14.02p p D p p σσδ(mm)n b p σσ= δ:缸筒壁厚(mm) 0δ:缸筒材料强度要求的最小值(mm)

max p :缸筒内最高工作压力(MPa) p σ:缸筒材料的许用应力(MPa) b σ:缸筒材料的抗拉强度(MPa)s σ:缸筒材料屈服点(MPa) n:安全系数3缸筒壁厚验算 2 1221s ) (35 .0D D D PN -≤σ(MPa) D D P s rL 1lg 3.2σ≤PN:额定压力 rL P :缸筒发生完全塑性变形的压力(MPa)r P :缸筒耐压试验压力(MPa) E:缸筒材料弹性模量(MPa) ν:缸筒材料泊松比 =0.3 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即: ()rL P PN 42.0~35.0≤(MPa) 4缸筒径向变形量 ??? ? ??+-+= ?ν221221D D D D E DP D r (mm)变形量△D 不应超过密封圈允许范围5缸筒爆破压力 D D P E b 1 lg 3.2σ=(MPa)

液压缸的计算

3液压缸的设计及计算 3.1液压缸的负载力分析和计算 本课题任务要求设备的主要系统性能参数为: 铝合金板材的横截面积为2400mm 铝合金板材的强度极限为212/kg mm 型材长度1000mm ≤ (1)工作载荷R F 常见的工作载荷为活塞杆上所受的挤压力,弹力,拉力等,在这里我们可得 铝合金板材所受的最大外力为: 4604101201048F A KN σ-=?=???= (3-1) 式中 0σ----强度极限,Pa ; A -----截面面积,2m 。 由上式得液压缸所受工作载荷约为48KN (2)单活塞杆双作用缸液压缸作伸出运动时的一般模型如图3-1所示,其 阻力F 或所需提供的液压力可表示为 2L a f p F F F F F F μ=++++ (3-2) 式中 L F -----作用在活塞上的工作阻力,N ; a F -----液压缸起动(或制动)时的惯性力,N ; f F -----运动部件处的摩擦阻力,N ; G F -----运动部件的自重(含活塞和活塞杆自重),N ; F μ-----液压缸活塞及活塞杆处的密封摩擦阻力,N ;通常以液压缸 的机械效率来反映,一般取机械效率 0.95m η=; 2p F -----回油管背压阻力,N 。 在上述诸阻力中,在不同条件下是不同的,因此液压缸的工作阻力往往是变 化的。因为此处液压缸只是作拉伸板材变形作用,故其运动速度较小,惯性力和 摩擦阻力都较小,得 50F KN ≤ (3-3)

3.2液压缸的液压力计算和工作压力选择 根据表4-3 根据负载选择压力,初选系统压力为8MPa 根据表4-5 液压缸速比与工作压力的关系,得出速比?=1.33 d =(3-4) 式中 d -----活塞杆直径,mm ; D -----液压缸内径,mm 。 根据表4-4 液压缸输出液压力,选择液压缸的内径140D mm =,活塞杆直 径70d mm = 2 114F A p D p F π== ≥ (3-5) 2222()'4 F A p D d p F π ==-≥ (3-6) 式中 1F -----作用在活塞上的液压力(推力),N ; 2F -----作用爱活塞杆侧环形面积上的液压力(拉力),N ; p -----进液腔压力(产生推力时液压缸无杆腔进液;产生拉力时有杆 腔进液),Pa ; 1A -----活塞(无杆腔)面积,2m ; 2A -----有杆腔面积(活塞杆侧环形面积),222()4A D d π= -,2m ; D -----液压缸内径(活塞外径),m ; d -----活塞杆直径,m ; F -----被推动的负载阻力(与1F 反向),N ; 'F -----被拉动的负载阻(与2F 反向),N 。 因为本课题主要是拉力作用,所以用公式(3-5)得:

相关文档
最新文档