2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷

合集下载

2019-2020学年广东省广州市越秀区八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省广州市越秀区八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省广州市越秀区八年级第二学期期末数学试卷一、选择题1.的计算结果是()A.2B.9C.6D.32.在下列计算中,正确的是()A.B.C.D.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.1804.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.125.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,137.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.189.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14二.填空题11.二次根式有意义,则x的取值范围是.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.13.将直线y=2x向上平移1个单位长度后得到的直线是.14.数据﹣2、﹣1、0、1、2的方差是.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是(请写出所有正确结论的序号).三、解答题17.计算:.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.参考答案一、选择题1.的计算结果是()A.2B.9C.6D.3【分析】求出的结果,即可选出答案.解:=3,故选:D.2.在下列计算中,正确的是()A.B.C.D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:=3﹣=2,故选项A正确;=1,故选项B错误;,故选项C错误;==,故选项D错误;故选:A.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.180【分析】根据众数的概念求解可得.解:这组数据中176出现3次,次数最多,所以众数为176,故选:B.4.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.12【分析】根据菱形的面积等于对角线乘积的一半计算即可.解:∵四边形ABCD是菱形,∴S=×6×8=24.故选:C.5.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分【分析】根据题意和加权平均数的计算方法,可以计算出这个人的最终得分.解:90×20%+80×40%+85×40%=84(分),即这个人的最终得分是84分,故选:B.6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A、()2+()2≠()2,不符合勾股定理的逆定理,故本选项符合题意;B、302+402=502,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;D、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;故选:A.7.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.18【分析】先由ASA证明△AOE≌△COF,得OE=OF,AE=CF,再求得AB+BC=18,由平行四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为36,∴AB+BC=×36=18,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=18+6=24故选:B.9.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限【分析】根据一次函数的性质分别判断后即可确定正确的选项.解:A、∵k=﹣2<0,∴y的值随着x增大而减小,正确,不符合题意;B、∵k=﹣2<0,∴y的值随着x增大而减小,∴当x>0时,y<1,错误,符合题意;C、∵当x=0时,y=1,∴函数图象与y轴的交点坐标为(0,1),正确,不符合题意;D、∵k=﹣2<0,b=1>0,∴函数图象经过第一、二、四象限,正确,不符合题意,故选:B.10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为6时,面积发生了变化,说明BC的长为6,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由6到14,说明CD的长为8.解:结合图形可以知道,P点在BC上,△ABP的面积为y增大,当x在6﹣﹣14之间得出,△ABP的面积不变,得出BC=6,CD=14﹣6=8,故选:B.二.填空题11.二次根式有意义,则x的取值范围是x≥5.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是25.【分析】求出大正方形的边长即可.解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.13.将直线y=2x向上平移1个单位长度后得到的直线是y=2x+1.【分析】先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.解:直线y=2x经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),∵平移前后直线解析式的k值不变,∴设平移后的直线为y=2x+b,则2×0+b=1,解得b=1,∴所得到的直线是y=2x+1.故答案为:y=2x+1.14.数据﹣2、﹣1、0、1、2的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.解:由题意可得,这组数据的平均数是:,∴这组数据的方差是:=2,故答案为:2.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是x>1.【分析】观察函数图象得到当x>1时,直线y=mx+n在直线y=kx+b的上方,于是得到不等式mx+n>kx+b的解集.解:根据图象可知,不等式mx+n>kx+b的解集为x>1.故答案为:x>1.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是①②④(请写出所有正确结论的序号).【分析】由正方形的性质可得BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,可判断①;由勾股定理可求BG的长,可判断②;由正方形的性质可得∠GEF=45°,可判断③;由“SAS”可证△BCG≌△DCE,可得BH⊥DE,可判断④,即可求解.解:∵四边形ABCD是正方形,BC=,∴BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,故①正确;∵BC=,CG=1,∴BG===2,故②正确,如图,连接GE,延长BG交DE于H,∵四边形CEFG是正方形,∴CG=CE,∠GCE=∠BCG=90°,∠GEF=45°,∵∠FED<∠GEF,∴∠FED<45°,故③错误,∵CG=CE,∠GCE=∠BCG=90°,BC=CD,∴△BCG≌△DCE(SAS),∴∠GBC=∠CDE,∵∠CDE+∠DEC=90°,∴∠GBC+∠DEC=90°,∴∠BHE=90°,∴BH⊥DE,故④正确,故答案为:①②④.三、解答题17.计算:.【分析】根据二次根式的乘除法和减法可以解答本题解:=﹣+2=2+.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.【分析】(1)根据勾股定理的逆定理求出即可;(2)设BH=x,则HC=25﹣x,由勾股定理得出方程152﹣x2=202﹣(25﹣x)2,求出x,再根据勾股定理求出AH即可.【解答】(1)证明:∵AB2+AC2=152+202=625,BC2=252=625,∴AB2+AC2=BC2,∴∠BAC=90°;(2)解:设BH=x,则HC=25﹣x,∵AH⊥BC,∴∠AHB=∠AHC=90°,在Rt△AHB和Rt△AHC中,由勾股定理得:AH2=AB2﹣BH2=AC2﹣CH2,即152﹣x2=202﹣(25﹣x)2,解得:x=10,即BH=10,由勾股定理得:AH===5.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.【分析】根据正方形的判定和性质定理即可得到结论.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是15.5;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.【分析】(1)根据平均数的概念,将所有数的和除以10即可;(2)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数;(3)用样本平均数估算总体的平均数.解:(1)根据题意得:×(0+7+9+12+15+16×3+22+27)=14(次),答:这10位居民一周内使用共享单车的平均次数是14次;(2)按照从小到大的顺序新排列后,第5、第6个数分别是15和16,所以中位数是(15+16)÷2=15.5,故答案为:15.5;(3)不能;∵15次小于中位数15.5次,∴某位居民一周内使用共享单车15次,不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.【分析】(1)先直线AB的解析式求出A点坐标,再根据点A与点C的坐标即可求得直线AD的解析式;(2)根据直线AB的解析式求得点B的坐标,根据直线AD的解析式求得点D的坐标,再根据点A的坐标即可求得△ABD的面积.解:(1)∵直线y=﹣2x+10与y轴交于点A,∴A(0,10).设直线AD的解析式为y=kx+b,∵直线AD过A(0,10),C(﹣2,8),∴,解得,∴直线AD的解析式为y=x+10;(2)∵直线y=﹣2x+10与x轴交于点B,∴B(5,0),∵直线AD与x轴交于点D,∴D(﹣10,0),∴BD=15,∵A(0,10),∴△ABD的面积=BD•OA=×15×10=75.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.【分析】(1)根据直角三角形的性质即可得到即可;(2)根据直角三角形的性质得到AD=DH=AB,AE=HE=AC,求得AD+AE=×30=15,得到DE=21﹣15=6,根据三角形中位线定理即可得到结论.解:(1)∵AH⊥BC,∴∠AHB=90°,∵点D是AB的中点,∴AD=DH=AB;(2)∵AH⊥BC,∴∠AHB=∠AHC=90°,∵点D,E分别是AB,AC的中点,∴AD=DH=AB,AE=HE=AC,∵四边形ADHE的周长是30,∴AD+AE=×30=15,∵△ADE的周长是21,∴DE=21﹣15=6,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=12.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?【分析】(1)根据甲、乙旅行社的不同的优惠方案,可求出函数关系式,(2)根据(1)的结论列方程或不等式解答即可.解:(1)由题意,得y1=2000×75%×x=1500x,y2=2000×80%(x﹣1)=1600x﹣1600;(2)①当y1=y2时,即:1500x=1600x﹣1600,解得,x=160,②当y1>y2时,即:1500x>1600x﹣1600,解得,x<160,③当y1<y2时,即:1500x<1600x﹣1600,解得,x>160,答:当x<160时,乙旅行社费用较少,当x=160,时,两个旅行社费用相同,当x>160时,甲旅行社费用较少.24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.【分析】(1)解析式联立,解方程组即可求得;(2)根据题意求得OP的长,从而求得P的坐标;(3)根据题意得到2m﹣(﹣2m+8)=1,求得m的值,即可求得M的坐标.解:(1)由,解得,∴点C的坐标为(2,4);(2)∵直线y=﹣2x+8与坐标轴跟别交于A,B两点,∴A(0,8),B(4,0),∴OA=8,∵点P在y轴上,且,∴OP=OA=4,∴P的坐标为(0,4)或(0,﹣4);(3)∵点M在直线y=2x上,点M横坐标为m,且m>2,∴M(m,2m),N(m,﹣2m+8),∵MN=1,∴2m﹣(﹣2m+8)=1,∴m=,∴点M的坐标为(,).25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.【分析】(1)由折叠的性质得出△ADE≌△ODE,△CFB≌△OFB,则∠ADE=∠ODE =ADB,∠CBF=∠OBF=∠CBD,则可得出结论;(2)证得四边形DEBF是平行四边形,由全等三角形的性质得出∠A=∠DOE=90°,则可得出结论;(3)过点P作PH⊥AD于点H,得出∠ADE=∠ODE=∠ODF=30°,得出2AP+PD =2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,求出OM的长,则可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.∴△ADE≌△ODE,∴△CFB≌△OFB,∴∠ADE=∠ODE=∠ADB,∠CBF=∠OBF=∠CBD,∴∠EDO=∠FBO;(2)证明:∵∠EDO=∠FBO,∴DE∥BF,∵四边形ABCD是矩形,∴AB∥CD,AD=BC,∠A=90°,∵DE∥BF,AB∥CD,∴四边形DEBF是平行四边形,又∵△ADE△≌△ODE,∴∠A=∠DOE=90°,∴EF⊥BD,∴四边形DEBF是菱形;(3)解:过点P作PH⊥AD于点H,∵四边形DEBF是菱形,△ADE≌△ODE,∴∠ADE=∠ODE=∠ODF=30°,∴在Rt△DPH中,2PH=PD,∴2AP+PD=2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,∵△ADE≌△ODE,AD=2,∴AD=DO=2,在Rt△OMD中,∵∠ODA=2∠ADE=60°,∴∠DOM=30°,∴DM=DO=1,∵DM2+OM2=DO2,∴12+OM2=22,∴OM=,∴(2PA+PD)的最小值为2OM=2.。

2020-2021学年广东省广州市越秀区八年级(下)期末数学试卷及答案解析

2020-2021学年广东省广州市越秀区八年级(下)期末数学试卷及答案解析

2020-2021学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的.)1.(3分)在下列各式中,最简二次根式是()A.B.C.D.2.(3分)下列计算正确的是()A.B.C.D.3.(3分)以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.C.9,16,25D.4.(3分)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE.则∠DAE的度数是()A.15°B.20°C.12.5°D.10°5.(3分)如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175B.600C.25D.6256.(3分)若直线l的解析式为y=﹣x+1,则下列说法正确的是()A.直线l与y轴交于点(0,﹣1)B.直线l不经过第四象限C.直线l与x轴交于点(1,0)D.y随x的增大而增大7.(3分)若一次函数y=kx+b(k<0)的图象上有两点(﹣3,y1),(5,y2),则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定8.(3分)某校为选拔一名运动员参加市运动会100米短跑比赛,对甲、乙两名运动员都进2=0.8.乙的5行了5次测试.他们成绩的平均数均为12秒,其中甲测试成绩的方差S甲次测试成绩分别为:13,12.5,11,11.5,12(单位:秒).则最适合参加本次比赛的运动员是()A.甲B.乙C.甲、乙都一样D.无法选择9.(3分)当1≤x≤10时,一次函数y=3x+b的最小值为18,则b=()A.10B.15C.20D.2510.(3分)如图,在菱形ABCD中,AC=12,BD=16,点M,N分别位于BC,CD上,且CM=DN,点P在对角线BD上运动.则MP+NP的最小值是()A.6B.8C.10D.12二、填空题(本题共6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)某公司招聘职员,竞聘者需参加计算机、语言表达和写作能力三项测试.竞聘成绩按照如下标准计算:计算机成绩占50%,语言表达成绩占30%,写作能力成绩占20%.李丽的三项成绩依次是70分,90分,80分,则李丽的竞聘成绩是分.13.(3分)若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是cm.14.(3分)若直线y=(m+5)x+(m﹣1)经过第一、三、四象限,则常数m的取值范围是.15.(3分)如图,直线y=kx+b(k≠0)和直线y=mx+n(m≠0),分别与x轴交于(﹣4,0),(2,0)两点,则关于x的不等式组的解集是.16.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,点D是AB中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD=10cm;②∠CDA=60°;③线段CM长度的最小值是5cm;④点P 运动路径的长度是10cm.其中正确的结论是(写出所有正确结论的序号).三、解答题(本题共9小题,共72分。

2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷

2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷

2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2020春•桦南县期末)二次根式有意义的条件是( )A.x>2B.x≥2C.x<2D.x≤22.(2分)(2020春•番禺区期末)下列各组数中不能作为直角三角形的三边长的是( )A.3,4,5B.13,14,15C.5,12,13D.15,8,173.(2分)(2020春•番禺区期末)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )A.68B.43C.42D.404.(2分)(2020春•凤凰县期末)矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角5.(2分)(2020春•番禺区期末)一次函数y=﹣3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )A.16B.8C.D.47.(2分)(2020春•番禺区期末)下列各式计算正确的是( )A.B.C.D.3﹣2=18.(2分)(2020•海淀区校级一模)把直线y=﹣2x向上平移后得到直线AB,若直线AB 经过点(m,n),且2m+n=8,则直线AB的表达式为( )A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣89.(2分)(2010•柳州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为( )A.10°B.15°C.20°D.12.5°10.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD;其中正确的结论个数是( )A.1个B.2个C.3个D.4个二、填空题11.(2分)(柳州)计算: .12.(2分)(2020春•番禺区期末)在平行四边形ABCD中,若∠A=38°,则∠C= .13.(2分)(2020春•昆明期末)直线y=2x﹣3与y轴的交点坐标 .14.(2分)(2020春•番禺区期末)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距 m.15.(2分)(武汉模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为 km.16.(2分)(2020春•番禺区期末)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积为 .三、解答题17.(8分)(2020春•番禺区期末)计算:(1)(2)(3)18.(8分)(2020春•番禺区期末)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.19.(8分)(2020春•番禺区期末)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?20.(8分)(2020春•番禺区期末)已知直线y=kx+b的图象经过点(2,4)和点(﹣2,﹣2).(1)求b的值;(2)求关于x的方程kx+b=0的解;(3)若(x1,y1)、(x2,y2)为直线上两点,且x1<x2,试比较y1、y2的大小.21.(8分)(2020春•番禺区期末)如图,在▱ABCD中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF;(2)若AB=9,AC=16,AE=4,BF=3,求四边形ABCD的面积.22.(6分)(2020春•番禺区期末)已知点A(8,0)及第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式,并写出x的取值范围;(2)画出函数S的图象,并求其与正比例函数S=2x的图象的交点坐标;(3)当S=12时,求P点坐标.23.(6分)(2020春•番禺区期末)如图,在平行四边形ABCD中,E,F分别是AB,CD 的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF;(2)判断四边形MENF是何特殊的四边形?并对结论给予证明.24.(8分)(2020春•番禺区期末)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y与x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?25.(8分)(2020春•番禺区期末)如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2020春•桦南县期末)二次根式有意义的条件是( )A.x>2B.x≥2C.x<2D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣2≥0,解得x≥2.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(2分)(2020春•番禺区期末)下列各组数中不能作为直角三角形的三边长的是( )A.3,4,5B.13,14,15C.5,12,13D.15,8,17【考点】勾股定理的逆定理.【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.解:A、∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意;B、∵132+142≠152,∴以13,14,15为边不能组成直角三角形,故本选项符合题意;C、∵52+122=132,∴以5,12,13为边能组成直角三角形,故本选项不符合题意;D、∵82+152=172,∴以8,15,17为边能组成直角三角形,故本选项不符合题意;故选:B.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.3.(2分)(2020春•番禺区期末)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )A.68B.43C.42D.40【考点】中位数.【分析】根据中位数的概念求解.解:这组数据按照从小到大的顺序排列为:35,36,38,40,42,42,68,则中位数为40.故选:D.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2分)(2020春•凤凰县期末)矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.【点评】此题考查了矩形、菱形、正方形的对角线的性质,注意掌握正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,正方形、矩形、菱形都具有的特征是对角线互相平分.5.(2分)(2020春•番禺区期末)一次函数y=﹣3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【分析】根据题目中的函数解析式和一次函数的性质,可以判断该函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.解:∵一次函数y=﹣3x+1,k=﹣3,b=1,∴该函数图象经过第一、二、四象限,不经过第三象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )A.16B.8C.D.4【考点】三角形中位线定理;菱形的性质.【分析】根据三角形的中位线定理求出BC,再根据菱形的四条边解答即可.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∴菱形ABCD的周长=4×4=16.故选:A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记各性质是解题的关键.7.(2分)(2020春•番禺区期末)下列各式计算正确的是( )A.B.C.D.3﹣2=1【考点】分母有理化;二次根式的混合运算.【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的性质对C进行判断;根据二次根式的乘法法则对D进行判断.解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式=2,所以C选项错误;D、原式3﹣2=1,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.(2分)(2020•海淀区校级一模)把直线y=﹣2x向上平移后得到直线AB,若直线AB 经过点(m,n),且2m+n=8,则直线AB的表达式为( )A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【考点】一次函数图象与几何变换.【分析】由题意知,直线AB的k是﹣2,又已知直线AB上的一点(m,n),所以用直线的解析式方程y﹣y0=k(x﹣x0)求得解析式即可.解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其K不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,K不变这一性质,再根据题意中的已知条件,来确定用哪种方程来解答.9.(2分)(2010•柳州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为( )A.10°B.15°C.20°D.12.5°【考点】等边三角形的性质;正方形的性质.【分析】根据等边三角形的性质及正方形的性质可得到AB=AE,从而可求得∠BAE的度数,则∠AEB的度数就不难求了.解:根据等边三角形和正方形的性质可知AB=AE,∴∠BAE=90°+60°=150°,∴∠AEB=(180°﹣150°)÷2=15°.故选:B.【点评】主要考查了正方形和等边三角形的特殊性质.10.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD;其中正确的结论个数是( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定;等边三角形的判定与性质;菱形的性质.【分析】证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE,可得∠BAF=∠ACE,EC=AF,由外角性质可得∠FHC=∠B,①②正确;由∠OAD=60°=∠EAC≠∠HAC,③△ADO≌△ACH不正确;求出△ABC的面积AB2,得菱形ABCD的面积,④不正确;即可得出结论.解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,∴AB=CA,∠EAC=∠B=60°,同理:△ADC是等边三角形∴∠OAD=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);∴∠BAF=∠ACE,EC=AF,∵∠FHC=∠ACE+∠FAC=∠BAF+∠FAC=∠BAC=60°,∴∠FHC=∠B,故①正确,②正确;∵∠OAD=60°=∠EAC≠∠HAC,故③△ADO≌△ACH不正确;∵△ABC是等边三角形,AB=AC=1,∴△ABC的面积AB2,∴菱形ABCD的面积=2△ABC的面积,故④不正确;故选:B.【点评】本题考查了全等三角形的判定与性质,菱形的性质,等边三角形的判定与性质等知识.熟练掌握菱形和等边三角形的判定与性质,证明三角形全等是解题的关键.二、填空题11.(2分)(柳州)计算: .【考点】二次根式的乘除法.【分析】原式利用二次根式乘法法则计算即可得到结果.解:原式,故【点评】此题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解本题的关键.12.(2分)(2020春•番禺区期末)在平行四边形ABCD中,若∠A=38°,则∠C= 38° .【考点】平行四边形的性质.【分析】由平行四边形四边形的性质可得∠A=∠C=38°.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=38°,∴∠C=38°,故38°.【点评】本题考查了平行四边形的性质,掌握平行四边形的性质是本题的关键.13.(2分)(2020春•昆明期末)直线y=2x﹣3与y轴的交点坐标 (0,﹣3) .【考点】一次函数图象上点的坐标特征.【分析】求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.解:由题意得:当x=0时,y=2×0﹣3=﹣3,即直线与y轴交点坐标为(0,﹣3),故答案为(0,﹣3).【点评】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.14.(2分)(2020春•番禺区期末)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距 300 m.【考点】勾股定理的应用.【分析】根据方位角可知两人所走的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得两人之间的距离.解:设10min后,OA=OB=30×10=300(m),甲乙两人相距AB300(m).答:10min后,甲乙两人相距300m,故300.【点评】本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.15.(2分)(武汉模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为 60 km.【考点】一次函数的应用.【分析】由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9﹣6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=60×9﹣300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300﹣240=60km.解:如图,由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;乙车的平均速度为:300÷(9﹣6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),∴点A(7.5,150)由图可知点B(5,0)设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=60t﹣300,当t=9时,y=60×9﹣300=240,∴9点时,甲距离开A的距离为240km,∴则当乙车到达B城时,甲车离B城的距离为:300﹣240=60km.故60.【点评】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.16.(2分)(2020春•番禺区期末)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积为 .【考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,所以AF=AB﹣BF.解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=6﹣x,在Rt△AFD′中,(6﹣x)2=x2+42,解之得:x,∴AF=AB﹣FB=6,∴S△AFC•AF•BC,故.【点评】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.三、解答题17.(8分)(2020春•番禺区期末)计算:(1)(2)(3)【考点】平方差公式;二次根式的混合运算.【分析】(1)直接合并同类二次根式即可;(2)利用平方差公式计算;(3)先把二次根式化为最简二次根式,然后合并即可.解:(1)原式=3;(2)原式=(2)2﹣()2=12﹣6=6;(3)原式=23=5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(2020春•番禺区期末)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.【考点】算术平均数;方差.【分析】(1)利用加权平均数的计算方法进行计算即可;(2)计算甲、乙两人的方差、中位数,通过比较得出答案.解:(1)甲8.5(环)8.5(环),乙答:甲、乙两人射击成绩的平均数都是8.5环;(2)[(7﹣8.5)2×2+(8﹣8.5)2×2+(9﹣8.5)2×5+(10﹣8.5)2]=0.85,═[(7﹣8.5)2×3+(8﹣8.5)2×2+(9﹣8.5)2×2+(10﹣8.5)2×3]=1.45,甲的中位数是9环,乙的中位数是8.5环,由于两人的平均数相同,甲的方差小于乙的方差,甲的中位数大于乙的中位数,所以应派甲去参加比赛.【点评】本题考查平均数、中位数、方差、的意义和计算方法,理解平均数、中位数、方差的意义是正确计算的前提,掌握计算方法是关键.19.(8分)(2020春•番禺区期末)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?【考点】勾股定理的应用.【分析】先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD﹣OB即可得出结论.解:∵Rt△OAB中,AB=2.5m,AO=2.4m,∴OB0.7m;同理,Rt△OCD中,∵CD=2.5m,OC=2.4﹣0.4=2m,∴OD1.5m,∴BD=OD﹣OB=1.5﹣0.7=0.8(m).答:梯子底端B向外移了0.8米.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(8分)(2020春•番禺区期末)已知直线y=kx+b的图象经过点(2,4)和点(﹣2,﹣2).(1)求b的值;(2)求关于x的方程kx+b=0的解;(3)若(x1,y1)、(x2,y2)为直线上两点,且x1<x2,试比较y1、y2的大小.【考点】一次函数与一元一次方程.【分析】(1)利用待定系数法求一次函数解析式,从而得到b的值;(2)利用k、b的值得到次函数解析式为yx+1,然后解方程x+1=0即可;(3)利用一次函数的性质解决问题.解:(1)根据题意得,解得,即b的值为1;(2)一次函数解析式为yx+1,当y=0时,x+1=0,解得x;(3)∵k0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.【点评】本题考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.也考查了一次函数的性质.21.(8分)(2020春•番禺区期末)如图,在▱ABCD中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF;(2)若AB=9,AC=16,AE=4,BF=3,求四边形ABCD的面积.【考点】三角形的面积;全等三角形的判定;平行四边形的性质.【分析】(1)首先由平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠BAE=∠DCF,∠BEC=∠DFA,然后根据AAS定理判定△ABE≌△CDF,即可证明得到AE=CF;(2)通过作辅助线求出△ABC的面积,即可得到四边形ABCD的面积.解:(1)证明:∵在平行四边形ABCD中,AB=CD,AB∥CD,∴∠BAC=∠DCA,又∵BE∥DF,∴∠BEF=∠DFE,∴∠BEA=∠DFC,∴在△ABE和△CDF中,,∴△ABE≌△CDF,∴AE=CF;(2)连接BD交AC于点O,作BH⊥AC交AC于点H,∵在平行四边形ABCD中,AC、BD是对角线,∴AO=CO=8,AF=12,∵AB2+BF2=92144,AF2=144,∴AB2+BF2=AF2,∴∠ABF=90°,∴BH,∴S平行四边形ABCD=2S△ABC.【点评】此题主要考查了平行四边形的性质,全等三角形的判定,以及利用面积法求三角形的高等知识,难度一般.22.(6分)(2020春•番禺区期末)已知点A(8,0)及第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式,并写出x的取值范围;(2)画出函数S的图象,并求其与正比例函数S=2x的图象的交点坐标;(3)当S=12时,求P点坐标.【考点】动点问题的函数图象.【分析】(1)根据△OAP的面积=OA×y÷2列出函数解析式,及点P(x,y)在第一象限内求出自变量的取值范围.(2)根据S=﹣4x+40画出函数图象,并与正比例函数S=2x联立方程组,即可求出交点坐标.(3)将S=12代入(1)求出的解析式中即可.解:(1)依题意有S8×(10﹣x)=﹣4x+40,∵点P(x,y)在第一象限内,∴x>0,y=10﹣x>0,解得:0<x<10,故关于x的函数解析式为:S=﹣4x+40 (0<x<10);(2)∵解析式为S=﹣4x+40(0<x<10);∴函数图象经过点(10,0)(0,40)(但不包括这两点的线段).所画图象如下:令,解得:,所以交点坐标为,(3)将S=12代入S=﹣4x+40,得:12=﹣4x+40,解得:x=7,故点P(7,3).【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.23.(6分)(2020春•番禺区期末)如图,在平行四边形ABCD中,E,F分别是AB,CD 的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF;(2)判断四边形MENF是何特殊的四边形?并对结论给予证明.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】(1)由平行四边形的性质可得AB∥CD,AB=CD;由中点性质可得BE=AEABCD=DF=CF,由一组对边平行且相等的四边形是平行四边形,可证四边形EBFD为平行四边形,可得DE∥BF;(2)由“ASA”可证△AME≌△CNF,可得ME=FN,由一组对边平行且相等的四边形是平行四边形,可证四边形MENF为平行四边形,证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=AEABCD=DF=CF,∵BE∥DF,∴四边形EBFD为平行四边形,∴DE∥BF;(2)四边形MENF是平行四边形,理由如下:∵DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠CDM=∠AEM,∴∠AEM=∠CFN,在△AME和△CNF中,,∴△AME≌△CNF(ASA),∴ME=FN,又∵DE∥BF,∴四边形MENF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,全等三角形的判定,根据条件选择适当的判定方法是解题关键.24.(8分)(2020春•番禺区期末)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y与x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?【考点】一元一次不等式的应用;一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7(x﹣300)+300=0.7x+90,即y=0.7x+90(x>300);(2)如图所示;(3)当0.8x=0.7x+90时,x=900,所以,x<900时,甲商场购物更省钱,x=900时,甲、乙两商场购物更花钱相同,x>900时,乙商场购物更省钱.【点评】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.25.(8分)(2020春•番禺区期末)如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.【考点】四边形综合题.【分析】(1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;(2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP 得到菱形;(3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;(4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.解:(1)AC,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC﹣PC=()a;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=()a,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.【点评】本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.。

广东省广州市越秀区2021-2022学年八年级上学期期末数学试题

广东省广州市越秀区2021-2022学年八年级上学期期末数学试题
A 3cm,4cm,8cmB.8cm,7cm,15cm
C 13cm,12cm,20cmD.5cm,5cm,11cm
【答案】C
3.若一个多边形的内角和与外角和之差是 ,则此多边形是()边形.
A.6B.7C.8D.9
【答案】C
4.如图,AC=BC=10 cm,∠B=15°,若AD⊥BD于点D,则AD的长为()
(3)如图2,若D是AO的中点,DE BO,F在线段AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的关系.
【答案】(1)见解析(2)∠ACO=45°
(3)EF=OE,且EF⊥OE,见解析
(1)求一台零件检测机每小时检测零件多少个?
(2)现有一项零件检测任务,要求不超过8小时检测完成2720个零件.该厂调配了2台检测机和20名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?
【答案】(1)60(2)至少4台
24.如图,点P为 ABC的外角∠BCD的平分线上一点,PA=PB,PE⊥BC于点E.
【答案】B
二、填空题(本题共有6小题)
11.新型冠状病毒直径平均为100纳米,也就是大约0.0000001米,该直径用科学记数法表示为_______米.
【答案】
12.若分式 的值为0,则y=_______
【答案】-5
13.分解因式: _______.
【答案】2ab(c+2a)
14.计算: ______.
A.13B.14C.15D.16
【答案】B
10.如图,在平面直角坐标系中,B(0,1),C(0,-1),D为x轴正半轴上一点,A为第一象限内一动点,且∠BAC=2∠BDO,DM⊥AC于M.下列说法正确的是()

2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷

2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷

2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.(3分)已知一个三角形两边的长分别是2和5,那么第三边的边长可能是下列各数中的()A.1B.2C.3D.52.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.BC=AD C.∠C=∠D D.∠CAB=∠DBA3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a64.(3分)要使分式有意义,则x的取值范围是()A.x≠﹣3B.x≠3C.x≠0D.x≠±35.(3分)下列变形从左到右一定正确的是()A.B.C.D.=6.(3分)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.47.(3分)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS8.(3分)若等腰三角形中的一个外角等于130°,则它的顶角的度数是()A.50°B.80°C.65°D.50°或80°9.(3分)如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC之间的距离是()A.5B.8C.10D.1510.(3分)若a,b,c是△ABC的三边长,且a2+b2+c2﹣ab﹣ac﹣bc=0,则△ABC的形状是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定二、填空题:本题共6小题,每小题3分,共18分.11.(3分)如果一个多边形的内角和是1800度,它是边形.12.(3分)若关于x的多项式x2+10x+k(k为常数是完全平方式,则k=.13.(3分)分式与的最简公分母是.14.(3分)若3m=5,3n=8,则32m+n=.15.(3分)点(﹣3,4)与点(a2,b2)关于y轴对称,则(a+b)(a﹣b)=.16.(3分)如图,△ABC是等边三角形,AD=AB,点E、F分别为边AC、BC上的动点,当△DEF的周长最小时,∠FDE的度数是.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(6分)解方程:.18.(8分)计算:(1)(﹣2x)3﹣3x(x﹣2x2)(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y19.(8分)分解因式:(1)a﹣6ab+9ab2(2)x2(x﹣y)+y2(y﹣x)20.(6分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.21.(10分)(1)先化简再求值:,其中x=﹣3;(2)如果a2+2a﹣1=0,求代数式的值.22.(8分)如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF =EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.23.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,点P是直线AC上的动点(不和A、C重合),CD⊥BP 于点D,交直线AB于点Q.(1)当点P在边AC上时,求证:AP=AQ(2)若点P在AC的延长线上时,(1)的结论是否成立?若成立,请画出图形(不写画法,画出示意图);若不成立,请直接写出正确结论.24.(8分)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?25.(10分)如图所示,点O是线段AC的中点,OB⊥AC,OA=9.(1)如图1,若∠ABO=30°,求证△ABC是等边三角形;(2)如图1,在(1)的条件下,若点D在射线AC上,点D在点C右侧,且△BDQ是等边三角形,QC的延长线交直线OB于点P,求PC的长度;(3)如图2,在(1)的条件下,若点M在线段BC上,△OMN是等边三角形,且点M沿着线段BC从点B运动到点C,点N随之运动,求点N的运动路径的长度.2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.【解答】解:设第三边的长度为x,由题意得:5﹣2<x<5+2,即:3<x<7,只有D选项在范围内.故选:D.2.【解答】解:A、当添加AC=BD时,且∠ABC=∠BAD,AB=BA,由“SSA”不能证得△ABC≌△BAD,故本选项符合题意;B、当添加BC=AD时,且∠ABC=∠BAD,AB=BA,由“SAS”能证得△ABC≌△BAD,故本选项不符合题意;C、当添加∠C=∠D时,且∠ABC=∠BAD,AB=BA,由“AAS”能证得△ABC≌△BAD,故本选项不符合题意;D、当添加∠CAB=∠DBA时,且∠ABC=∠BAD,AB=BA,由“ASA”能证得△ABC≌△BAD,故本选项不符合题意;故选:A.3.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.4.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:A.5.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以x,分式的值不变,故D正确;故选:D.6.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故选:C.7.【解答】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.8.【解答】解:①当130°外角是底角的外角时,底角为:180°﹣130°=50°,∴顶角度数是180°﹣50°﹣50°=80°,②当130°外角是顶角的外角时,顶角为:180°﹣130°=50°,∴顶角为50°或80°.故选:D.9.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,∵AD∥BC,GE⊥AD,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.10.【解答】解:已知等式整理得:2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,即(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)=0,变形得:(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a=b=c,则△ABC为等边三角形,故选:C.二、填空题:本题共6小题,每小题3分,共18分.11.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个正多边形是12.故答案为:12.12.【解答】解:∵关于x的多项式x2+10x+k是完全平方式,∴x2+10x+k=x2+2•x•5+52,∴k=52=25,故答案为:25.13.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.14.【解答】解:∵3m=5,3n=8,∴32m+n=(3m)2×3n=52×8=200.故答案为:200.15.【解答】解:∵点(﹣3,4)与点(a2,b2)关于y轴对称,∴a2=3,b2=4,解得a=±,b=±2.∴(a+b)(a﹣b)=(+2)(﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣2)(+2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣+2)(﹣﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣﹣2)(﹣+2)=3﹣4=﹣1.故答案为:﹣1.16.【解答】解:作D关于AC的对称点G,D关于BC的对称点H,连接GH交AC于E交BC于F,则此时,△DEF的周长最小,∵∠A=∠B=60°,DG⊥AC,DH⊥BC,∴∠ADG=∠BDH=30°,∴∠GDH=120°,∴∠H+∠G=60°,∵EG=ED,DF=HF,∴∠G=∠GDE,∠H=∠HDF,∴∠HDF+∠GDE=60°,∴∠FDE=60°,故答案为:60°.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解是x=2.18.【解答】解:(1)(﹣2x)3﹣3x(x﹣2x2)=﹣8x3﹣3x2+6x3=﹣2x3﹣3x2;(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y=(x2+4y2+4xy﹣x2+4y2)÷4y=(8y2+4xy)÷4y=x+2y.19.【解答】解:(1)原式=a(1﹣6b+9b2)=a(1﹣3b)2;(2)原式=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)2(x+y).20.【解答】解:∵∠1=∠2,∠3=∠4,而∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1,在△ADC中,∠DAC+∠3+∠4=180°,∴∠DAC+4∠1=180°,∵∠BAC=∠1+∠DAC=69°,∴∠1+180°﹣4∠1=69°,解得∠1=37°,∴∠DAC=69°﹣37°=32°.21.【解答】解:(1)原式=•=•=,当x=﹣3时,原式=﹣2;(2)∵a2+2a﹣1=0,∴a2+2a=1,则原式=•=•=a2+2a=1.22.【解答】解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.23.【解答】解:(1)∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;(2)成立理由如下:如图,∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;24.【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.25.【解答】解:(1)∵∠ABO=30°,OB⊥AC,∴∠BAO=60°,∵O是线段AC中点,OB⊥AC,∴BA=BC,又∠BAO=60°,∴△ABC是等边三角形;(2)∵△ABC和△BDQ为等边三角形,∴BA=BC,BD=BQ,∠BAC=60°,∠DBQ=60°,∴∠ABD=∠CBQ,在△BAD和△BCQ中,,∴△BAD≌△BCQ(SAS)∴∠BCQ=∠BAD=60°,∵∠BCA=60°,∴∠OCP=60°,∵∠POC=90°,∴∠OPC=30°,∴PC=2OC=18;(3)取BC的中点H,连接OH,连接CN,则OH=BC=BH=CH,∴△HOC为等边三角形,∴∠HOC=∠OHC=60°,OH=OC,当M在BH上时,∠MON=60°,∠HOC=60°,∴∠MOH=∠NOC,在△OMH和△ONC中,,∴△OMH≌△ONC(SAS),∴∠OCN=∠OHM=120°,当点M与点B重合时,在△OBC和△N′BC中,,∴△OBC≌△N′BC(SAS)∴∠BCN′=∠BCO=60°,∴∠OCN′=120°,即C、N、N′在同一条直线上,∴CN′=OC=9,∴点N从起点到C作直线运动路径为9,当M在HC上时,△OCN为等边三角形,∴CN=OC=9,∴点N从C到终点作直线运动路径长为9综上所述,N的路径长度为:9+9=18.。

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若二次根式a+1在实数范围内有意义,a的取值范围是( )A. a>1B. a≥1C. a>−1D. a≥−12. 下列四个二次根式中,最简二次根式是( )A. 40B. 32C. 2D. 273. 直线y=2x+n经过点(1,5),则n=( )A. 1B. 2C. 3D. 44. 在▱ABCD中,∠A=3∠B,则∠C的度数是( )A. 45°B. 60°C. 120°D. 135°5. 下列计算正确的是( )A. 2+3=5B. 32−2=3C. 3×2=5D. 23=636. 某射击队准备挑选运动员参加射击比赛.下表是其中一名运动员10次射击的成绩(单位:环):成绩7.58.5910频数2233则该名运动员射击成绩的平均数是( )A. 8.9B. 8.7C. 8.3D. 8.27. 一次函数y=mx+n(m≠0,m,n是常数)的图象经过两点A(0,3),B(2,0),则关于x的不等式mx+n>0的解集是( )A. x>2B. x<2C. x>0D. x<08. 甲、乙两人先后从A地出发开车到相距300千米的B地,在整个匀速行程中,两人行驶的路程y与时刻t的对应关系如图所示,则甲、乙两车相遇的时刻是( )A. 9:15B. 9:30C. 9:45D. 10:009.如图,矩形ABCD的对角线AC,BD相交于点O,点E是线段AC上一点,连接EB,ED.若△BED的面积等于△BEC的面积,则△ABE和△CDE的E面积比等于( )A. 2:1B. 3:1C. 3:2D. 9:410. 已知一次函数y=kx+3k−2(k≠0,k是常数),则下列结论正确的是( )A. 若点A(2,8)在一次函数y=kx+3k−2的图象上,则它的图象与两个坐标轴围成的三角形面积是2B. 若3k−2>0,则一次函数y=kx+3k−2图象上任意两点E(a1,b1)和F(a2,b2)满足:(a1−a2 )(b1−b2)<0C. 一次函数y=kx+3k−2的图象不一定经过第三象限D. 若对于一次函数y=tx+7(t≠0)和y=kx+3k−2,无论x取任何实数,总有tx+7>kx+ 3k−2,则k的取值范围是0<k<3或k<0二、填空题(本大题共6小题,共18.0分)11. 若y=(m−2)x+1是一次函数,则m的取值范围是______ .12.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD使其不变形.若AF=1米,AE=2米,则木条EF=______ 米.(结果保留根号)13. 一组数据2,1,x,1,6的平均数是3,则这组数据的中位数是______ .14.如图,四边形ABCD是菱形,DE⊥AB于点E,点O是对角线AC的中点,连接OE.若AB=5,AC=8,则OE等于______ .15. 在平面直角坐标系xOy中,直线y=kx−2(k≠0)与x轴,y轴分别相交于A,B两点,若∠O BA=30°,则点A的坐标是______ .16. 如图,Rt△ABC的两条直角边AB>AC,分别以AB,AC为边作正方形ABDE和正方形AC GF.点H是线段DE上一点,连接HB,作矩形BCKH.线段HK与EA交于点P,线段KC与BF交于点Q,连接线段BQ和CP的中点M,N.△ABC,△HEP和四边形CGFQ的面积分别记为S1S2和S3给出下列四个结论:①HB2=AB2+AC2②EP=QF;③S1>S2+S3;④∠NMA+∠ABC=45°;其中正确的结论是______ .(填写所有正确结论的序号)三、解答题(本大题共9小题,共72.0分。

2022-2023学年广东省广州市越秀区执信中学八年级上学期期末数学试卷及参考答案

2022-2023学年广东省广州市越秀区执信中学八年级上学期期末数学试卷及参考答案

2022-2023学年广州市越秀区执信中学初二数学第一学期期末试卷一、选择题(本大题共10小题,每小题3分,共30分.每题只有一项是符合题目要求的)1.下面是科学防控知识的图片,其中是轴对称图形的是( )A .B .C .D .2.用下列长度的三条线段,首尾相连,不能组成三角形的是( )A .3cm ,3cm ,2cmB .7cm ,2cm ,4cmC .4cm ,9cm ,7cmD .3cm ,5cm ,4cm 3.下列运算正确的是( )A .527()a a =B .246a a a ⋅=C .824x x x ÷=D .236()ab ab =4.如图,若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件( )A .BAC BAD ∠=∠B .AC AD =C .ABC ABD ∠=∠ D .以上都不正确 5.若分式11a a +−有意义,则a 的取值范围为( ) A .1a > B .1a = C .1a ≠ D .0a ≠6.若多项式235x mx +−分解因式为(7)(5)x x −+,则m 的值是( )A .2B .2−C .12D .12−7.一个正多边形的每个外角都是36︒,这个正多边形的边数是( )A .9B .10C .11D .128.若2m n −=,则代数式222m n m m m n−⋅+的值是( ) A .2− B .2 C .4− D .49.如图,在ABC ∆中,BC 的垂直平分线分别交AC ,BC 于点D ,E .若ABC ∆的周长为24,4CE =,则ABD ∆的周长为( )A .16B .18C .20D .2410.如图,在ABC ∆中,BAC ∠和ABC ∠的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O作OD BC ⊥于D ,下列三个结论:①1902AOB C ∠=︒+∠;②当60C ∠=︒时,AF BE AB +=;③若OD a =,2AB BC CA b ++=,则ABC S ab ∆=.其中正确的是( )A .①②B .②③C .①②③D .①③二、填空题(本大题共6小题,每小题3分,共18分)11.将数0.0002022用科学记数法表示为 .12.分解因式:xm xn −= .13.如图,一副直角三角板如图放置,//AB EF ,30B ∠=︒,45F ∠=︒,则1∠= .14.若228a b +=,2ab =,则2()a b −= .15.如图,已知ABC ∆为等边三角形,BD 为中线,延长BC 至E ,使CE CD =,连接DE ,则BDE ∠= ︒.16.如图,18AOB ∠=︒,点M 、N 分别是边OA 、OB 上的定点,点P 、Q 分别是边OB 、OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++最小时,则βα−= .三、解答题(本大题共9小题,共72分)17.如图,AB AD =,BC CD =.求证:B D ∠=∠.18.计算:(1)(34)(21)x x +−;(2)22(1510)5x y xy xy −÷.19.如图,在平面直角坐标系中,已知(3,3)A ,(1,1)B ,(4,1)C −.(1)画出ABC ∆关于y 轴的轴对称图形△111A B C ,并写出1A 、1B 、1C 坐标;(2)在(1)的条件下,连接1AA 、1AB ,直接写出△11AA B 的面积.20.如图,在ABC ∆中,30A ∠=︒,60B ∠=︒.(1)作B ∠的平分线BD ,交AC 于点D .(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)设3CD =,求AC .21.先化简,再求值222442111m m m m m m −+−+÷−−+,其中2m =−. 22.接种疫苗是预防新冠肺炎的一种有效办法,截至2021年12月29日,我国新冠疫苗接种总剂次约占全球总剂次的三分之一.某社区组织甲、乙两支医疗队开展疫苗接种工作,甲队比乙队每小时多接种20人,甲队接种2250人与乙队接种1800人用时相同,问:甲队每小时接种多少人?23.如图,ABC ∆中,AB AC =.O 是ABC ∆内一点,OD 是AB 的垂直平分线,OF AC ⊥,OD OF =.(1)当126DOF ∠=︒时,求:OBC ∠的度数.(2)判断AOC ∆的形状,并证明.24.阅读材料:若22228160m mn n n −+−+=,求m ,n 的值.解:22228160m mn n n −+−+=,222(2)(816)0m mn n n n ∴−++−+=.22()(4)0m n n ∴−+−=.2()0m n ∴−=,2(4)0n −=,4n ∴=,4m =.根据你的观察,探究下面的问题:(1)已知2222440a b ab b +−++=,求ab 的值;(2)已知ABC ∆的三边长a ,b ,c 都是正整数,且满足22812520a b a b +−−+=,求ABC ∆的最长边c 的值;(3)已知8a b −=,216800ab c c +−+=,求a b c ++的值.25.已知:ABC ∆中,90ACB ∠=︒,AC BC =.(1)如图1,点D 在BC 的延长线上,连AD ,过B 作BE AD ⊥于E ,交AC 于点F .求证:AD BF =;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且AE AD =,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,AE AD =且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若3AC MC =,请直接写出DB BC的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.每题只有一项是符合题目要求的)1.解:B ,C ,D 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A .2.解:A 、233+>,能构成三角形,不符合题意;B 、247+<,不能构成三角形,符合题意;C 、479+>,能构成三角形,不符合题意;D 、345+>,能构成三角形,不符合题意.故选:B .3.解:A 、5210()a a =,计算错误,不符合题意;B 、246a a a ⋅=,计算正确,符合题意;C 、826x x x ÷=,计算错误,不符合题意;D 、2336()ab a b =,计算错误,不符合题意.故选:B .4.解:若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件AC AD =或BC BD =, 故选:B .5.解:由题意得:10a −≠,解得:1a ≠,故选:C .6.解:多项式235x mx +−分解因式为(7)(5)x x −+,即235(7)(5)x mx x x +−=−+,2235235x mx x x ∴+−=−−,系数对应相等,2m ∴=−,故选:B .7.解:3603610︒÷︒=,则这个正多边形的边数是10.故选:B .8.解:原式()()2m n m n m m m n+−=⋅+ 2()m n =−.当2m n −=时.原式224=⨯=.故选:D .9.解:4CE =,DE 是线段BC 的垂直平分线,28BC CE ∴==,BD CD =,ABC ∆的周长为24,2424816AB AC BC ∴+=−=−=,ABD ∴∆的周长16AD BD AB AD CD AB AC AB =++=++=+=,故选:A .10.解:BAC ∠和ABC ∠的平分线相交于点O ,12OBA CBA ∴∠=∠,12OAB CAB ∠=∠, 1111180180180(180)902222AOB OBA OAB CBA CAB C C ∴∠=︒−∠−∠=︒−∠−∠=︒−︒−∠=︒+∠,①正确; 60C ∠=︒,120BAC ABC ∴∠+∠=︒, AE ,BF 分别是BAC ∠与ABC 的平分线,1()602OAB OBA BAC ABC ∴∠+∠=∠+∠=︒, 120AOB ∴∠=︒,60AOF ∴∠=︒,60BOE ∴∠=︒,如图,在AB 上取一点H ,使BH BE =, BF 是ABC ∠的角平分线,HBO EBO ∴∠=∠,在HBO ∆和EBO ∆中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,()HBO EBO SAS ∴∆≅∆,60BOH BOE ∴∠=∠=︒,180606060AOH ∴∠=︒−︒−︒=︒,AOH AOF ∴∠=∠,在HAO ∆和FAO ∆中,HAO FAO AO AOAOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAO FAO ASA ∴∆≅∆,AF AH ∴=,AB BH AH BE AF ∴=+=+,故②正确;作OH AC ⊥于H ,OM AB ⊥于M ,BAC ∠和ABC ∠的平分线相交于点O ,∴点O 在C ∠的平分线上,OH OM OD a ∴===,2AB AC BC b ++=,1111()2222ABC S AB OM AC OH BC OD AB AC BC a ab ∆∴=⨯⨯+⨯⨯+⨯⨯=++⋅=,③正确. 故选:C .二、填空题(本大题共6小题,每小题3分,共18分)11.解:将数0.0002022用科学记数法表示为42.02210−⨯. 故答案为:42.02210−⨯.12.解:()xm xn x m n −=−.故答案为:()x m n −.13.解://AB EF ,180E EDB ∴∠+∠=︒,90E ∠=︒,18090EDB E ∴∠=︒−∠=︒,45EDF F ∠=∠=︒,90904545BDF EDF ∴∠=︒−∠=︒−︒=︒,1B BDF ∠=∠+∠,30B ∠=︒,1304575∴∠=︒+︒=︒.故答案为:75︒.14.解:因为222()2a b a b ab −=+−,228a b +=,2ab =, 所以2()8224a b −=−⨯=,故答案为:4.15.解:ABC ∆为等边三角形,BD 为中线,90BDC ∴∠=︒,60ACB ∠=︒180********ACE ACB ∴∠=︒−∠=︒−︒=︒,CE CD =,30CDE CED ∴∠=∠=︒,9030120BDE BDC CDE ∴∠=∠+∠=︒+︒=︒,故答案为:120.16.解:如图,作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N ''交OA 于Q ,交OB 于P ,则MP PQ QN ++最小,OPM OPM NPQ ∴∠=∠'=∠,OQP AQN AQN ∠=∠'=∠,11(180)18(180)22QPN AOB MQP αβ∴∠=︒−=∠+∠=︒+︒−, 18036(180)αβ∴︒−=︒+︒−,36βα∴−=︒,故答案为36︒.三、解答题(本大题共9小题,共72分)17.证明:在ADC ∆和ABC ∆中CD CB AC AC AD AB =⎧⎪=⎨⎪=⎩,()ADC ABC SSS ∴∆≅∆,B D ∴∠=∠.18.解:(1)原式26384x x x =−+− 2654x x =+−.(2)原式22155105x y xy xy xy =÷−÷ 32x y =−.19.解:(1)如图所示:△111A B C 即为所求,1(3,3)A −,1(1,1)B −,1(4,1)C −−;(2)△11AA B 的面积为:16262⨯⨯=.20.解:(1)如图射线BD 即为所求;(2)90C ∠=︒,30A ∠=︒,60ABC ∴∠=︒,BD 平分ABC ∠,30A ABD DBC ∴∠=∠=∠=︒,26BD CD ∴==,6AD ∴=,639AC AD CD ∴=+=+=.21.解:原式22(2)11(1)(1)2m m m m m m −+=+⋅−+−− 2211m m m −=+−− 1m m =−, 当2m =−时,原式22213−==−−. 22.解:设甲队每小时接种x 人,则乙队每小时接种(30)x −人, 依题意得2250180020x x =−, 解得:100x =,经检验,100x =是原方程的解,且符合题意. 答:甲队每小时接种100人.23.(1)解:180DOF BAC ∠+∠=︒,126DOF ∠=︒, 54BAC ∴∠=︒,AB AC =,63ABC ACB ∴∠=∠=︒,OD AB ⊥,OF AC ⊥,OD OF =,1272DAO BAC ∴∠=∠=︒, OD 垂直平分AB ,OA OB ∴=,27OBA DAO ∴∠=∠=︒,632736OBC ABC OBA ∴∠=∠−∠=︒−︒=︒;(2)AOC ∆是等腰三角形,证明:OD OF =,AO AO =, Rt ADO Rt AFO(HL)∴∆≅∆,12AF AD AB ∴==, CA BA =,12AF AC ∴=, OF ∴垂直平分AC ,OA OC ∴=,AOC ∴∆是等腰三角形.24.解:(1)2222440a b ab b +−++=, 22()(2)0a b b ∴−++=,0a b ∴−=,20b +=,解得:2a b ==−,则4ab =;(2)22812520a b a b +−−+=,22(816)(1236)0a a b b ∴−++−+=,即22(4)(6)0a b −+−=, 40a ∴−=,60b −=,解得:4a =,6b =,6464c −<<+,即210c <<, a ,b ,c 为正整数,∴最长边c 的值为9;(3)8a b −=,8a b ∴=+,216800ab c c +−+=,2(8)16800b b c c ∴++−+=,即22(4)(8)0b c ++−=,40b ∴+=,80c −=,解得:4b =−,8c =,4a =,则4848a b c ++=−++=.25.(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC CA =,BCF ACD ∴∆≅∆,BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒, DAC AEH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =, EHF BCF ∴∆≅∆,FH CF∴=,2BD CH CF∴==.(3)如图3中,同法可证2BD CM=.3AC CM=,设CM a=,则3AC CB a==,2BD a=,∴2233 DB aBC a==.。

广东省广州市越秀区实验中学2020--2021学年八年级数学上学期期中试卷

广东省广州市越秀区实验中学2020--2021学年八年级数学上学期期中试卷

,点 ,点 在 上,

,求证:


2. 已知,如图点 、 分别在坐标轴上,点 的坐标为 ,

( 1 )尺规作图:作线段 的垂直平分线分别交 轴、线段 于点 、 .
4
( 2 )求证:


3.
在平面直角坐标系中的位置如图所示. 、 、 三点在格点上.
y
5 4 3 2 1
x
–5 –4 –3 –2 –1O 1 2 3 4 5 –1 –2 –3 –4 –5
的腰长为 ,面积为 ,则
的值为( ).
2
A.
B.
C.
D.
10. 如图所示,
,点 是
内一定点,并且
,点 、 分别是射线 ,
上异于点 的动点,当
的周长取最小值时,点 到线段 的距离为( ).
A.
B.
C.
D.
二、 填空题
(本大题共6小题,每小题3分,共18分)
1. 已知一个 边形的内角和等于
,则

2. 如图,在
A. 两点之间线段最短 C. 垂线段最短
B. 三角形两边之和大于第三边 D. 三角形的稳定性
3. 已知一个三角形的两条边长分别为 和 ,则第三条边的长度不能是( ).
A.
B.
C.
D.
4. 如图,在 ).
中,
,点 在 上,
于点 ,则
的 边上的高是(
A. 5. 如图,
B.
C.
D.
中,点 在 延长线上,则下列结论一定成立的是( ).


中,
,加上条件
(只填写一个即可),则有

3. 如图, 是

广东省广州市越秀区2019-2020学年八年级(上)期中数学试卷(含答案解析)

广东省广州市越秀区2019-2020学年八年级(上)期中数学试卷(含答案解析)

广东省广州市越秀区2019-2020学年八年级(上)期中试卷数学一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点4.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A.AB=AD B.∠B=∠D C.∠BCA=∠DCA D.BC=DC5.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°6.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)7.如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A.40°B.50°C.60°D.70°8.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤69.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.410.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=°.12.一个正多边形的每个内角都等于140°,那么它是正边形.13.等腰三角形中,已知两边的长分别是9和6,则周长为.14.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.15.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.16.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD=cm.三、解答题(本大题共有8小题,满分72分,解答要写出文字说明,证明过程或计算步骤)17.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18.(6分)如图,M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.求证:△ABM≌△BCN.19.(8分)如图:(1)画出△ABC关于y轴对称的△A1B1C1;(2)在y轴上画出点P,使PA+PC最小;(3)求△ABC的面积.20.(8分)如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.21.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)作线段AC的垂直平分线,分别交BC、AC于点D、E.(尺规作图,保留作图痕迹,不写作法)(2)连接AD,若DE=2cm,求BC的长.23.(12分)如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°﹣∠B;(2)若∠B=60°,求证:EF=DF.24.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.广东省广州市越秀区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点【分析】根据角平分线上的点到角的两边的距离相等的性质解答.【解答】解:到三角形三边的距离相等的点是:三角形三条角平分线的交点.故选:C.【点评】本题考查了角平分线的性质,熟记角平分线上的点到角的两边的距离相等是解题的关键.4.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A.AB=AD B.∠B=∠D C.∠BCA=∠DCA D.BC=DC【分析】本题是开放题,要使△ABC≌△ADC,已知∠1=∠2,AC是公共边,具备了一组边和一组角对应相等,再结合选项一一论证即可.【解答】解:A、添加AB=AD,能根据SAS判定△ABC≌△ADC,故选项正确;B、添加∠B=∠D,能根据ASA判定△ABC≌△ADC,故选项正确;C、添加∠BCA=∠DCA,能根据ASA判定△ABC≌△ADC,故选项正确;D、添加BC=DC,SSA不能判定△ABC≌△ADC,故选项错误.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°【分析】根据三角形的外角性质得出∠2=∠A+∠1,代入求出即可.【解答】解:∠2=∠A+∠1=30°+20°=50°,故选:B.【点评】本题考查了三角形的外角性质,能根据三角形的外角性质得出∠2=∠A+∠1是解此题的关键.6.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.【解答】解:(5,﹣2)关于x轴的对称点为(5,2),故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.7.如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A.40°B.50°C.60°D.70°【分析】根据三角形内角和定理得到∠DBC+∠DCB=70°,根据角平分线的定义和三角形内角和定理计算即可.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=180°﹣110°=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC=2∠DBC,∠ACB=2∠DCB,∴∠ABC+∠ACB=2×(∠DBC+2∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.8.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤6【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为6,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于6,∴点P到OB的距离为6,∵点Q是OB边上的任意一点,∴PQ≥6.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.4【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故选:C.【点评】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.10.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=PA;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠PAB;∴符合条件的点P有6个点.故选:B.【点评】本题考查了等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=45 °.【分析】根据三角形内角和定理求出∠B,根据全等三角形的对应角相等解答.【解答】解:∠B=180°﹣∠A﹣∠AOB=45°,∵△OAB≌△OCD,∴∠D=∠B=45°,故答案为:45.【点评】本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.12.一个正多边形的每个内角都等于140°,那么它是正九边形.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣140°=40°,再利用外角和360°除以外角的度数可得边数.【解答】解:∵正多边形的每个内角都等于140°,∴多边形的外角为180°﹣140°=40°,∴多边形的边数为360°÷40°=9,故答案为:九.【点评】此题主要考查了多边形的内角与外角,关键是掌握外角和360°除以外角的度数可得边数.13.等腰三角形中,已知两边的长分别是9和6,则周长为21或24 .【分析】分9是底和腰两种情况进行讨论,利用三角形的三边关系来判断,再计算其周长即可.【解答】解:当边长为9的边为底时,三角形的三边长为:9、6、6,满足三角形的三边关系,此时其周长为21;当边长为9的边为腰时,三角形的三边长为:9、9、6,满足三角形的三边关系,此时其周长为24.故答案为:21或24.【点评】本题主要考查等腰三角形的性质和三角形的三边关系,注意分两种情况进行讨论是解题的关键.14.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45 °.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为 6 .【分析】根据轴对称的性质可得P1M=PM,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA的对称点P1,∴OA是PP1的中垂线,∴P1M=PM,同理可得:P2N=PN,∵△PMN的周长=PM+PN+MN,∴△PMN的周长=P1M+MN+P2N=P1P2=6,故答案为:6.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.16.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD= 5 cm.【分析】先连接OA ,过点O 分别作AC ,AB 的垂线,垂足分别为E 、F ,由角平分线的性质可知OD =OE =OF ,再根据S △ABC =S △AOB +S △BOC +S △AOC 进行解答即可.【解答】解:连接OA ,过点O 分别作AC ,AB 的垂线,垂足分别为E 、F ,∵∠ABC ,∠ACB 的平分线交于点O ,OD ⊥BC 于D ,∴OD =OE =OF ,∴S △ABC =S △AOB +S △BOC +S △AOC =AB •OF +BC •OD +AC •OE =OD (AB +BC +AC )=×OD ×(25+20+15)=150,解得OD =5cm .故答案为:5.【点评】本题考查的是三角形的面积及角平分线的性质,根据题意作出辅助线,把△ABC 的面积分为S △AOB +S △BOC +S △AOC 是解答此题的关键.三、解答题(本大题共有8小题,满分72分,解答要写出文字说明,证明过程或计算步骤)17.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n ,依题意得(n ﹣2)×180°=3×360°﹣180°,n ﹣2=6﹣1,n =7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.18.(6分)如图,M ,N 分别是正五边形ABCDE 的边BC ,CD 上的点,且BM =CN ,AM 交BN 于点P .求证:△ABM ≌△BCN .【分析】利用正五边形的性质得出AB =BC ,∠ABM =∠C ,再利用全等三角形的判定即可证明△ABM ≌△BCN .【解答】证明:∵五边形ABCDE 是正五边形,∴AB =BC ,∠ABM =∠C ,∴在△ABM 和△BCN 中,∴△ABM ≌△BCN (SAS ).【点评】此题主要考查了全等三角形的判定以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.19.(8分)如图:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)在y 轴上画出点P ,使PA +PC 最小;(3)求△ABC 的面积.【分析】(1)分别作出点A 、B 、C 关于y 轴对称的点A 1,B 1,C 1,然后顺次连接,并写出坐标.(2)连接AC 1交y 轴于点P ,则PA +PC 最小,点P 即为所求.(3)利用△ABC 所在梯形面积减去周围三角形面积,进而得出答案.【解答】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,点P 即为所求;(3)如图所示,S △ABC =S 梯形BCDE ﹣S △ACD ﹣S △ABE=﹣﹣=12﹣2.5﹣3=6.5.【点评】本题考查轴对称变换、三角形的面积、两点之间线段最短等知识,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20.(8分)如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.【分析】AB=AC=CD,AD=BD可得∠B=∠C=∠BAD,∠CDA=∠CAD,且利用外角可得∠CDA=2∠B =2∠C,在△ACD中利用三角形内角和可求得∠C,进一步可求得∠CAC,再利用角的和差求得∠BAC.【解答】解:∵AB=AC,DA=DB,∴∠B=∠C=∠BAD,∵CA=CD,∴∠CDA=∠CAD,又∠CDA=∠B+∠BAD=2∠B=2∠C,∴∠CAD=2∠C,在△ACD中,∠C+∠CDA+∠CAD=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∴∠BAD=36°,∠CAD=2∠C=72°,∴∠BAC=∠BAD+∠CAD=36°+72°=108°.【点评】本题主要考查等腰三角形的性质及外角性质、三角形内角和定理,由条件得到2∠C+2∠C+∠C=180°求出∠C是解题的关键,注意外角性质及三角形内角和定理的应用.21.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF ≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)作线段AC的垂直平分线,分别交BC、AC于点D、E.(尺规作图,保留作图痕迹,不写作法)(2)连接AD,若DE=2cm,求BC的长.【分析】(1)利用尺规作出线段AC的垂直平分线即可;(2)先求出AD=CD,得出∠DAC=∠C=30°,求出AD=CD=2DE=10,再证∠BAD=90°,得出BD =2AD=20,即可求出BC的长.【解答】解:(1)线段AC的垂直平分线如图所示:(2)∵AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵DE是AC的垂直平分线,∴AD=CD,∴∠DAC=∠C=30°,∴AD=CD=2DE=2×2=4cm,∠BAD=120°﹣30°=90°,∴BD=2AD=8cm,∴BC=BD+CD=8+4=12(cm).【点评】本题考查了等腰三角形的性质、线段垂直平分线的性质以及含30°的直角三角形的性质;利用线段垂直平分线得出线段相等、角相等是解题的关键.23.(12分)如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°﹣∠B;(2)若∠B=60°,求证:EF=DF.【分析】(1)由∠FAC=∠BAC,∠FCA=∠BCA,推出∠FAC+∠FCA=×(∠ABC+∠ACB)=(180°﹣∠B)=90°﹣∠B;(2)过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于,构造全等三角形解决问题即可;【解答】证明:(1)∵∠BAC+∠BCA=180°﹣∠B,又∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=∠BAC,∠FCA=∠BCA,∴∠FAC+∠FCA=×(180°﹣∠B)=90°﹣∠B,∵∠EFA=∠FAC+∠FCA,∴∠EFA=90°﹣∠B.(2)如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FM,∵∠EFH+∠DFH=120°,∠DFG+∠DFH=360°﹣90°×2﹣60°=120°,∴∠EFH=∠DFG,在△EFH和△DFG中,,∴△EFH≌△DFG(AAS),∴EF=DF.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.【分析】(1)①由题意可得AB=AC=AE,即可求∠ABF=∠AEF,由AD是BC的中垂线可得BF=CF,可证△ABF≌△ACF,可得∠ABF=∠ACF,则结论可得;②延长AD使DP=AD,连接CP,由题意可得AC=CP=CE,∠ACD=∠PCD,即可证∠ECF=∠FCP,则可证△ECF≌△FCP,可得EF=FP=FD+AD;(2)连接CF,延长AD使FD=DP,连接CP,由题意可得∠ABF=∠ACF=∠AEF,△FCP是等边三角形,可证△ACP≌△ECF,即可得EF=AD+DP=AD+DF.【解答】证明:(1)①∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF②EF=FD+AD延长AD使DP=AD,连接CP∵AD=DP,∠ADC=∠PDC,CD=CD∴△ADC≌△PDC(SAS)∴AC=CP=CE,∠ACD=∠PCD∵∠ACF=∠AEF,且∠AMC=∠FME∴∠EFC=∠EAC=60°∵BF=CF,且∠EFC=60°∴∠FCD=30°∵∠FCA=∠FCD﹣∠ACD∴∠FCA=30°﹣∠ACD∵∠ECF=∠ECA﹣∠FCA∴∠ECF=30°+∠ACD∵∠FCP=∠FCD+∠DCP∴∠FCP=30°+∠ACD∴∠ECF=∠FCP,且FC=FC,CP=CE∴△ECF≌△FCP(SAS)∴EF=FP∴EF=FD+AD(2)连接CF,延长AD使FD=DP,连接CP.∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF且∠AME=∠CMF∴∠EAC=∠EFC=60°∵BF=CF,∠EFC=60°∴∠FCB=30°∵FD=DP,∠FDC=∠PDC,CD=CD∴△FDC≌△PDC(SAS)∴FC=CP,∠FCD=∠PCD=30°∴∠FCP=60°=∠ACE∴∠ACP=∠FCE且CF=CP,AC=CE∴△ACP≌△ECF(SAS)∴EF=AP∴EF=AD+DP=AD+DF【点评】本题考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定,添加恰当的辅助线构造全等三角形是本题的关键.。

2019-2020学年广东省广州市番禺区八年级(上)期末数学试卷

2019-2020学年广东省广州市番禺区八年级(上)期末数学试卷
16.(2 分)(2009•上海)在 Rt△ABC 中,∠BAC=90°,AB=3,M 为边长 BC 上的点, 连接 AM,如图,如果将△ABM 沿直线 AM 翻折后,点 B 恰好落在边 AC 的中点处,那 么点 M 到 AC 的距离是 .
三.解答题(本大题共 9 小题,满分 68 分.解答应写出文字说明、证明过程或演算步骤.) 17.(6 分)(海淀区一模)如图,在△ABC 中,D,E 是 BC 边上两点,
2019-2020 学年广东省广州市番禺区八年级(上)期末数学试卷
答案与试题解析
一.选择题(本大题共 10 小题,每小题 2 分,满分 20 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1.(2 分)(2019 秋•番禺区期末)点 M(1,﹣2)关于 y 轴的对称点坐标为( )
A.(﹣1,2)
内角的和.
4.(2 分)(苏州)下列四个图案中,不是轴对称图案的是( )
A.
B.
C.
D.
【考点】轴对称图形.
【分析】根据轴对称的概念对各选项分析判断利用排除法求解.
解:A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
A.5cm
B.6cm
C.7cm
D.8cm
二.填空题(共 6 题,每题 2 分,共 12 分.)
11.(2 分)(2002•宁德)计算:(xy2)2= .
12.(2 分)(成都)等腰三角形的一个底角为 50°,则它的顶角的度数为 .
13.(2 分)(雁江区模拟)分解因式:b3﹣6b2+9b= .
10.(2 分)(2019 秋•番禺区期末)如图,在△ABC 中,∠C=90°,AC=BC,AD 是

2019-2020学年广东省广州市越秀区七年级(上)期末数学试卷

2019-2020学年广东省广州市越秀区七年级(上)期末数学试卷

2019-2020学年广东省广州市越秀区七年级(上)期末数学试卷一、选择题1.(3分)(海门市一模)如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作( )A.﹣2m B.﹣1m C.1m D.2m2.(3分)(2019秋•越秀区期末)在0,,,0.05这四个数中,最大的数是( )A.0B.C.D.0.053.(3分)(2019秋•越秀区期末)下列各式中,是一元一次方程的是( )A.x﹣y=2B.x2﹣2x=0C.5D.5=04.(3分)(2019秋•越秀区期末)与ab2是同类项的是( )A.a2b B.ab2c C.xy2D.﹣2ab25.(3分)(2020秋•新宾县期末)如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线( )A.①B.②C.③D.④6.(3分)(2019秋•越秀区期末)将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是( )A.圆柱B.圆锥C.圆台D.球7.(3分)(2019秋•越秀区期末)已知a=2b,那么下列等式中不一定成立的是( )A.a+b=3b B.a﹣c=2b﹣c C.a=b D.28.(3分)(2020秋•鱼台县期末)某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是( )A.亏损10元B.不赢不亏C.亏损16元D.盈利10元9.(3分)(2019秋•越秀区期末)若关于x的方程ax+1=2x+a无解,则a的值是( )A.1B.2C.﹣1D.﹣210.(3分)(2019秋•越秀区期末)满足等式|x|+5|y|=10的整数(x,y)对共有( )A.5对B.6对C.8对D.10对二、填空题11.(3分)(2019秋•越秀区期末)地球绕太阳公转的速度约是k m/h,用科学记数法可表示为 km/h.12.(3分)(2020秋•绿园区期末)笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需 元.13.(3分)(2019秋•越秀区期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是 .14.(3分)(2019秋•越秀区期末)在梯形面积公式S(a+b)•h中,已知S=18,b=2a,h=4,则b= .15.(3分)(2019秋•越秀区期末)在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是 .16.(3分)(2019秋•越秀区期末)已知a﹣3b+c=8,7a+b﹣c=12,则5a﹣4b+c= .三、解答题17.(10分)(2019秋•越秀区期末)计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)(2)25()+(﹣2)×(﹣1)201918.(10分)(2019秋•越秀区期末)先化简,再求值:(1)5a2bcabc﹣2a2bc﹣3a2abc,其中a=2,b=3,c;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y.19.(10分)(2019秋•越秀区期末)解下列方程(1)2x=﹣3(x+5)(2)120.(10分)(2019秋•越秀区期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.21.(10分)(2019秋•越秀区期末)如图,A地和B地都是海上观测站,B地在A地正东方向,且A、B两地相距2海里.从A地发现它的北偏东60°方向有一艘船C,同时,从B地发现船C在它的北偏东30°方向.(1)在图中画出船C所在的位置;(要求用直尺与量角器作图,保留作图痕迹)(2)已知三角形的内角和等于180°,求∠ACB的度数;(3)此时船C与B地相距 海里.(只需写出结果,不需说明理由)22.(10分)(2019秋•越秀区期末)某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者答对题数答错题数得分A282108B26496C24684(1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?23.(12分)(2019秋•越秀区期末)已知数轴上A,B两点对应的数分别为﹣2和8,P为数轴上一点,对应的数为x.(1)线段PA的长度可表示为 (用含x的式子表示).(2)在数轴上是否存在点P,使得PA﹣PB=6?若存在,求出x的值;若不存在,请说明理由;(3)当P为线段AB的中点时,点A,B,P同时开始在数轴上分别以每秒3个单位长度,每秒2个单位长度,每秒1个单位长度沿数轴正方向运动?试问经过几秒,PB=2PA?2019-2020学年广东省广州市越秀区七年级(上)期末数学试卷答案与试题解析一、选择题1.(3分)(海门市一模)如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作( )A.﹣2m B.﹣1m C.1m D.2m【考点】正数和负数.【分析】根据水位升高2m时水位变化记作+2m,从而可以表示出水位下降2m时水位变化记作什么,本题得以解决.解:∵水位升高2m时水位变化记作+2m,∴水位下降2m时水位变化记作﹣2m,故选:A.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.2.(3分)(2019秋•越秀区期末)在0,,,0.05这四个数中,最大的数是( )A.0B.C.D.0.05【考点】有理数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:∵0.05>0,∴最大的数是0.05.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数>0>负数,两个负实数绝对值大的反而小.3.(3分)(2019秋•越秀区期末)下列各式中,是一元一次方程的是( )A.x﹣y=2B.x2﹣2x=0C.5D.5=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义逐个判断即可.解:A、是二元一次方程,不是一元一次方程,故本选项不符合题意;B、是一元二次方程,不是一元一次方程,故本选项不符合题意;C、是一元一次方程,故本选项符合题意;D、是分式方程,不是一元一次方程,故本选项不符合题意;故选:C.【点评】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.(3分)(2019秋•越秀区期末)与ab2是同类项的是( )A.a2b B.ab2c C.xy2D.﹣2ab2【考点】同类项.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,由此结合各选项进行判断即可.解:A、a2b与ab2不是同类项,故本选项错误;B、ab2c与ab2不是同类项,故本选项错误;C、xy2与ab2不是同类项,故本选项错误;D、﹣2ab2与ab2是同类项,故本选项正确;故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项的定义是解题的关键.5.(3分)(2020秋•新宾县期末)如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线( )A.①B.②C.③D.④【考点】线段的性质:两点之间线段最短.【分析】由题意从A到B,肯定要尽量缩短两地之间的里程,就用到线段的性质:两点之间线段最短.解:根据两点之间线段最短可得,从A地到B地的最短路线是路线③.故选:C.【点评】本题考查了线段的性质.解题的关键是掌握线段的性质:两点之间线段最短,本题比较基础.6.(3分)(2019秋•越秀区期末)将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是( )A.圆柱B.圆锥C.圆台D.球【考点】点、线、面、体.【分析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是圆锥体.解:根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,所得到的立体图形是圆锥体.故选:B.【点评】本题考查生活中的立体图形,理解“点动成线,线动成面,面动成体”,是正确判断的前提.7.(3分)(2019秋•越秀区期末)已知a=2b,那么下列等式中不一定成立的是( )A.a+b=3b B.a﹣c=2b﹣c C.a=b D.2【考点】比例的性质.【分析】根据等式的基本性质逐一判断即可得.解:A、∵a=2b,∴a+b=3b,成立,不合题意;B、∵a=2b,∴a﹣c=2b﹣c,成立,不合题意;C、∵a=2b,∴a=b,成立,不合题意;D、∵a=2b,∴2(b≠0),原式不一定成立,符合题意.故选:D.【点评】本题主要考查了等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.8.(3分)(2020秋•鱼台县期末)某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是( )A.亏损10元B.不赢不亏C.亏损16元D.盈利10元【考点】一元一次方程的应用.【分析】设盈利的衣服的进价为x元,亏损的衣服的进价为y元,根据利润=售价﹣进价,即可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再将两件衣服的利润相加即可得出结论.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120﹣x+120﹣y=﹣10.故选:A.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)(2019秋•越秀区期末)若关于x的方程ax+1=2x+a无解,则a的值是( )A.1B.2C.﹣1D.﹣2【考点】一元一次方程的解.【分析】移项,合并同类项,再根据方程无解得出a﹣2=0,a﹣1≠0,求出a的值即可.解:∵ax+1=2x+a,∴ax﹣2x=a﹣1,∴(a﹣2)x=a﹣1,当a﹣2=0,a﹣1≠0时,方程无解,解得:a=2,故选:B.【点评】本题考查了一元一次方程的解,能根据方程无解得出a﹣2=0且a﹣1≠0是解此题的关键.10.(3分)(2019秋•越秀区期末)满足等式|x|+5|y|=10的整数(x,y)对共有( )A.5对B.6对C.8对D.10对【考点】绝对值.【分析】先用含绝对值x的代数式表示绝对值y,根据等式的整数解确定x的取值范围和x的值,再确定等式整数解的对数.解:等式|x|+5|y|=10可变形为:|y|=2∵|y|≥0,即20∴﹣10≤x≤10.∵x、y都是整数,所以x=﹣10、﹣5、0、5、10.当x=﹣10时,y=0;当x=﹣5时,y=±1;当x=0时,y=±2;当x=5时,y=±1;当x=10时,y=0.所以满足条件的整数有8对.故选:C.【点评】本题考查了含绝对值的二元一次方程.根据等式及等式的整数解确定x的值,是解决本题的关键.二、填空题11.(3分)(2019秋•越秀区期末)地球绕太阳公转的速度约是k m/h,用科学记数法可表示为 1.1×105 km/h.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:将用科学记数法表示为:1.1×105.故1.1×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2020秋•绿园区期末)笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需 (4x+2y) 元.【考点】列代数式.【分析】直接利用笔记本和圆珠笔的单价以及购买数量得出答案.解:根据题意可得:(4x+2y).故(4x+2y).【点评】此题主要考查了列代数式,正确表示出总钱数是解题关键.13.(3分)(2019秋•越秀区期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是 善 .【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的展开图中相邻的面不存在公共点判定即可.解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“守”字一面的相对面上的字是“善”.故善.【点评】本题主要考查的是正方体相对两个面上的文字,明确正方体的展开图中相邻的面不存在公共点是解题的关键.14.(3分)(2019秋•越秀区期末)在梯形面积公式S(a+b)•h中,已知S=18,b=2a,h=4,则b= 6 .【考点】解一元一次方程.【分析】由b=2a可得ab,将S,a,h的值代入公式计算即可求出b的值.解:由b=2a得ab,将S=18,ab,h=4代入公式得:18()×4,去分母得:36,即6b=36,解得:b=6.故6.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.15.(3分)(2019秋•越秀区期末)在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是 2,9,16 .【考点】一元一次方程的应用.【分析】设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),根据三个日期数之和为27,即可得出关于x的一元一次方程,解之即可得出结论.解:设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故2,9,16.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(3分)(2019秋•越秀区期末)已知a﹣3b+c=8,7a+b﹣c=12,则5a﹣4b+c= 18 .【考点】解三元一次方程组.【分析】两式相加,得关于a、b的关系式,再与第一个式子相加得结论.解:由题意:a﹣3b+c=8①,7a+b﹣c=12②,②+①,得8a﹣2b=20.所以4a﹣b=10③.所以①+③,得5a﹣4b+c=18.故18.【点评】本题考查了三元一次方程组.根据要求整式的系数特点,利用整体代入是解决本题的关键三、解答题17.(10分)(2019秋•越秀区期末)计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)(2)25()+(﹣2)×(﹣1)2019【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算.解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)=﹣5+7+3﹣20=﹣25+10=﹣15;(2)25()+(﹣2)×(﹣1)2019=25()+(﹣2)×(﹣1)=﹣12+2=﹣10.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(10分)(2019秋•越秀区期末)先化简,再求值:(1)5a2bcabc﹣2a2bc﹣3a2abc,其中a=2,b=3,c;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项进而把已知数据代入得出答案;(2)直接利用合并同类项,再把x+y代入得出答案.解:(1)5a2bcabc﹣2a2bc﹣3a2abc,=(5a2﹣2a2﹣3a2)+(abcabc)+(bcbc)=abc,当a=2,b=3,c时,原式=2×3×()=﹣1;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),=7(x+y)2﹣2(x+y)当x+y时,原式=72=0.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(10分)(2019秋•越秀区期末)解下列方程(1)2x=﹣3(x+5)(2)1【考点】解一元一次方程.【分析】根据解一元一次方程的步骤解答即可.解:(1)2x=﹣3(x+5),去括号,得:2x=﹣3x﹣15,移项,得:2x+3x=﹣15,合并同类项,得:5x=﹣15,系数化为1,得:x=﹣3;(2)1,去分母,得:3(5y﹣1)﹣18=2(4y﹣7),去括号,得:15y﹣3﹣18=8y﹣14,移项,得:15y﹣8y=3+18﹣14,合并同类项,得:7y=7,系数化为1,得:y=1.【点评】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.20.(10分)(2019秋•越秀区期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.【考点】两点间的距离.【分析】(1)将AM=2MC,BN=2NC.转化为MCAC,NCBC,进而得出MN=MC+NC(AC+BC)AB,进行计算即可;(2)根据(1)中的MN与AB的关系进行计算即可.解:(1)如图,AC=9,BC=6,∵AM=2MC,BN=2NC.∴MCAC=3,NCBC=2,∴MN=MC+NC=3+2=5,答:MN的长为5;(2)∵AM=2MC,BN=2NC,∴MCAC,NCBC,∴MN═MC+NCACBCAB,若MN=5时,AB=3MN=15,答:AB的长为15.【点评】本题考查两点之间距离的计算方法,理解各条线段之间的和、差、倍、分的关系是正确计算的前提.21.(10分)(2019秋•越秀区期末)如图,A地和B地都是海上观测站,B地在A地正东方向,且A、B两地相距2海里.从A地发现它的北偏东60°方向有一艘船C,同时,从B地发现船C在它的北偏东30°方向.(1)在图中画出船C所在的位置;(要求用直尺与量角器作图,保留作图痕迹)(2)已知三角形的内角和等于180°,求∠ACB的度数;(3)此时船C与B地相距 2 海里.(只需写出结果,不需说明理由)【考点】方向角;平行线的性质;三角形内角和定理;作图—应用与设计作图.【分析】(1)根据题意画出图形即可;(2)根据三角形的内角和定理即可得到结论;(3)根据等腰三角形的性质即可得到结论.解:(1)如图所示;(2)∵∠CAB=30°,∠ABC=120°,∴∠ACB=30°;(3)由(2)知,∠CAB=∠ACB=30°,∴BC=AB=2,答:船C与B地相距2海里,故2.【点评】本题考查的是作图﹣应用与设计作图,方位角的画法,解答此题的关键是熟知方向角的描述方法,即用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西,偏多少度.22.(10分)(2019秋•越秀区期末)某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者答对题数答错题数得分A282108B26496C24684(1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?【考点】一元一次方程的应用.【分析】(1)设答对一道题得x分,则答错一道题得(54﹣14x)分,根据参赛者A,B 答对题目数及得分情况,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出答错一题得﹣2分,设参赛者D答对了m道题,则答错(30﹣m)道题,根据参赛者D得54分,即可得出关于m的一元一次方程,解之即可得出结论.解:(1)设答对一道题得x分,则答错一道题得(54﹣14x)分,依题意,得:26x+4(54﹣14x)=96,解得:x=4.∴54﹣14x=﹣2.答:每答对1题得4分.(2)由(1)可得,答错一道题得54﹣14x=﹣2(分).设参赛者D答对了m道题,则答错(30﹣m)道题,依题意,得:4m﹣2(30﹣m)=54,解得:m=19.答:参赛者D答对了19道题.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(12分)(2019秋•越秀区期末)已知数轴上A,B两点对应的数分别为﹣2和8,P为数轴上一点,对应的数为x.(1)线段PA的长度可表示为 |x+2| (用含x的式子表示).(2)在数轴上是否存在点P,使得PA﹣PB=6?若存在,求出x的值;若不存在,请说明理由;(3)当P为线段AB的中点时,点A,B,P同时开始在数轴上分别以每秒3个单位长度,每秒2个单位长度,每秒1个单位长度沿数轴正方向运动?试问经过几秒,PB=2PA?【考点】数轴;列代数式;一元一次方程的应用.【分析】(1)根据点A,P对应的数,利用数轴上两点间的距离公式可用含x的式子表示出线段PA的长;(2)分x<﹣2,﹣2≤x≤8及x>8三种情况,由PA﹣PB=6,即可得出关于x的一元一次方程,解之即可得出结论;(3)由点A,B对应的数及点P为线段AB的中点,可得出点P对应的数为3,当运动时间为t秒时,PA=|5﹣2t|,PB=t+5,由PB=2PA,即可得出关于t的一元一次方程,解之即可得出结论.解:(1)∵A点对应的数为﹣2,P点对应的数为x,∴PA=|x﹣(﹣2)|=|x+2|.故|x+2|.(2)当x<﹣2时,﹣x﹣2﹣(8﹣x)=6,方程无解;当﹣2≤x≤8时,x+2﹣(8﹣x)=6,解得:x=6;当x>8时,x+2﹣(x﹣8)=6,方程无解.答:存在符合题意的点P,此时x的值为6;(3)∵P点为线段AB的中点,∴P点对应的数为3.当运动时间为t秒时,A点对应的数为3t﹣2,B点对应的数为2t+8,P点对应的数为t+3,∴PA=|t+3﹣(3t﹣2)|=|5﹣2t|,PB=|t+3﹣(2t+8)|=t+5.∵PB=2PA,∴t+5=2|5﹣2t|,即t+5=10﹣4t或t+5=4t﹣10,解得:t=1或t=5.答:经过1秒或5秒,PB=2PA.【点评】本题考查了一元一次方程的应用、数轴以及列代数式,解题的关键是:(1)利用数轴上两点间的距离公式,用含x的式子表示出线段PA的长;(2)找准等量关系,正确列出一元一次方程;(3)找准等量关系,正确列出一元一次方程.。

2019-2020学年广东省中山市八年级(上)期末数学试卷含答案

2019-2020学年广东省中山市八年级(上)期末数学试卷含答案

2019-2020学年广东省中山市八年级(上)期末数学试卷一、选择题(本大题10题,每小题3分,共30分)1.(3分)下列四个手机APP 图标中,是轴对称图形的是( )A .B .C .D .2.(3分)已知某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为( ) A .1.52×10﹣5米 B .﹣1.52×105米 C .152×105米D .1.52×10﹣4米3.(3分)下列等式成立的是( ) A .x 2+x 3=x 5 B .(a ﹣b )2=a 2﹣b 2C .(x 2)3=x 6D .(﹣1)0=﹣14.(3分)点A (2,﹣1)关于y 轴对称的点的坐标是( ) A .(2,1) B .(﹣2,﹣1) C .(﹣1,2)D .(﹣2,1)5.(3分)若分式,则( ) A .x ≠0B .x =2C .x =0D .x =0或x =26.(3分)下列因式分解正确的是( ) A .x 2+y 2 =(x +y )2B .x 4﹣y 4 =(x 2+y 2)(x 2﹣y 2)C .﹣3a +12=﹣3(a ﹣4)D .a 2+7a ﹣8=a (a +7)﹣87.(3分)一边长为3,另一边长为6的等腰三角形的周长是( ) A .12 B .15 C .12或15D .98.(3分)已知,则的值为( )A .6B .﹣6C .D .﹣ 9.(3分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,AB =6cm ,DE =4cm ,S △ABC =30cm 2,则AC 的长为( )A .10cmB .9cmC .4.5cmD .3cm10.(3分)如图,Rt △ACB 中,∠ACB =90°,∠A =60°,CD 、CE 分别是△ABC 的高和中线,下列说法错误的是( )A .AD =AB B .S △CEB =S △ACEC .AC 、BC 的垂直平分线都经过ED .图中只有一个等腰三角形二、填空题(本大题7题,每小题4分,共28分) 11.(4分)(﹣2a 2)3÷a 2= .12.(4分)如图,在△ABC 中,D 是BC 延长线上一点,∠A =68°,∠B =65°,则∠ACD = .13.(4分)如图,BC =EF ,AC ∥DF ,请你添加一个适当的条件,使得△ABC ≌△DEF , .(只需填一个答案即可)14.(4分)方程的解x = .15.(4分)已知ab=﹣3,a+b=5,则10+a2b+ab2= .16.(4分)关于x的分式方程的解为正数,则m的取值范围是 .17.(4分)如图,∠AOB=30°,点P是∠AOB内任意一点,且OP=7,点E和点F分别是射线OA和射线OB上的动点,则△PEF周长的最小值是 .三、解答题(一)(本大题3题,每小题6分,共18分)18.(6分)计算:(2x﹣1)2﹣x(4x﹣1)19.(6分)先化简,再求值:,其中a=﹣1.20.(6分)如图,已知△ABC中,∠BAC=23°,∠BCA=125°.(1)尺规作图:作AC的垂直平分线,交BC的延长线于点D;(不写作法,保留作图痕迹)(2)连接AD,求∠BAD的度数.四、解答题(二)(本大题3题,每小题8分,共24分)21.(8分)如图,已知△ABC≌△DEF,BG、EH分别是△ABC和△DEF的中线,求证:BG=EH.22.(8分)如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.23.(8分)某商家用1000元购进一批多肉盆栽,很快售完,接着又用了1600元购进第二批多肉盆栽,且数量是第一批的1.2倍,已知第一批盆栽的单价比第二批的单价少3元,问这两批多肉盆栽的单价各是多少元?五、解答题(三)(本大题2题,每小题10分,共20分)24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC边的中点,BE⊥AB交AD的延长线于点E,CF平分∠ACB交AD于点F,连接CE.求证:(1)点D是EF的中点;(2)△CEF是等腰三角形.25.(10分)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB =9,求BG的长.2019-2020学年广东省中山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10题,每小题3分,共30分)1.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为1.52×10﹣5米.故选:A.3.【分析】根据幂的乘方与积的乘方,完全平方公式的应用,以及零指数幂的运算方法,逐项判断即可.【解答】解:∵x2+x3≠x5,∴选项A不符合题意;∵(a﹣b)2=a2﹣2ab+b2,∴选项B不符合题意;∵(x2)3=x6,∴选项C符合题意;∵(﹣1)0=1,∴选项D不符合题意.故选:C.4.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.5.【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:分式,则x=0.故选:C.6.【分析】根据十字相乘法,提公因式法,以及公式法在因式分解中的应用,逐项判断即可.【解答】解:∵x2+y2 ≠(x+y)2,∴选项A不符合题意;∵x4﹣y4 =(x2+y2)(x+y)(x﹣y),∴选项B不符合题意;∵﹣3a+12=﹣3(a﹣4),∴选项C符合题意;∵a2+7a﹣8=(a+8)(a﹣1),∴选项D不符合题意.故选:C.7.【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6∴不能构成三角形,故舍去.∴这个等腰三角形的周长为15.故选:B.8.【分析】根据已知条件可得=6,进而可得m﹣n=﹣6mn,然后再代入可得答案.【解答】解:∵,∴=6,n﹣m=6mn,∴m﹣n=﹣6mn,∴==﹣,故选:D.9.【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4,∵AB=6,∴S△ABC=×6×4+AC×4=30,解得AC=9;故选:B.10.【分析】根据等腰三角形的判定和性质和直角三角形的性质即可得到结论.【解答】解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE=S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.二、填空题(本大题7题,每小题4分,共28分)11.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=﹣8a6÷a2=﹣8a4.故答案为:﹣8a4.12.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算.【解答】解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=68°+65°=133°,故答案为:133°.13.【分析】根据全等三角形的判定方法解决问题即可.【解答】解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x﹣x2+4=3x+6,解得:x=﹣,经检验x=﹣是分式方程的解,故答案为:﹣15.【分析】直接提取公因式ab,将原式变形进而求出答案.【解答】解:∵ab=﹣3,a+b=5,∴10+a2b+ab2=10+ab(b+a)=10﹣3×5=﹣5.故答案为:﹣5.16.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.17.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点F、E在CD上时,△PEF的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7cm.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.18.【分析】根据完全平方公式和单项式乘以多项式的法则计算即可.【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.19.【分析】首先计算括号里面分式的减法,然后再计算括号外的除法,化简后,再把a的值代入即可.【解答】解:原式=(﹣),=,=•,=﹣,当a=﹣1时,原式=﹣2.20.【分析】(1)直接利用线段垂直平分线的作法得出AC的垂直平分线,进而得出答案;(2)利用线段垂直平分线的性质得出AD=DC,进而得出∠ACD=∠CAD=55°,即可得出答案.【解答】解:(1)如图所示:D点即为所求;(2)∵∠BCA=125°,∴∠ACD=55°,∵ED垂直平分线AC,∴DC=AD,∴∠ACD=∠CAD=55°,∵∠BAC=23°,∴∠BAD=23°+55°=78°.21.【分析】根据全等三角形的性质得到BC=EF,AC=DF,∠C=∠F,证明△BCG≌△EFH,根据全等三角形的性质证明结论.【解答】证明:∵△ABC≌△DEF,∴BC=EF,AC=DF,∠C=∠F,∵BG、EH分别是△ABC和△DEF的中线,∴CG=AC,FH=DF,∴CG=FH,在△BCG和△EFH中,,∴△BCG≌△EFH(SAS)∴BG=EH.22.【分析】(1)要证明BD平分∠ABC,只要证明∠DBC=∠ABE即可,根据题目中的条件和三角形外角和内角的关系,可以证明∠DBC=∠ABE,从而可以证明结论成立;(2)根据(1)中的结论和题意,利用三角形内角和可以求得∠C的度数.【解答】(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∴∠EAB=∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.23.【分析】首先设第一批单价为x元,则第二批单价为(x+3)元,根据题意可得等量关系:进一批的数量×1.2=第二批的数量,根据等量关系列出方程,再解即可.【解答】解:设第一批单价为x元,则第二批单价为(x+3)元,由题意得:×1.2=,解得:x=9,经检验:x=9是分式方程的解,x+3=9+3=12,答:第一批单价为9元,则第二批单价为12元.五、解答题(三)(本大题2题,每小题10分,共20分)24.【分析】(1)根据ASA证明△CDF≌△BDE,即可得出DF=DE;(2)由(1)中的全等得:CF=BE,判定△ACF≌△CBE,得到∠CAF=∠BCE,根据三角形外角的性质和等腰三角形的判定可得结论.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵EB⊥AB,∴∠ABE=90°,∴∠CBE=45°,∵CF平分∠ACB,∴∠DCF=45°=∠CBE,在△CDF和△BDE中,∵,∴△CDF≌△BDE(ASA),∴DF=DE,∴点D是EF的中点;(2)由(1)知△CDF≌△BDE,∴CF=BE,在△ACF和△CBE中,∵,∴△ACF≌△CBE(SAS),∴∠CAF=∠BCE,∵∠CFE=∠CAF+∠ACF,∠ECF=∠BCF+∠BCE,∠ACF=∠BCF,∴∠CFE=∠ECF,∴EC=EF,∴△CEF是等腰三角形.25.【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE =∠EDF=60°,进而得出∠BDF=60°,即可得出结论;(2)由折叠的性质得出∠ADE=∠FDE=60°,∠A=∠DFE,得出∠ADC=120°,由等腰三角形的性质得出∠FEC=∠FCE,设∠FEC=∠FCE=x,由三角形的外角性质得出∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,由三角形内角和定理得出方程,解方程即可;(3)同(1)得出△BDG是等边三角形,∠ADE=∠B=60°,得出BG=BD,由折叠的性质得出AD=FD,由直角三角形的性质得出FD=2BD,得出AD=2BD,由已知得出2BD+BD=9,求出BD=3,即可得出BG=BD=3.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD,由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.。

2016-2017学年广东省广州市越秀区八年级第二学期期末数学试卷+答案[精品]

2016-2017学年广东省广州市越秀区八年级第二学期期末数学试卷+答案[精品]

百度文库——让每个人平等地提升自我2016-2017学年广东省广州市越秀区八年级第二学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列式子没有意义的是()A.B.C.D.2.(3分)下列计算中,正确的是()A.÷=B.(4)2=8C.=2D.2×2=23.(3分)刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数4.(3分)在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(3分)关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C.函数图象经过第一、三象限D.不论x取何值,总有y<06.(3分)以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.,,C.1,,2D.7,8,97.(3分)若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11C.12D.138.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24B.26C.30D.489.(3分)在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形10.(3分)已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx ﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A.B.﹣1C.2D.二、填空题:本大题共6小题,每小题3分,满分18分.11.(3分)已知a=+2,b=﹣2,则ab=.12.(3分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x﹣2﹣1012y﹣6﹣4﹣202那么,一元一次方程kx+b=0的解是x=.13.(3分)如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是.14.(3分)一组数据:2017、2017、2017、2017、2017,它的方差是.15.(3分)考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角个单位.16.(3分)如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI=(BC﹣DE);④四边形FGHI是正方形.其中正确的是(请写出所有正确结论的序号).三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.(6分)计算:(+﹣)×.18.(8分)如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.19.(8分)如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.20.(8分)下表是某校八年级(1)班43名学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数125435115106(1)该班学生右眼视力的平均数是(结果保留1位小数).(2)该班学生右眼视力的中位数是.(3)该班小鸣同学右眼视力是 4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.(8分)如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE =8,点F是DE的中点,连接CF、OF.。

广东省广州市越秀区2019-2020学年九年级上学期期末数学试题(解析版)

广东省广州市越秀区2019-2020学年九年级上学期期末数学试题(解析版)

2019-2020学年广东省广州市越秀区九年级上学期期末考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;2. 用配方法解一元二次方程2450x x --=,此方程可变形为( )A. ()229x -=B. ()229x +=C. ()221x +=D. ()221x -= 【答案】A【解析】【分析】先把常数项移到等式右边,再两边同时加上4,等式左边可以凑成完全平方的形式.【详解】解:2450x x --=24454x x -+=+ ()229x -=.故选:A .【点睛】本题考查配方法,解题的关键是掌握配方法的方法.3. 若将抛物线y=5x 2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x ﹣2)2+1B. y=5(x+2)2+1C. y=5(x ﹣2)2﹣1D. y=5(x+2)2﹣1【答案】A【解析】 试题解析:将抛物线25y x =向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是()252 1.y x =-+故选A . 点睛:二次函数图像的平移规律:左加右减,上加下减.4. 已知A 1122(,)(,)x y B x y 、为二次函数()21y x k =--+图象上两点,且1x <2x <1,则下列说法正确的是( ) A. 120y y +> B. 120y y +< C. 12 0y y -> D. 12 0y y -<【答案】D【解析】【分析】 根据二次函数解析式得到函数图象的性质,开口向下,在对称轴左边,y 随着x 的增大而增大,从而得到因变量的大小关系.【详解】解:二次函数()21y x k =--+的对称轴是直线1x =,且开口向下,在对称轴左边,y 随着x 的增大而增大,∵1x <2x <1,∴12y y <,即120y y -<.故选:D .【点睛】本题考查二次函数的图象和性质,解题的关键是根据顶点式得出函数图象的性质.5. 下列事件为必然事件的是( )A. 掷一枚硬币,正面朝上B. 弦是直径C. 等边三角形的中心角是120︒D. 位似的两个三角形的对应边互相平行【答案】C【解析】【分析】根据必然事件的定义判断出正确选项.【详解】A是随机事件,抛一枚硬币不一定正面朝上;B是随机事件,弦不一定是直径;C是必然事件;D是随机事件,位似三角形的对应边也可能重合.故选:C.【点睛】本题考查必然事件的定义,解题的关键是掌握必然事件的定义.6. 如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A. 7B. 7.5C. 8D. 8.5【答案】B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.7. 如图,在△ABC中,CD,BE分别是△ABC的边AB,AC上的中线,则DEFBCFSS=()A.25B.12C.13D.14【答案】D【解析】【分析】根据中位线定理得到//DE BC和12DE BC=,再利用DEF CBF△△的性质得到它们的面积比.【详解】解:∵CD,BE分别是边AB,AC上的中线,∴//DE BC,12DE BC=,∴DEF CBF△△,∴214DEFBCFS DES CB⎛⎫==⎪⎝⎭.故选:D.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.8. 如图,AB、AC为O的两条切线,50BAC∠=︒,点D是BC上一点,则BDC∠的大小是()A. 100︒B. 110︒C. 115︒D. 125︒【答案】C【解析】【分析】连接OB、OC,作出优弧BC对应的一个圆周角∠BD′C,首先求出∠BOC,再根据∠BD′C=12∠BOC,∠BDC+∠BD′C=180°,即可解决问题.【详解】解:连接OB、OC,作出优弧BC对应的一个圆周角∠BD′C,如图,∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∴∠ABO=∠ACO=90°,∵∠BAC=50°,∴∠BOC=360°-90°-90°-50°=130°,∴∠BD′C=12∠BOC=65°,∴∠BDC=180°-65°=115°,故选:C.【点睛】本题考查切线的性质、圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线.9. 《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A. 13寸B. 20寸C. 26寸D. 28寸【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题10. 如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到BC D'△,BC'与边AD交于点E.若AB=x1,BC=2x2,DE=3,其中x1、x2是关于x的方程x2﹣4x+m=0的两个实根,则m的值是()A. 165B.125C. 3D. 2【答案】A 【解析】分析】利用根与系数的关系得到x1+x2=4,x1x2=m,AB+12BC=4,m=AB×12BC,再利用折叠的性质和平行线的性质得到∠EBD=∠EDB,则EB=ED=3,所以AE=AD−DE=5−2AB,利用勾股定理得到AB2+(5−2AB)2=32,解得AB=10255-或AB=1055+,则BC=20455+,然后计算m的值.【详解】∵x1、x2是关于x的方程x2−4x+m=0的两个实根,∴x1+x2=4,x1x2=m,即AB+12BC=4,m=AB×12BC,∵△BCD沿BD翻折得到△BC′D,BC′与边AD交于点E,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC −3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题(本大题共6小题,每小题3分,共18分)11. 关于x 的方程()21210m x mx +++=是一元二次方程,则m 的取值范围是_____. 【答案】1m ≠-【解析】【分析】根据定义,一元二次方程的二次项系数不能是0,求出m 的取值范围.【详解】解:∵方程()21210m x mx +++=是一元二次方程, ∴10m +≠,即1m ≠-.故答案是:1m ≠-.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.12. 在平面直角坐标系中,有两点A (1,2),B (3,1),以原点O 为位似中心,将△OAB 放大为原来的3倍,得到OA B ''△,则点A 的对应点A '的坐标是_______.【答案】()3,6或()3,6--【解析】根据位似图形的定义,以原点O 为位似中心,将原三角形放大3倍,则对应点坐标也变为原来的3倍.【详解】解:以原点O 为位似中心,将△OAB 放大为原来的3倍,则点A 的横纵坐标都变为原来的3倍,对应的点A '()3,6或()3,6--.故答案是:()3,6或()3,6--.【点睛】本题考查位似图形,解题的关键是掌握位似图形的定义.13. 一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.【答案】m +n =10.【解析】【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同, ∴m 与n 的关系是:m +n =10.故答案为m +n =10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14. 若圆锥的底面半径是2,侧面展开图是一个圆心角为120︒的扇形,则该圆锥的母线长是________.【答案】6【解析】【分析】先根据圆锥的底面半径求出底面圆周长,也就是侧面图扇形的弧长,再利用弧长公式求出扇形半径,也就是圆锥的母线.【详解】解:∵圆锥的底面半径是2,∴底面圆周长是4π,即展开后的扇形弧长是4π, 根据弧长公式:180n r l =︒π, 得1204180r ππ︒=︒,解得6r =,即该圆锥的母线长是6. 故答案是:6.【点睛】本题考查扇形和圆锥的有关计算,解题的关键是掌握扇形的弧长公式,以及圆锥和侧面展开的扇15. 如图,已知点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (0a ≠)上两点,A 是抛物线的顶点,P 点是x 轴上一动点,当PA+PB 最小时,P 点的坐标是_____.【答案】(2.4,0)【解析】【分析】根据点B (3,3)、C (0,6)是抛物线24y ax x c =-+(a≠0)上两点,可以求得该抛物线的解析式,从而可以求得顶点A 的坐标,然后即可得到点A 关于x 轴的对称点的坐标,则点A 关于x 轴的对称点的坐标与点B 所连直线与x 轴的交点即为所求的点P 的坐标.【详解】解:∵点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (a ≠0)上两点, ∴91236a c c -+=⎧⎨=⎩,得16a c =⎧⎨=⎩ , ∴抛物线解析式为2246(22)y x x x =-+=-+,∴点A 的坐标为(2,2),点A 关于x 轴的对称点的坐标为(2,−2),则点(2,−2)与点B (3,3)所连直线与x 轴的交点即为所求的点P ,此时P A +PB 最小,设过点(2,−2)与点B (3,3)的直线解析式为y =kx +b , 2233k b k b +=-⎧⎨+=⎩,得512k b =⎧⎨=-⎩ , 即过点(2,−2)与点B (3,3)的直线解析式为y =5x −12,当y =0时,0=5x −12,得x =2.4,∴点P 的坐标为(2.4,0),故答案为:(2.4,0).【点睛】本题考查了二次函数的性质、二次函数上点的坐标特征、对称轴最短路径问题,解本题的关键是明确题意,利用二次函数的性质和数形结合思想解答.16. 如图,在四边形ABCD 中,B D 90∠∠==︒,AD=CD ,AB+BC=8,则四边形ABCD 的面积是_________.【答案】16【解析】【分析】求不规则四边形的面积,可以转化为两个三角形的面积,由题意B D 90∠∠==︒,可知:求出Rt ABC 与Rt ADC 的面积,即为四边形ABCD 的面积.【详解】连接AC ,∵B D 90∠∠==︒,∴222AB BC AC +=,222AD DC AC +=, ∴11=22ABC ADC ABCD S S S BC AB CD AD +=⋅+⋅四边形21122BC AB AD =⋅+ ()2221111=2224BC AB CD AB BC AB BC ⋅+=⋅++, ∵AB+BC=8,∴222=64AB BC BC AB ++⨯,∴4464ABC ADC S S +=,∴=16ABC ADC ABCD S S S +=四边形故答案为:16.【点睛】本题主要考查的是四边形面积的求解,三角形面积以及勾股定理,熟练运用三角形面积公式以及勾股定理是解答本题的关键.三、解答题(本大题共9题,共102分,解答应写出文字说明、证明过程或演算步骤.)17. 解方程:22320x x --= 【答案】12x =,212x =- 【解析】 【分析】利用公式法求出24b ac =-△,继而求一元二次方程的解; 【详解】∵2a =,3b =-,2c =-, ∴()()224342225b ac -=--⨯⨯-=,∴32522x ±=⨯,∴12x =,212x =-. 【点睛】本题考查了解一元二次方程的方法,公式法:先求出24b ac =-△,继而用b x -±=△求出解即可,是基础性考点;18. 在平面直角坐标系中, OAB △的位置如图所示,且点A (-3,4),B (2,1),将 OAB △绕点O 顺时针旋转90︒后得到 OA B ''△. (1)在图中画出 OA B ''△;(2)求点A 在旋转过程中所走过的路线长.【答案】(1)见解析;(2)52π【解析】 【分析】(1)将点A 绕着点O 顺时针旋转90︒得到点A ',用同样的方法得到点B ',就可以画出OA B ''△; (2)先算出AO 的长度,再利用弧长公式求出路线长. 【详解】解:(1)如图所示:(2)22345AO =+=,90551802l ππ︒⨯==︒.【点睛】本题考查图形的旋转和弧长公式,解题的关键是掌握画旋转图形的方法和弧长公式的运用. 19. 已知抛物线2y x 2x 3=-++. (1)该抛物线的对称轴是_____;(2)选取适当的数据填入下表,并在如图的直角坐标系内描点画出该抛物线的图象:x…………y …… ……(3)根据函数的图象,直接写出不等式2230x x -++>的解.【答案】(1)1x =;(2)见解析;(2)13x【解析】 【分析】(1)利用对称轴公式求出抛物线的对称轴; (2)利用5点作图法列出表格并画出图象;(3)不等式的解表示:函数图象在x 轴上方时,x 的取值范围,根据图象得出解集. 【详解】解:(1)2122bx a , 对称轴是直线1x =, 故答案是:1x =;(2)令1x =-,则1230y =--+=, 令0x =,则3y =,令1x =,则1234y =-++=, 令2x =,则4433y =-++=, 令3x =,则9630y =-++=,x …… -1 0 1 2 3 …… y……343……图象如图所示:(3)不等式2230x x -++>的解表示:函数图象在x 轴上方时,x 的取值范围, 根据图象得不等式的解是:13x.【点睛】本题考查二次函数的图象和性质,解题的关键是掌握二次函数的图象的画法,以及利用函数图象去解不等式.20. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,ADE 60∠=︒. (1)求证:BAD CDE ∠=∠;(2)若BD=4,CE=2,求△ABC 的边长.【答案】(1)见解析;(2)8 【解析】 【分析】(1)根据等边三角形的性质得到60B ADE ∠=∠=︒,再根据外角和定理证明结论; (2)根据(1)的结论证明ABD DCE △△,利用相似三角形对应边成比例列式求出CD 的长,就可以得到三角形ABC 的边长.【详解】解:(1)∵ABC 是等边三角形, ∴60B ∠=︒, ∵60ADE ∠=︒, ∴B ADE ∠=∠,∵BAD B ADC ADE CDE ∠+∠=∠=∠+∠, ∴BAD CDE ∠=∠;(2)∵BAD CDE ∠=∠,60B C ∠=∠=︒, ∴ABD DCE △△,∴AB BDDC CE=, 设DC x =,则4AB BC x ==+, ∴442x x +=,解得4x =, ∴448BC =+=,即△ABC 的边长是8.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定定理. 21. 有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字-1,0,1,2;B 布袋中有二个除标号外完全相同的小球,小球上分别标有数字0,1.小明先从A 布袋中随机取出一个小球,用m 表示取出的球上标有的数字 ,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字. (1)若用(m n ,)表示小明取球时m n 与的对应值,请用树状图或列表法表示()m n ,的所有取值; (2)求关于x 的一元二次方程2102x mx n -+=有实数根的概率. 【答案】(1)见解析;(2)58【解析】 【分析】(1)用列表的方法或树状图去表示所有可能性;(2)利用根的判别式算出m 和n 的关系式,找到符合条件的组合. 【详解】解:(1)如图:(2)要使一元二次方程202x mx n -+=有实数根,则0∆≥,即220m n -≥, 满足条件的组合有:()1,0-,()0,0,()1,0,()2,0,()2,1,∴概率是58.【点睛】本题考查概率求解,解题的关键是掌握通过画树状图或列表求解概率的方法.22. 有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.在甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元,依此类推,即每多买一台,则所买各台单价均再减20元;乙公司一律按原售价75%促销.某单位需购买一批图形计算器:(1)若此单位需购买4台图形计算器,应去哪家公司购买花费较少?(2)若该单位计划购买m台图形计算器,经过对比发现,在两家公司购买相差480元,试求m的值.【答案】(1)去乙公司购买花费少;(2)4或6或12【解析】【分析】(1)把数量4分别代入甲乙两家公司的计算即可求出到哪家公司购买花费较少;(2)把数量m分别代入甲乙两家公司计算,费用用含m表示,然后讨论①当去甲公司花费比乙公司多480元时;②当去甲公司花费比乙公司少480元时,分别列等式求出m的值即可.【详解】(1)去甲公司购买花费:(800-4×20)×4=2880(元),去乙公司购买花费:800×4×75%=2400(元),∵2880>2400,∴去乙公司购买花费少(2)去甲公司购买花费:m(800-20m)=800m-20m2,去乙公司购买花费:800×75%m=600m,∴在两家公司购买相差480元,∴当去甲公司花费较多时,800m-20m2=600m+480 整理得:m2-10m+24=0 解得:m1=4,m2=6 当去甲公司花费较少时,800m-20m2=600m-480 整理得:m2-10m-24=0,解得:m1=12,m2=-2(舍去)综上m的值为4或6或12.【点睛】本题考查了利用方程思想解决生活中的数学问题.只要把握住总花费=单价×数量这一等量关系,注意分情况讨论“两家公司购买相差480元”是解答此题的易漏点 . 23. 如图,在△ABC 中,AB=AC=5,BC=6.(1)动手操作:利用尺规作以BC 为直径的圆O ,并标出圆O 与AB 的交点D ,与AC 的交点E ,连接DE (保留作图痕迹,不写作法); (2)综合应用:在你所作的圆中, ①求证:DE//BC ; ②求线段DE 的长.【答案】(1)见解析;(2)①见解析;②4225DE = 【解析】 【分析】(1)作BC 的垂直平分线得到BC 的中点O ,以O 为圆心,BO 的长为半径画圆,得到圆O ; (2)①根据等腰三角形的性质即可证明结论;②根据三角形的面积和勾股定理即可求出线段DE 的长. 【详解】解:(1)如图所示:(2)①在ABC 中,AB AC =, ∴A ABC CB =∠∠, ∴DEC EDB =, ∴EC DB =,∴DEB CBE ∠=∠, ∴//DE BC ; ②∵//DE BC , ∴ADE ABC ,∴AE DEAC BC=, ∵5AB AC ==,6BC =, ∴3OB OC OE ===, ∴4AO =, 连接BE , ∵BC 是O 的直径,∴90BEC ∠=︒, ∴1122ABCSBC AO AC BE =⋅=⋅, ∴245BE =, 在Rt AEB 中,根据勾股定理,得222AE EB AB +=,即2222455AE ⎛⎫+= ⎪⎝⎭,解得75AE =, ∴7556DE =,解得4225DE =.【点睛】本题考查了尺规作图,等腰三角形的性质,勾股定理,圆周角定理和相似三角形的性质和判定,解题的关键是掌握这些几何性质进行证明求解.24. 如图,抛物线y =ax 2+(4a ﹣1)x ﹣4与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB ,点D 为线段OB 上一动点(不与点B 重合),过点D 作矩形DEFH ,点H 、F 在抛物线上,点E 在x 轴上. (1)求抛物线解析式;(2)当矩形DEFH 的周长最大时,求矩形DEFH 的面积;(3)在(2)的条件下,矩形DEFH 不动,将抛物线沿着x 轴向左平移m 个单位,抛物线与矩形DEFH 的边交于点M 、N ,连接M 、N .若MN 恰好平分矩形DEFH 的面积,求m 的值.【答案】(1)y=12x2+x﹣4;(2)10;(3)m的值为52.【解析】【分析】(1)先求出点C的坐标,由OC=2OB,可推出点B坐标,将点B坐标代入y=ax2+(4a﹣1)x﹣4可求出a的值,即可写出抛物线的解析式;(2)设点D坐标为(x,0),用含x的代数式表示出矩形DEFH的周长,用函数的思想求出取其最大值时x 的值,即求出点D的坐标,进一步可求出矩形DEFH的面积;(3)如图,连接BH,EH,DF,设EH与DF交于点G,过点G作BH的平行线,交ED于M,交HF于点N,则直线MN将矩形DEFH的面积分成相等的两半,依次求出直线BH,MN的解析式,再求出点M的坐标,即可得出m的值.【详解】解:(1)在抛物线y=ax2+(4a﹣1)x﹣4中,当x=0时,y=﹣4,∴C(0,﹣4),∴OC=4.∵OC=2OB,∴OB=2,∴B(2,0),将B(2,0)代入y=ax2+(4a﹣1)x﹣4,得:a=12,∴抛物线的解析式为y=12x2+x﹣4;(2)设点D坐标为(x,0).∵四边形DEFH为矩形,∴H(x,12x2+x﹣4).∵y=12x2+x﹣4=12(x+1)2﹣92,∴抛物线对称轴为x=﹣1,∴点H到对称轴的距离为x+1,由对称性可知DE=FH=2x+2,∴矩形DEFH的周长C=2(2x+2)+2(﹣1 2 x2﹣x+4)=﹣x2+2x+12=﹣(x﹣1)2+13,∴当x=1时,矩形DEFH周长取最大值13,∴此时H(1,﹣52),∴HF=2x+2=4,DH=52,∴S矩形DEFH=HF•DH=4×52=10;(3)如图,连接BH,EH,DF,设EH与DF交于点G,过点G作BH的平行线,交ED于M,交HF于点N,则直线MN将矩形DEFH的面积分成相等的两半,由(2)知,抛物线对称轴为x=﹣1,H(1,﹣52),∴G(﹣1,﹣54),设直线BH的解析式为y=kx+b,将点B(2,0),H(1,﹣52)代入,得:2052k bk b+=⎧⎪⎨+=-⎪⎩,解得:525kb⎧=⎪⎨⎪=-⎩,∴直线BH的解析式为y=52x﹣5,∴可设直线MN解析式为y=52x+n,将点(﹣1,﹣54)代入,得n=54,∴直线MN的解析式为y=52x+54,当y=0时,x=﹣12,∴M(﹣12,0).∵B(2,0),∴将抛物线沿着x轴向左平移52个单位,抛物线与矩形DEFH的边交于点M、N,连接M、N,则MN恰好平分矩形DEFH的面积,∴m的值为52.【点睛】本题考查了待定系数法求解析式,矩形的性质,函数思想求最大值,平移规律等,解题关键是知道过矩形对角线交点的直线可将矩形的面积分成相等的两半.25. 如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C 作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,AFAE是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【答案】(1)∠ADC=120°;(2)EF=1919,(3)有最大值,最大值为:1392【解析】【分析】(1)由四边形ABCD是平行四边形,得AB∥CB,进而即可得到答案;(2)作AH⊥CD交CD的延长线于H,由在Rt△ADH中,∠H=90°,∠ADH=60°,得A 3DH=12,结合勾股定理得AE=192,易证△AEH∽△CEF,得EH AEEF EC,进而即可求解;(3)作△AFC的外接圆⊙O,作AH⊥CD交CD的延长线于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于N,作NQ⊥CD于Q.易得P A的值最大时,AFAE的值最大,P A的值最大=AN的长,根据勾股定理和三角函数的定义得DN12-,从而得AN=AD+DN=132+,进而即可得到答案.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CB,∴∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)作AH⊥CD交CD的延长线于H,如图1,∵在Rt△ADH中,∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60DH=AD•cos60°=12,∵DE=EC=32,∴EH=DH+DE=2,∴AE2==,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴EH AEEF=,∴2232EF=,∴EF=19.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的延长线于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于N,作NQ⊥CD于Q.∵DE∥PF,∴AF AP AE AD=,∵AD是定值,∴P A的值最大时,AFAE的值最大,观察图形可知,当点F与点M重合时,P A的值最大,最大值=AN的长,由(2)可知,AHCH=72,∠H=90°,∴AC==∴OM=12AC,∵OK∥AH,AO=OC,∴KH=KC,∴OK=12 AH∴MK=NQ=2﹣4,在Rt△NDQ中,DN=1 sin6022NQ==-︒,∴AN=AD+DN=132+,∴AFAE的最大值=ANAD=12【点睛】本题主要考查平行四边形的性质,解直角三角形,相似三角形的判定与性质定理,圆的性质,添加辅助线,构造圆与相似三角形,是解题的关键.。

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷1. 在以下图形中,不是轴对称图形的是( )A.B.C.D.2. 可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为数字用科学记数法表示是( )A.B. C. D.3. 要使分式子有意义,x 的取值应满足( )A. B.C.D.4. 在中,若,,则的度数是( )A.B.C. D.5. 如图,在与中,,再添加一个下列条件,能判断≌的是( )A.B.C.D.6. 下列计算正确的是( )A.B.C. D.7. 如图,在中,,直线DE 是边AB 的垂直平分线,连接若,则( )A.B.C.D.8. 下列等式成立的是( )A. B.C. D.9. 如图,在平面直角坐标xOy中,,,OB平分,点关于x轴的对称点是( )A.B.C.D.10. 若的边a,b满足式子:,则第三边的长可能是( )A. 2B. 5C. 7D. 811. 计算:__________.12. 已知一个多边形的内角和为,则这个多边形是__________边形.13.若,,则__________ .14. 若边长为a,b的长方形周长为10,面积为5,则的值是__________ .15. 若等腰三角形其中两个外角的和为,则这个等腰三角形的顶角度数是__________ .16. 如图,为等边三角形,F,E分别是AB,BC上的一动点,且,连接CF,AE交于点H,连接给出下列四个结论:①;②若,则AE平分;③;④若,则其中正确的结论有__________ 填写所有正确结论的序号17. 解方程:18. 如图,D、C、F、B四点在一条直线上,,,,垂足分别为点C、点F,求证:19. 计算:;因式分解:20. 如图,的三个顶点坐标分别为,,画出关于y轴的对称图形;在第一象限的格点网格线的交点上找一点______ ,______ ,使得21. 设化简A;若是一个完全平方式,求A的值.22. 如图,是等腰直角三角形,尺规作图:作的角平分线,交AB于点保留作图痕迹,不写作法;在所作的图形中,延长CA至点E,使,连接求证:,且23. 为了增强体质,某学校组织徒步活动.两小组都走完了3千米的绿道,第一小组的速度是第二小组速度的倍,第一小组比第二小组提早小时到达目的地.求两个小组的速度分别是多少?假设绿道长为a千米,第一小组走完绿道需要小时,第二小组走完绿道的时间是第一小组时间的倍还要多小时,是否存在m,使得第一小组的速度是第二小组速度的2倍?请说明理由.24. 如图,OC平分,P为OC上的一点,的两边分别与OA、OB相交于点M、如图1,若,,过点P作于点E,作于点F,请判断PM与PN的数量关系,并说明理由;如图2,若,,求证:25. 如图,在中,,,射线于点如图1,求的度数;若点E,F分别是射线AD,边AC上的动点,,连接BE,①如图2,连接EF,当时,求的度数;②如图3,当最小时,求证:答案和解析1.【答案】D【解析】【分析】本题考查的是轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可.【解答】解:由分析可知,已知图形中不属于轴对称图形的是图形故选:2.【答案】D【解析】【分析】本题考查科学记数法的表示,解题的关键是掌握科学记数法表示的方法.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:故选:3.【答案】B【解析】【分析】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【解答】解:由题意得,,解得,故选:4.【答案】C【解析】解:,,故选:本题考查直角三角形中,两个锐角互余。

广州市越秀区八年级上册期末数学试题(含答案)

广州市越秀区八年级上册期末数学试题(含答案)

广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列微信按钮图标中,是轴对称图形的是( )A.B.C.D.2.(3分)已知三角形的两边长分别为6,11,那么第三边的长可以是( )A.3B.4C.5D.63.(3分)下列计算正确的是( )A.x•x3=x4B.x4+x4=x8C.(x2)3=x5D.x﹣1=﹣x4.(3分)分式﹣可变形为( )A.﹣B.C.﹣D.5.(3分)下列从左到右的运算是因式分解的是( )A.2x2﹣2x﹣1=2x(x﹣1)﹣1B.4a2+4a+1=(2a+1)2C.(a+b)(a﹣b)=a2﹣b2D.x2+y2=(x+y)2﹣2xy6.(3分)若分式有意义,则x的取值范围是( )A.x≠2B.x≠±2C.x≠﹣2D.x≥﹣27.(3分)计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )A.B.C.a6b6D.8.(3分)如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( )A.AC=BD B.∠DAB=∠CBA C.∠C=∠DD.BC=AD9.(3分)若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )A.1080°B.1260°C.1440°D.1620°10.(3分)如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )A.△ABE≌△ACF B.△BDF≌△CDEC.点D在∠BAC的平分线上D.点D是CF的中点二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)科学家发现一种病毒直径为0.00023微米,则这种病毒的直径用科学记数法可以表示为 微米.12.(3分)方程的解为x= .13.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高,BD=4cm,则BC= cm.14.(3分)运用完全平方公式计算:(﹣3x+2)2= .15.(3分)如图,在△ABC中,BD⊥AD,∠A=15°,AC=BC=6,则BD的长是 .16.(3分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE⊥DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有 .(填写序号)三、解答题(本大题共9小题,共102分)17.(8分)如图,△ABC三个顶点的坐标分别为A(﹣4,﹣2),B(﹣1,﹣1),C(﹣1,﹣4).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上作出一点P,使PA+PB的值最小(保留作图痕迹)18.(6分)计算:(2y+x)(x﹣2y)﹣(2x3y+4xy3)÷2xy.19.(8分)分解因式:(1)4m3n﹣mn3(2)(x﹣1)(x﹣3)+1.20.(8分)先化简(﹣)÷,然后从﹣3,0,1,3四个数中选择一个适当的数作为a的值代入求值.21.(8分)如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE相交于点O,∠BOC=119°.(1)求∠OBC+∠OCB的度数;(2)求∠A的度数.22.(8分)如图,点G.H分别是正六边形ABCDEF的边BC.CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.23.(8分)如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.(1)求证:△BCD是等腰三角形;(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)24.(8分)某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?25.(10分)在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.2016-2017学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列微信按钮图标中,是轴对称图形的是( )A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.2.(3分)已知三角形的两边长分别为6,11,那么第三边的长可以是( )A.3B.4C.5D.6【解答】解:设第三边长为x,由题意得:11﹣6<x<11+6,解得:5<x<17.故选:D.3.(3分)下列计算正确的是( )A.x•x3=x4B.x4+x4=x8C.(x2)3=x5D.x﹣1=﹣x【解答】解:A、x•x3=x4,正确;B、x4+x4=2x4,故此选项错误;C、(x2)3=x6,故此选项错误;D、x﹣1=,故此选项错误;故选:A.4.(3分)分式﹣可变形为( )A.﹣B.C.﹣D.【解答】解:﹣==.故选:B.5.(3分)下列从左到右的运算是因式分解的是( )A.2x2﹣2x﹣1=2x(x﹣1)﹣1B.4a2+4a+1=(2a+1)2C.(a+b)(a﹣b)=a2﹣b2D.x2+y2=(x+y)2﹣2xy【解答】解:A、没把一个多项式转化成几个整式积的形式,故本选项错误;B、把一个多项式转化成几个整式积的形式,故本选项正确;C、是整式的乘法,故本选项错误;D、没把一个多项式转化成几个整式积的形式,故本选项错误;故选:B.6.(3分)若分式有意义,则x的取值范围是( )A.x≠2B.x≠±2C.x≠﹣2D.x≥﹣2【解答】解:∵分式有意义,∴x2﹣4≠0,解得:x≠±2,则x的取值范围是:x≠±2.故选:B.7.(3分)计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )A.B.C.a6b6D.【解答】解:a﹣2b2•(a2b﹣2)﹣2=×=,故选:B.8.(3分)如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( )A.AC=BD B.∠DAB=∠CBA C.∠C=∠DD.BC=AD【解答】解:由题意得,∠ABD=∠BAC,A、在△ABC与△BAD中,,∴△ABC≌△BAD(SAS);故A正确;B、在△ABC与△BAD中,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;故选:D.9.(3分)若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )A.1080°B.1260°C.1440°D.1620°【解答】解:360°÷36°=10,(10﹣2)•180°=1440°.所以多边形的内角和为1440°.故选:C.10.(3分)如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )A.△ABE≌△ACF B.△BDF≌△CDEC.点D在∠BAC的平分线上D.点D是CF的中点【解答】解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC 的平分线上,正确;D、无法判定,错误;故选:D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)科学家发现一种病毒直径为0.00023微米,则这种病毒的直径用科学记数法可以表示为 2.3×10﹣4 微米.【解答】解:0.00023微米,则这种病毒的直径用科学记数法可以表示为2.3×10﹣4微米,故答案为:2.3×10﹣4.12.(3分)方程的解为x= ﹣3 .【解答】解:方程两边同乘以x(x﹣3),得2x=x﹣3,解得x=﹣3.经检验:x=﹣3是原方程的解.13.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高,BD=4cm,则BC= 8 cm.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD=4cm,∴BC=BD+CD=8cm.故答案为8,14.(3分)运用完全平方公式计算:(﹣3x+2)2= 9x2﹣12x+4 .【解答】解:原式=9x2﹣12x+4,故答案为:9x2﹣12x+415.(3分)如图,在△ABC中,BD⊥AD,∠A=15°,AC=BC=6,则BD的长是 3 .【解答】解:如图,∵在△ABC中,∠A=15°,AC=BC,∴∠A=∠CBA=15°,∴∠BCD=∠A+∠CBA=30°.又BD⊥AD,AC=BC=6,∴BC=BC=×6=3.故答案是:3.16.(3分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE⊥DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有 ①②④ .(填写序号)【解答】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.故①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=AD.同理:DF=AD.∴DE+DF=AD.故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠ADF.故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE﹣BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.故答案为①②④三、解答题(本大题共9小题,共102分)17.(8分)如图,△ABC三个顶点的坐标分别为A(﹣4,﹣2),B(﹣1,﹣1),C(﹣1,﹣4).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上作出一点P,使PA+PB的值最小(保留作图痕迹)【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:点P即为所求.18.(6分)计算:(2y+x)(x﹣2y)﹣(2x3y+4xy3)÷2xy.【解答】解:(2y+x)(x﹣2y)﹣(2x3y+4xy3)÷2xy=x2﹣4y2﹣x2﹣2y2=﹣6y2.19.(8分)分解因式:(1)4m3n﹣mn3(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=mn(4m2﹣n2)=mn(2m+n)(2m﹣n);(2)原式=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.20.(8分)先化简(﹣)÷,然后从﹣3,0,1,3四个数中选择一个适当的数作为a的值代入求值.【解答】解:原式=﹣•=3a﹣9﹣2a﹣6=a﹣15,当a=1时,原式=﹣14.21.(8分)如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE相交于点O,∠BOC=119°.(1)求∠OBC+∠OCB的度数;(2)求∠A的度数.【解答】解:(1)∵∠BOC=119°∴△BCO中,∠OBC+∠OCB=180°﹣∠BOC=61°;(2)∵BD平分∠ABC,CE平分∠ACB,∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=122°,∴△ABC中,∠A=180°﹣122°=58°.22.(8分)如图,点G.H分别是正六边形ABCDEF的边BC.CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.【解答】(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH;(2)由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.23.(8分)如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.(1)求证:△BCD是等腰三角形;(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)【解答】(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵DE是AC的垂直平分线,∴AD=DC,∴∠ACD=∠A=36°,∵∠CDB是△ADC的外角,∴∠CDB=∠ACD+∠A=72°,∴∠B=∠CDB,∴CB=CD,∴△BCD是等腰三角形;(2)∵AD=BD=CB=b,△ABD的周长是a,∴AB=a﹣2b,∵AB=AC,∴CD=a﹣3b,∴△BCD的周长长=CD+BD+BC=a﹣3b+b+b=a﹣b.24.(8分)某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?【解答】解:设乙组每小时加工的零件数为x个,则甲组每小时加工零件数为(1+20%)x 个.根据题意得: =+,解得:x=500,经检验,x=500是原方程的解,(1+20%)x=600,答:甲每小时加工600个零件,乙每小时加工500个零件.25.(10分)在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.【解答】解:(1)如图①中,∵∠BAC=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵AM∥BC,∴∠DAB=∠ABC=60°,∵BD=BA,∴△ABD是等边三角形,∴∠ABD=60°,∵∠PDB+∠PAB=180°,∴∠APD+∠ABD=180°,∴∠APD=120°.(2)如图②中,结论:DP=DB.理由:作DM⊥CP于M,DN⊥AB于N.∵∠BAC=90°,∠C=45°,∴∠ABC=∠C=45°,∵AM∥BC,∴∠DAM=∠C=45°,∠DAN=∠ABC=45°,∴AM平分∠BAP,∵DM⊥CP于M,DN⊥AB于N,∴DM=DN,∵∠APD+∠DPM=180°,∠APD+∠DBN=180°,∴∠DPM=∠DBN,在△DMP和△DNB中,,∴△DMP≌△DNB,∴DP=DB.(3)结论:α+β=180°.理由:如图③中,由(2)可知,∠DAP=∠DAB=45°,∵∠PDB+∠BAP=180°,∴A、B、D、P四点共圆,∴∠DPQ=∠BAQ=45°,∵∠1=∠2+∠DPB=∠2+45°,∠3=∠2+∠DAP=∠2+45°,∴∠1=∠3,∵∠3+∠APD=180°,∴∠1+∠APD=180°,即α+β=180.。

八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案

八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案

八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P

M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111

广州市越秀区20192020学年八年级上期末数学试题含解析

广州市越秀区20192020学年八年级上期末数学试题含解析

广州市越秀区2019-2020 学年八年级上期末数学试题含答案解析一、选择题(本题共 10 小题,每题 3 分,满分 30 分,在每题给出的四个选项中,只有一项切合题目要求的)1.以下图形中,拥有稳固性的是( )A .长方形B.梯形C.钝角三角形D.正六边形2.以下图形中,是轴对称图形的是( )A .B .C.D.3.计算( 2a 2)3的结果是 ( )A . 6a 5B. 6a6C. 8a5D. 8a64.假如把分式中的 x 和 y 都扩大 2 倍,那么分式的值 ( )A .不变B.扩大 2 倍C.扩大 4 倍D.减小 2 倍5. PM2.5 是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025 用科学记数法表示为 ( )A .×10﹣5B.×10﹣6C.×10﹣5D.×10﹣66.如图,已知△ AOC≌△ BOD,∠ A=30°,∠ C=20°,则∠ COD=()A . 50°B . 80°C. 100°D. 130°7.如图,在平面直角坐标系中,已知 A ( 0,), B (﹣ 2,﹣),△ABC 是等边三角形, AD 是 BC 边上的高,则点 C 的坐标是 ()A .( 2,﹣)B.(﹣ 2,)C.( 2,﹣ 2) D.(﹣ 2, 2)228.已知( x+y ) =13 ,且( x﹣ y) =5,则 xy 的值是 ( )9.如图,在正五边形ABCDE 中,连结 AD 、 BD ,则∠ ADB 的度数是 ( )A . 18°B . 36°C. 54°D. 72°10.如图,在长方形ABCD 中, AB=4 , AD=6 ,点 E 是线段 AD 上的一个动点,点P 是点A 对于直线BE 的对称点,在点 E 的运动过程中,使△ PBC为等腰三角形的点 E 的地点共有( )A . 1 个 B. 2 个 C. 3 个 D.无数个二、填空题(本大题共 6 小题,每题 3 分,满分18 分 .11.在△ ABC 中, AB=3 ,AC=5 , BC=x ,则 x 的取值范围是__________.12.若分式的值为0,则x的值是__________.13.如图, OA=OB ,要使△ OAC ≌△ OBD ,则需要增添的一个条件是__________ .(只需填写一个条件即可)14.计算( 1+)?的结果是__________.(结果化为最简形式)15.某学校有一块长方形活动场所,宽为 xm ,长是宽的 2 倍,实行“阳光体育”行动此后,学校为了扩大学生的活动场所,让学生能更好地进行体育活动,将活动场所的长和宽都增加了 3m,则活动场所的面积增添了__________m 2.16.如图,在△ ABC 中,∠ C=90 °,∠ C=90°, AB=5 , BC=4 , AC=3 , AD 均分∠BAC 交 BC 于点 D, DE⊥ AB ,垂足为 E,则△ BDE 的周长为 __________.三、解答题(本题共 9 小题,满分 72 分,解答须写出文字说明、推理过程和演算步骤,17.先化简,再求值: [( x+3y )2﹣( x+y )( x ﹣ y )] ÷2y ,此中 x= , y= .18.分解因式:( 1) xy 2﹣ 2xy+x ;( 2) a 3﹣ 4a .19.解分式方程: ﹣ 1= .20.如图,在 △ ABC 中, AD 是 BC 边上的高, AE 是∠ BAC 的均分线,∠ B=50 °, ∠C=70 °,求∠ EAD 的度数. 21.如图,在 △ ABC 中, AB=AC ,点 D( 1)作图,作∠ BAC 的均分线 AO ,交法);在△ ABC 的外面,∠ ACD= ∠B ,∠ ADC=90 °.BC 于点 O (用尺规作图,保存作图印迹,不写作 ( 2)求证: BC=2CD .22.如图,在 3×3 的正方形格纸中,格线的交点称为格点,以格点为极点的三角形称为格点三角形,如图中的 △ ABC 是一个格点三角形,请你在下边四张图中各画出一个与 △ ABC 成轴对称的格点三角形,并用虚线标出它们的对称轴(要求画出的四个格点三角形互不相 同).23.如图,在△ ABC 中, AD ⊥BC ,垂足为 D ,AD=CD ,点 E 在 AD 上, DE=BD , M 、 N 分别是 AB 、CE 的中点.(1)求证:△ ADB ≌△ CDE ;(2)求∠ MDN 的大小.24.一辆汽车开往距离出发地 320km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以本来速度的 1.2 倍匀速行驶,并比原计划提早 30min 抵达目的地,求前一小时的汽车行驶速度.25.如图,线段 AB 与 CD 订交于点 E, AB ⊥BD ,垂足为 B, AC ⊥CD ,垂足为 C.(1)如图 1,若 AB=CD ,∠ BDE=30 °,尝试究线段 DE 与 CE 的数目关系,并证明你的结论;(2)如图 2,若 AB=BD ,∠ BDE=22.5 °,尝试究线段 DE 与 AC 的数目关系,并证明你的结论.-学年八年级(上)期末数学试卷一、选择题(本题共 10 小题,每题 3 分,满分 30 分,在每题给出的四个选项中,只有一项切合题目要求的)1.以下图形中,拥有稳固性的是( )A .长方形B.梯形C.钝角三角形D.正六边形【考点】三角形的稳固性.【剖析】依据三角形拥有稳固性解答.【解答】解:拥有稳固性的是三角形.应选: C.【评论】本题主要考察了三角形的稳固性,是需要识记的内容.2.以下图形中,是轴对称图形的是( )A .B .C.D.【考点】轴对称图形.【剖析】依据轴对称图形的观点对各选项剖析判断即可得解.【解答】解: A 、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.应选 D .【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.23的结果是 ( )3.计算( 2a )5656A . 6a B. 6a C. 8a D. 8a【剖析】依据积的乘方,即可解答.23323=2 ?( a )应选: D.【评论】本题考察了幂的乘方,解决本题的重点是熟记幂的乘方法例.4.假如把分式中的 x和y 都扩大 2 倍,那么分式的值( )A .不变B.扩大 2倍C.扩大 4 倍 D.减小 2 倍【考点】分式的基天性质.【剖析】依题意分别用 2x 和 2y 去代换原分式中的 x 和 y,利用分式的基天性质化简即可.【解答】解:由分式中的x和y都扩大2倍,得=,应选: A .【评论】本题考察了分式基天性质,分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变.5. PM2.5 是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025 用科学记数法表示为 ( )A .×10﹣5B.×10﹣6C.×10﹣5D.×10﹣6【考点】科学记数法—表示较小的数.【专题】惯例题型.a×10﹣n,与较大数【剖析】绝对值小于 1 的正数也能够利用科学记数法表示,一般形式为的科学记数法不一样的是其所使用的是负指数幂,指数由原数左侧起第一个不为零的数字前面的 0 的个数所决定.【解答】解: 0.000 0025=2.5 ×10﹣6;应选: D.a×10﹣n,此中 1≤|a|<10, n【评论】本题考察了用科学记数法表示较小的数,一般形式为为由原数左侧起第一个不为零的数字前面的0 的个数所决定.6.如图,已知△ AOC ≌△ BOD ,∠ A=30 °,∠ C=20°,则∠ COD=()A . 50°B . 80°C. 100°D. 130°【考点】全等三角形的性质.【剖析】依据全等三角形的性质和角的和差获得∠AOC= ∠BOC ,由三角形外角的性质得到∠ AOD= ∠ BOC= ∠ A+ ∠ C=50°,依据平角的定义即可获得结论.【解答】解:∵△ AOC ≌△ BOD ,∴∠ AOC= ∠ BOC,∴∠ AOD= ∠ BOC= ∠ A+ ∠ C=50°,∴∠ COD=180 °﹣∠ AOD ﹣∠ BOC=80 °.应选 B .【评论】本题考察了全等三角形的性质,三角形的内角和,三角形的外角的性质,平角的定义,娴熟掌握全等三角形的性质是解题的重点.7.如图,在平面直角坐标系中,已知 A ( 0,),B(﹣2,﹣),△ABC是等边三角形, AD 是 BC 边上的高,则点 C 的坐标是 ( )A .( 2,﹣)B.(﹣ 2,)C.( 2,﹣ 2) D.(﹣ 2, 2)【考点】等边三角形的性质;坐标与图形性质.【剖析】依据等边三角形的轴对称性质获得点 C 与点 B 对于 y 轴对称,由此求得点 C 的坐标.【解答】解:∵如图,△ ABC 是等边三角形,AD 是 BC 边上的高,∴点 C 与点 B 对于 y 轴对称,又∵ B(﹣ 2,﹣),∴C( 2,﹣).应选: A .【评论】本题考察了等边三角形的性质和坐标与图形性质.娴熟掌握等边三角形的轴对称性质是解题的重点.8.已知( x+y )2=13 ,且( x﹣ y)2=5,则 xy 的值是 ( )A . 8 B. 4 C. 2D. 1【考点】完整平方公式.【剖析】先把所求式子变形为完整平方式,再把题中已知条件代入即可解答.22因此 xy=2 ,应选 C【评论】本题考察了完整平方公式,两数的平方和,再加上或减去它们积的 2 倍,就构成了一个完整平方式,完整平方公式:(a±b)2=a2±2ab+b2.9.如图,在正五边形ABCDE 中,连结 AD 、 BD ,则∠ ADB 的度数是 ( )A . 18°B . 36°C. 54°D. 72°【考点】多边形内角与外角;等腰三角形的性质.【剖析】依据正五边形的性质和内角和为540°△ ADE ≌△ BCD,依据全等三角形的,获得性质获得 AD=BD , AE=DE=BC=CD ,先求出∠ ADE 和∠ BDC 的度数,即可求出∠ ADB 的度数.【解答】解:在正五边形ABCDE 中,∵AE=DE=BC=CD ,∠ E=∠ EDC= ∠ C=108 °,在△ AED 与△ BCD 中,,∴△ ABC ≌△ AED ,∴∠ ADE= ∠ BDC=(180° 108° =36°﹣),∴∠ ADB=108 °﹣ 36°﹣36°=36 °.应选 B .【评论】本题考察了正五边形的性质:各边相等,各角相等,内角和为540°.同时考察了多边形的内角和计算公式,及角互相间的和差关系,有必定的难度.10.如图,在长方形 ABCD 中, AB=4 , AD=6 ,点 E 是线段 AD 上的一个动点,点 P 是点 A 对于直线 BE 的对称点,在点 E 的运动过程中,使△ PBC 为等腰三角形的点 E 的地点共有( )A . 1 个 B. 2 个 C. 3 个 D.无数个【考点】等腰三角形的判断;轴对称的性质.【剖析】分为三种状况:①以 BC 为底时,有两个,是 BC 的垂直均分线与以 B 为圆心BA 为半径的圆的交点;②以 BP 为底, C 为极点时,有两个,是以 B 为圆心 BA 为半径的圆与以 C 为圆心 BC 为半径的圆的交点;③以 CP 为底, B 为极点时,没有,由于是以B为圆心 BA 为半径的圆与以 B 为圆心 BC 为半径的圆没有交点.【解答】解:分为三种状况①以 BC 为底时,是 BC 的垂直均分线与以 B 为圆心 BA 为半径的圆的交点;此时的状况交点只有一个,且在BC 边上,不可以构成三角形.②以 BP 为底, C 为极点时,有两个,是以 B 为圆心 BA 为半径的圆与以 C 为圆心 BC 为半径的圆的交点;③以 CP 为底, B 为极点时,没有,∵是以 B 为圆心 BA 为半径的圆与以 B 为圆心 BC 为半径的圆没有交点;综上知足要求的P 有 2 个,应选: B.【评论】本题考察了矩形的性质,等腰三角形的判断,轴对称的性质等知识点,主要考察学生的理解能力和着手操作能力.二、填空题(本大题共 6 小题,每题 3 分,满分18 分 .11.在△ ABC 中, AB=3 ,AC=5 , BC=x ,则 x 的取值范围是2< x< 8.【考点】三角形三边关系.【剖析】依据三角形的三边关系“随意两边之和大于第三边,随意两边之差小于第三边”,进行剖析求解.【解答】解:依据三角形的三边关系,得5﹣ 3< x< 5+3,即 2< x< 8.故答案为: 2< x< 8.【评论】考察了三角形的三边关系:随意两边之和大于第三边,随意两边之差小于第三边.12.若分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【剖析】分式的值为 0 的条件是:( 1)分子为 0;( 2)分母不为 0.两个条件需同时具备,缺一不行.据此能够解答本题.【解答】解:由分式的值为0,得x+1=0 且 x﹣ 1≠0.解得 x= ﹣ 1,故答案为:﹣ 1.【评论】本题考察了分时价为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为 0;( 2)分母不为0.这两个条件缺一不行.13.如图, OA=OB ,要使△ OAC ≌△ OBD ,则需要增添的一个条件是OC=OD 答案不唯一.(只要填写一个条件即可)【考点】全等三角形的判断.【剖析】要使△ OAC ≌△ OBD ,已知 OA=OB ,∠ AOC= ∠ DOB ,具备了一组边和一组角对应相等,还缺乏边或角对应相等的条件,联合判断方法及图形进行选择即可.【解答】解: OC=OD (或∠ A= ∠ B 或∠ OCA= ∠ ODB )原因以下:加OC=OD ,利用 SAS 证明;加∠ A= ∠ B ,利用 ASA 证明;加∠ OCA= ∠ ODB ,利用 ASA 或 AAS 证明.故答案为 OC=OD ,答案不独一.【评论】本题考察三角形全等的判断方法;判断两个三角形全等的一般方法有:SSS、SAS、 ASA 、 AAS 、 HL .增添时注意: AAA 、 SSA 不可以判断两个三角形全等,不可以增添,依据已知联合图形及判断方法选择条件是正确解答本题的关健.14.计算( 1+)?的结果是3.(结果化为最简形式)【考点】分式的混淆运算.【剖析】先算括号里面的,再算乘法即可.【解答】 解:原式 =?=3.故答案为: 3.【评论】 本题考察的是分式的混淆运算,熟知分式混淆运算的法例是解答本题的重点.15.某学校有一块长方形活动场所,宽为 xm ,长是宽的 2 倍,实行 “阳光体育 ”行动此后,学校为了扩大学生的活动场所,让学生能更好地进行体育活动,将活动场所的长和宽都增2加了 3m ,则活动场所的面积增添了(9x+9 )m .【专题】 应用题.【剖析】 先求出原场所的长以及扩建后长度的长和宽,而后依据矩形的面积公式列出代数式,最后进行化简即可.【解答】 解:扩建前长方形的长为 2xm ,扩建后长方形的长为( 2x+3 ) m ,宽为( x+3 ) m .活动场所增添的面积 =( 2x+3 )( x+3 )﹣ 2x?x=2x 2+3x+6x+9 ﹣ 2x 2. =9x+9 .故答案为; 9x+9 .【评论】 本题主要考察的是列代数式、多项式乘多项式,依据题意列出代数式是解题的重点.16.如图,在 △ ABC 中,∠ C=90 °,∠ C=90°, AB=5 , BC=4 , AC=3 , AD 均分∠ BAC 交 BC 于点 D , DE ⊥ AB ,垂足为 E ,则 △ BDE 的周长为 6.【考点】 角均分线的性质;勾股定理的逆定理.【剖析】 利用已知条件证明 △ADE ≌△ ADC (SAS ),获得 ED=CD ,从而 BC=BD+CD=DE+BD=5 ,即可求得 △ BDE 的周长. 【解答】 解:∵ AD 是∠ BAC 的均分线, ∴∠ EAD= ∠ CAD ,在△ ADE 和△ ADC 中,,∴△ ADE ≌△ ADC ( SAS ), ∴ED=CD ,∴△ BDE 的周长 =BE+BD+ED= (5﹣ 3) +4=6 . 故答案为: 6.【评论】 本题考察了角均分线的定义,全等三角形的性质与判断,解决本题的重点是证明 △ADE ≌△ ADC .三、解答题(本题共 9 小题,满分 72 分,解答须写出文字说明、推理过程和演算步骤,17.先化简,再求值: [( x+3y )2﹣( x+y )( x ﹣ y )] ÷2y ,此中 x= , y= .【考点】 整式的混淆运算 —化简求值.【剖析】 先算乘法,再归并同类项,算除法,最后辈入求出即可.22222=[x +6xy+9y ﹣x +y ] ÷2y2=(6xy+10y ) ÷2y =3x+5y ,当 x= , y= 时,原式 =3× +5× =2.【评论】 本题考察了整式的混淆运算和求值的应用,能正确依据整式的运算法例进行化简是解本题的重点.18.分解因式:( 1) xy 2﹣ 2xy+x ;( 2) a 3﹣ 4a .【考点】 提公因式法与公式法的综合运用. 【专题】 计算题;因式分解.【剖析】 (1)原式提取 x ,再利用完整平方公式分解即可;( 2)原式提取 a ,再利用平方差公式分解即可.【解答】 解:( 1)原式 =x ( y 2﹣ 2y+1 ) =x ( y ﹣1) 2;( 2)原式 =a ( a 2﹣ 4) =a ( a+2)( a ﹣ 2).【评论】 本题考察了提公因式法与公式法的综合运用,娴熟掌握因式分解的方法是解本题的重点.19.解分式方程:﹣ 1= .【考点】 解分式方程.【剖析】 第一得出最简公分母再去分母,从而解方程得出答案. 【解答】 解:去分母得:( x ﹣ 3) x ﹣( x+3 )( x ﹣ 3)=18 ,整理得:﹣ 3x+9=18 , 解得: x= ﹣3,查验:当 x=﹣ 3 时,( x+3 )( x ﹣ 3) =0,故此方程无实数根.【评论】 本题主要考察认识分式方程,正确去分母是解题重点.20.如图,在 △ ABC 中, AD 是 BC 边上的高, AE 是∠ BAC 的均分线,∠ B=50 °, ∠C=70 °,求∠ EAD 的度数.【考点】 三角形内角和定理.【剖析】依据直角三角形两锐角互余求出∠BAD,再依据三角形的内角和等于180°求出∠BAC 的度数,而后依据角均分线的定义求出∠BAE ,再求解即可.【解答】解:∵∠ B=50 °, AD 是 BC 边上的高,∴∠ BAD=90 °﹣ 50°=40 °,∵∠ B=50 °,∠ C=70°,∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 50°﹣ 70°=60 °,∵AE 是∠ BAC 的均分线,∴∠ BAE=∠ BAC=×60°=30°,∴∠ EAD= ∠ BAD ﹣∠ BAE=40 °﹣ 30°=10°.【评论】本题考察了三角形的角均分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角均分线的定义,熟记各性质并正确识图是解题的重点.21.如图,在△ ABC 中, AB=AC ,点 D 在△ ABC 的外面,∠ ACD= ∠B ,∠ ADC=90 °.(1)作图,作∠BAC 的均分线AO ,交 BC 于点 O(用尺规作图,保存作图印迹,不写作法);(2)求证: BC=2CD .【考点】作图—基本作图;全等三角形的判断与性质.【专题】作图题.【剖析】(1)利用基本作图(作已知角的均分线)作AO 均分∠ BAC ;(2)依据等腰三角形的性质可得AO ⊥BC ,BO=CO ,则∠ AOB=90 °,于是可依据“AAS ”判断△ ABO ≌△ ACD ,则 BO=CD ,因此 BC=2CD .【解答】(1)解:如图,AO 为所作;(2)证明:∵ AB=AC ,AO 均分∠ BAC ,∴AO ⊥ BC , BO=CO ,∴∠ AOB=90 °,在△ ABO 和△ ACD 中,,∴△ ABO ≌△ ACD ,∴BO=CD ,∴B C=2CD .【评论】本题考察了基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直均分线;作已知角的角均分线;过一点作已知直线的垂线.也考察了全等三角形的判断与性质.22.如图,在3×3 的正方形格纸中,格线的交点称为格点,以格点为极点的三角形称为格点三角形,如图中的△ ABC 是一个格点三角形,请你在下边四张图中各画出一个与△ ABC 成轴对称的格点三角形,并用虚线标出它们的对称轴(要求画出的四个格点三角形互不同样).【考点】利用轴对称设计图案.【剖析】直接利用轴对称图形的性质分别得出切合题意的答案.【解答】解:以下图:.【评论】本题主要考察了利用轴对称设计图案,正确掌握轴对称图形的性质是解题重点.23.如图,在△ ABC 中, AD ⊥BC ,垂足为 D ,AD=CD ,点 E 在 AD 上, DE=BD , M 、 N 分别是 AB 、CE 的中点.(1)求证:△ ADB ≌△ CDE ;(2)求∠ MDN 的大小.【考点】全等三角形的判断与性质.【剖析】(1)由垂直的定义获得∠ADB= ∠ ADC=90 °,依据已知条件即可获得结论;(2)依据全等三角形的性质获得∠BAD= ∠ DCE ,依据直角三角形的性质获得AM=DM ,DN=CN ,由等腰三角形的性质获得∠MAD= ∠ MDA ,∠ NCD= ∠NDC ,等量代换获得∠ADM= ∠ CDN ,即可获得结论.【解答】(1)证明:∵ AD ⊥ BC ,∴∠ ADB= ∠ ADC=90 °,在△ ABD 与△ CDE 中,,∴△ ABD ≌△ CDE ;(2)解:∵△ ABD ≌△ CDE ,∴∠ BAD= ∠ DCE,∵M 、 N 分别是 AB 、CE 的中点,∴AM=DM , DN=CN ,∴∠ MAD= ∠ MDA ,∠ NCD= ∠ NDC ,∴∠ ADM= ∠CDN ,∵∠ CDN+ ∠ ADN=90 °,∴∠ ADM+ ∠ADN=90 °,∴∠ MDN=90 °.【评论】本题考察了全等三角形的判断和性质,直角三角形的性质,娴熟掌握全等三角形的性质定理是解题的重点.24.一辆汽车开往距离出发地320km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以本来速度的倍匀速行驶,并比原计划提早30min 抵达目的地,求前一小时的汽车行驶速度.【考点】分式方程的应用.【剖析】由题意可知:加快后用的时间 +30分钟 +1 小时 =原计划用的时间,第一求得加快后行驶的行程为320 千米﹣前一小时按原计划行驶的行程,进一步求得时间,成立方程求得答案即可.【解答】解:设前一个小时的均匀行驶速度为x 千米 /时.依题意得:1++ =,解得: x=80.经查验: x=80 是分式方程的解.答:前一个小时的均匀行驶速度为80 千米 / 小时.【评论】本题考察分式方程的实质运用,掌握行程、时间、速度三者之间的关系是解决问题的重点.25.如图,线段AB 与 CD 订交于点 E, AB ⊥BD ,垂足为 B, AC ⊥CD ,垂足为 C.1)如图1AB=CD,∠BDE=30 °DE与CE的数目关系,并证明你的结(,若,尝试究线段论;(2)如图2,若 AB=BD ,∠ BDE=22.5 °,尝试究线段DE 与 AC 的数目关系,并证明你的结论.【考点】全等三角形的判断与性质.【剖析】(1)由垂直的定义获得∠B=∠ C=90°,依据直角三角形的性质获得DE=2BE ,根据三角形的内角和获得∠A= ∠ D=30 °,获得 AE=2CE ,由 AB=CD ,等量代换即可获得结论;(2)连结 AD ,延伸 AC 、 BD 交于 F,依据已知条件获得∠CAE= ∠ BDE=22.5 °,依据等腰直角三角形的性质获得∠ADB=45 °,求得∠ ADC= ∠ ADB ﹣∠ BDE=22.5 °,推出△ACD ≌△ FCD ,即可依据全等三角形的性质获得AC=CF , AF=DE ,等量代换即可获得结论.【解答】解:( 1)DE=2CE ,原因:∵ AB ⊥ BD , AC ⊥CD ,∴∠ B=∠ C=90 °,∵∠ BDE=30 °,∴DE=2BE ,∵∠ AEC= ∠BED ,∴∠ A= ∠ D=30 °,∴AE=2CE ,∵AB=CD ,∴AE+BE=CE+DE ,∴2CE+ DE=CE=DE ,即 DE=2CE ;(2) DE=2AC ,原因:连结AD ,延伸 AC 、 BD 交于 F,∵∠ ACE= ∠DBE=90 °,∠ AEC= ∠ BED ,∴∠ CAE= ∠BDE=22.5 °,∵A B=BD ,∴∠ADB=45 °,∴∠ ADC= ∠ ADB ﹣∠ BDE=22.5 °,在△ ACD 与△ FCD 中,,∴△ ACD ≌△ FCD ,∴A C=CF ,在△ ABF 与△DBE 中,,∴△ ABF ≌△ DBE ,∴A F=DE ,∵AF=2AC ,∴D E=2AC .【评论】本题考察了全等三角形的判断和性质,直角三角形的性质,等腰三角形的性质,娴熟掌握全等三角形的判断定理是解题的重点.。

广州市越秀区八年级上册期末数学试卷(含答案)

广州市越秀区八年级上册期末数学试卷(含答案)

广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)若分式的值为零,则x的值为()A.﹣2 B.±2 C.2 D.13.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0 B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6 D.x2•x4=x84.(3分)下列各因式分解中,结论正确的是()A.x2+5x+6=(x﹣1)(x+6)B.x2﹣x+6=(x+2)(x﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1) D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)5.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和2 B.②和③C.①和③D.①、②和③9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为()A. +20=B. =+C. =+20 D. +=10.(3分)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么x必须满足.12.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n= .13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为cm.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE= cm.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99= .三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2x﹣1)(2x+1)﹣(4x+1)(x﹣1)(2)(x2+x)﹣y(x+2)18.(10分)解下列分式方程:(1)=(2)1﹣=19.(12分)(1)先化简,再求值:(2x+y)(2x﹣y)+(x+y)2﹣5x2,其中x=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE相交于点P,求证:BE=AD.22.(12分)山地自行车越来越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:A型车 B型车进货价格(元) 1100 1400销售价格(元)今年的销售价格 2000试问:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE 的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选A.2.(3分)若分式的值为零,则x的值为()A.﹣2 B.±2 C.2 D.1【解答】解:∵分式的值为零,∴|x|﹣2=0,解得:x=±2.故选:B.3.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0 B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6 D.x2•x4=x8【解答】解:A、原式=a6﹣a6=0,符合题意;B、原式=b2•b4=b6,不符合题意;C、原式=a6•(﹣a6)=﹣a12,不符合题意;D、原式=x6,不符合题意.故选:A.4.(3分)下列各因式分解中,结论正确的是()A.x2+5x+6=(x﹣1)(x+6)B.x2﹣x+6=(x+2)(x﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1)D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)【解答】解:A、原式=(x+2)(x+3),错误;B、原式不能分解,错误;C、原式=(a﹣b+1)(a﹣b﹣1),错误;D、原式═(a+b+3)(a+b﹣1),正确,故选D5.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【解答】解:如下图所示:观察图形可知,四边形剪掉一个角后,剩下的图形可能是五边形,也可能是四边形,还可能是三角形.则剩下的纸片图形是三角形或四边形或五边形.内角和是:180°或360°或540°.故选:D.7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形【解答】解:A、正方形,有4条对称轴;B、正五边形,有5条对称轴;C、正六边形,有6条对称轴;D、正七边形,有7条对称轴.故选:D.8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和2 B.②和③C.①和③D.①、②和③【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选D9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为()A. +20=B. =+C. =+20 D. +=【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+.故选:B.10.(3分)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条【解答】解:如图所示,当CA=CF=3,BC=BD=3,BC=CE=3,BG=CG,都能得到符合题意的等腰三角形.故选C.二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么x必须满足x≠0 .【解答】解:要使分式有意义,那么x必须满足x≠0,故答案为:x≠012.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n= 11 .【解答】解:(n﹣2)•180°﹣4×360°=180°,解得n=11,故答案为:11.13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是18°.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故答案为:18°.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为7 cm.【解答】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE= 2 cm.【解答】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,,∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD﹣DE=BD﹣CD=BC﹣CD﹣CD=2;故答案为2.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99= (a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2x﹣1)(2x+1)﹣(4x+1)(x﹣1)(2)(x2+x)﹣y(x+2)【解答】解:(1)原式=4x2﹣1﹣(4x2﹣4x+x﹣1)=4x2﹣1﹣4x2+4x﹣x+1=3x;(2)原式=(x2+x)•﹣xy﹣2y=2xy+2y﹣xy﹣2y=xy.18.(10分)解下列分式方程:(1)=(2)1﹣=【解答】解:(1)化为整式方程为:x+2=4解得:x=2,检验:把x=2代入x2﹣4=0,所以原方程无解;(2)化为整式方程为:(6x﹣2)﹣2=5解得:x=1.5,检验x=1.5是原方程的解,所以原方程的解是x=1.5.19.(12分)(1)先化简,再求值:(2x+y)(2x﹣y)+(x+y)2﹣5x2,其中x=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.【解答】解:(1)原式=4x2﹣y2+x2+2xy+y2﹣5x2=2xy,当x=3,y=5时,原式=30;(2)原式=•=,当a=﹣时,原式=﹣1.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE相交于点P,求证:BE=AD.【解答】证明:∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.22.(12分)山地自行车越来越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:A型车 B型车进货价格(元) 1100 1400销售价格(元)今年的销售价格2000试问:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600.经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得(1600﹣1100)a+(2000﹣1400)(60﹣a)≥33000,解得:a≤30,故要使这批车获利不少于33000元,A型车至多进30辆.23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE 的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+,∴∠CDE=x,即;(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠AED=y+x,∴.即.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的.1.(3分)已知一个三角形两边的长分别是2和5,那么第三边的边长可能是下列各数中的() A .1B .2C .3D .52.(3分)如图,已知ABC BAD ∠=∠,添加下列条件还不能判定ABC BAD ∆≅∆的是()A .AC BD =B .BC AD =C .CD ∠=∠D .CAB DBA ∠=∠3.(3分)下列运算正确的是( ) A .224a a a += B .33a a a ÷=C .235a a a =D .246()a a =4.(3分)要使分式53xx +有意义,则x 的取值范围是( ) A .3x ≠-B .3x ≠C .0x ≠D .3x ≠±5.(3分)下列变形从左到右一定正确的是( )A .22a a b b -=-B .a ac b bc=C .22a a b b=D .ax a bx b= 6.(3分)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .47.(3分)如图,用尺规作出AOB ∠的角平分线OE ,在作角平分线过程中,用到的三角形全等的判定方法是( )A .ASAB .SSSC .SASD .AAS8.(3分)若等腰三角形中的一个外角等于130︒,则它的顶角的度数是( ) A .50︒B .80︒C .65︒D .50︒或80︒9.(3分)如图,//AD BC ,BG ,AG 分别平分ABC ∠与BAD ∠,GH AB ⊥,5GH =,则AD 与BC 之间的距离是( )A .5B .8C .10D .1510.(3分)若a ,b ,c 是ABC ∆的三边长,且2220a b c ab ac bc ++---=,则ABC ∆的形状是( ) A .等腰三角形 B .等腰直角三角形 C .等边三角形D .不能确定二、填空题:本题共6小题,每小题3分,共18分.11.(3分)如果一个多边形的内角和是1800度,它是 边形.12.(3分)若关于x 的多项式210(x x k k ++为常数)是完全平方式,则k = . 13.(3分)分式3232a b c 与246a ba b c-的最简公分母是 . 14.(3分)若35m =,38n =,则23m n += .15.(3分)点(3,4)-与点2(a ,2)b 关于y 轴对称,则()()a b a b +-= . 16.(3分)如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是 .三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)解方程:3111xx x =-+-. 18.(8分)计算: (1)32(2)3(2)x x x x ---(2)2[(2)(2)(2)]4x y x y x y y +--+÷ 19.(8分)分解因式: (1)269a ab ab -+ (2)22()()x x y y y x -+-20.(6分)如图所示,在ABC ∆中,D 是BC 边上一点12∠=∠,34∠=∠,69BAC ∠=︒,求DAC ∠的度数.21.(10分)(1)先化简再求值:22(1)11x x x -÷+-,其中3x =-; (2)如果2210a a +-=,求代数式24()2a a a a --的值.22.(8分)如图,P 是OC 上一点,PD OA ⊥于D ,PE OB ⊥于E .F 、G 分别是OA 、OB 上的点,且PF PG =,DF EG =. (1)求证:OC 是AOB ∠的平分线.(2)若//PF OB ,且8PF =,30AOB ∠=︒,求PE 的长.23.(8分)如图,在ABC∆中,AB AC=,90BAC∠=︒,点P是直线AC上的动点(不和A、C重合),CD BP⊥于点D,交直线AB于点Q.(1)当点P在边AC上时,求证:AP AQ=(2)若点P在AC的延长线上时,(1)的结论是否成立?若成立,请画出图形(不写画法,画出示意图);若不成立,请直接写出正确结论.24.(8分)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的43倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?25.(10分)如图所示,点O是线段AC的中点,OB AC⊥,9OA=.(1)如图1,若30ABO∠=︒,求证ABC∆是等边三角形;(2)如图1,在(1)的条件下,若点D在射线AC上,点D在点C右侧,且BDQ∆是等边三角形,QC的延长线交直线OB于点P,求PC的长度;(3)如图2,在(1)的条件下,若点M在线段BC上,OMN∆是等边三角形,且点M沿着线段BC从点B运动到点C,点N随之运动,求点N的运动路径的长度.2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的.1.(3分)已知一个三角形两边的长分别是2和5,那么第三边的边长可能是下列各数中的() A .1B .2C .3D .5【解答】解:设第三边的长度为x ,由题意得:5252x -<<+, 即:37x <<, 只有D 选项在范围内. 故选:D .2.(3分)如图,已知ABC BAD ∠=∠,添加下列条件还不能判定ABC BAD ∆≅∆的是()A .AC BD =B .BC AD =C .CD ∠=∠D .CAB DBA ∠=∠【解答】解:A 、当添加AC BD =时,且ABC BAD ∠=∠,AB BA =,由“SSA ”不能证得ABC BAD ∆≅∆,故本选项符合题意;B 、当添加BC AD =时,且ABC BAD ∠=∠,AB BA =,由“SAS ”能证得ABC BAD ∆≅∆,故本选项不符合题意;C 、当添加C D ∠=∠时,且ABC BAD ∠=∠,AB BA =,由“AAS ”能证得ABC BAD ∆≅∆,故本选项不符合题意;D 、当添加CAB DBA ∠=∠时,且ABC BAD ∠=∠,AB BA =,由“ASA ”能证得ABC BAD ∆≅∆,故本选项不符合题意; 故选:A .3.(3分)下列运算正确的是( ) A .224a a a +=B .33a a a ÷=C .235a a a =D .246()a a =【解答】解:A 、2222a a a +=,故A 错误;B 、32a a a ÷=,故B 错误;C 、235a a a =,故C 正确;D 、238()a a =,故D 错误.故选:C . 4.(3分)要使分式53xx +有意义,则x 的取值范围是( ) A .3x ≠-B .3x ≠C .0x ≠D .3x ≠±【解答】解:由题意得:30x +≠, 解得:3x ≠-, 故选:A .5.(3分)下列变形从左到右一定正确的是( )A .22a a b b -=-B .a ac b bc=C .22a a b b=D .ax a bx b= 【解答】解:A 、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A 错误;B 、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C 、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 错误;D 、分子分母都除以x ,分式的值不变,故D 正确;故选:D .6.(3分)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .4【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条; 故选:C .7.(3分)如图,用尺规作出AOB ∠的角平分线OE ,在作角平分线过程中,用到的三角形全等的判定方法是( )A .ASAB .SSSC .SASD .AAS【解答】解:在OCE ∆和ODE ∆中, CO DO EO EO CE DE =⎧⎪=⎨⎪=⎩, ()OCE ODE SSS ∴∆≅∆. 故选:B .8.(3分)若等腰三角形中的一个外角等于130︒,则它的顶角的度数是( ) A .50︒B .80︒C .65︒D .50︒或80︒【解答】解:①当130︒外角是底角的外角时,底角为:18013050︒-︒=︒, ∴顶角度数是180505080︒-︒-︒=︒,②当130︒外角是顶角的外角时,顶角为:18013050︒-︒=︒, ∴顶角为50︒或80︒.故选:D .9.(3分)如图,//AD BC ,BG ,AG 分别平分ABC ∠与BAD ∠,GH AB ⊥,5GH =,则AD 与BC 之间的距离是( )A .5B .8C .10D .15【解答】解:作GE AD ⊥于E ,EG 的延长线交BC 于F ,如图,//AD BC ,GE AD ⊥, EF BC ∴⊥,BG ,AG 分别平分ABC ∠与BAD ∠, 5GE GH ∴==,5GF GH ==,5510EF ∴=+=,即AD 与BC 之间的距离为10. 故选:C .10.(3分)若a ,b ,c 是ABC ∆的三边长,且2220a b c ab ac bc ++---=,则ABC ∆的形状是( ) A .等腰三角形 B .等腰直角三角形 C .等边三角形D .不能确定【解答】解:已知等式整理得:2222222220a b c ab ac bc ++---=, 即222222(2)(2)(2)0a ab b a ac c b bc c -++-++-+=, 变形得:222()()()0a b a c b c -+-+-=,a b c ∴==,则ABC ∆为等边三角形, 故选:C .二、填空题:本题共6小题,每小题3分,共18分.11.(3分)如果一个多边形的内角和是1800度,它是 12 边形. 【解答】解:这个正多边形的边数是n , 则(2)1801800n -︒=︒, 解得:12n =, 则这个正多边形是12. 故答案为:12.12.(3分)若关于x 的多项式210(x x k k ++为常数)是完全平方式,则k = 25 . 【解答】解:关于x 的多项式210x x k ++是完全平方式,22210255x x k x x ∴++=++, 2525k ∴==, 故答案为:25.13.(3分)分式3232a b c 与246a ba b c -的最简公分母是 346a b c . 【解答】解:分式3232a b c 与246a b a b c-的最简公分母是346a b c , 故答案为:346a b c .14.(3分)若35m =,38n =,则23m n += 200 . 【解答】解:35m =,38n =, 2223(3)358200m n m n +∴=⨯=⨯=.故答案为:200.15.(3分)点(3,4)-与点2(a ,2)b 关于y 轴对称,则()()a b a b +-= 1- . 【解答】解:点(3,4)-与点2(a ,2)b 关于y 轴对称,23a ∴=,24b =, 解得3a =±,2b =±.()()(32)(32)341a b a b ∴+-=+-=-=-;或()()(32)(32)341a b a b +-=-+=-=-; 或()()(32)(32)341a b a b +-=-+--=-=-; 或()()(32)(32)341a b a b +-=---+=-=-. 故答案为:1-.16.(3分)如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是 60︒ .【解答】解:作D 关于AC 的对称点G ,D 关于BC 的对称点H ,连接GH 交AC 于E 交BC 于F ,则此时,DEF ∆的周长最小,60A B ∠=∠=︒,DG AC ⊥,DH BC ⊥,30ADG BDH ∴∠=∠=︒,120GDH ∴∠=︒,60H G ∴∠+∠=︒,EG ED =,DF HF =,G GDE ∴∠=∠,H HDF ∠=∠,60HDF GDE ∴∠+∠=︒,60FDE ∴∠=︒,故答案为:60︒.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(6分)解方程:3111x x x =-+-. 【解答】解:去分母得:3(1)(1)(1)(1)x x x x x -=+-+-,解得:2x =,检验:当2x =时,(1)(1)0x x +-≠,∴原分式方程的解是2x =.18.(8分)计算:(1)32(2)3(2)x x x x ---(2)2[(2)(2)(2)]4x y x y x y y +--+÷【解答】解:(1)32(2)3(2)x x x x ---323836x x x =--+3223x x =--;(2)2[(2)(2)(2)]4x y x y x y y +--+÷2222(444)4x y xy x y y =++-+÷2(84)4y xy y =+÷2x y =+.19.(8分)分解因式:(1)269a ab ab -+(2)22()()x x y y y x -+-【解答】解:(1)原式22(169)(13)a b b a b =-+=-;(2)原式222()()()()x x y y x y x y x y =---=-+.20.(6分)如图所示,在ABC ∆中,D 是BC 边上一点12∠=∠,34∠=∠,69BAC ∠=︒,求DAC ∠的度数.【解答】解:12∠=∠,34∠=∠,而312∠=∠+∠,341221∴∠=∠=∠+∠=∠,在ADC ∆中,34180DAC ∠+∠+∠=︒,41180DAC ∴∠+∠=︒,169BAC DAC ∠=∠+∠=︒,11804169∴∠+︒-∠=︒,解得137∠=︒,693732DAC ∴∠=︒-︒=︒.21.(10分)(1)先化简再求值:22(1)11x x x -÷+-,其中3x =-; (2)如果2210a a +-=,求代数式24()2a a a a --的值. 【解答】解:(1)原式1(1)(1)1(1)(1)112122x x x x x x x x x +-+-+--===++, 当3x =-时,原式2=-;(2)2210a a +-=,221a a ∴+=,则原式22224(2)(2)2122a a a a a a a a a a a -+-===+=--. 22.(8分)如图,P 是OC 上一点,PD OA ⊥于D ,PE OB ⊥于E .F 、G 分别是OA 、OB 上的点,且PF PG =,DF EG =.(1)求证:OC 是AOB ∠的平分线.(2)若//PF OB ,且8PF =,30AOB ∠=︒,求PE 的长.【解答】解:(1)证明:在Rt PFD ∆和Rt PGE ∆中,PF PG DF EG =⎧⎨=⎩, Rt PFD Rt PGE(HL)∴∆≅∆,PD PE ∴=,P 是OC 上一点,PD OA ⊥,PE OB ⊥,OC ∴是AOB ∠的平分线.(2)//PF OB ,30AOB ∠=︒,30PFD AOB ∴∠=∠=︒,在Rt PDF ∆中,118422PE PD PF ===⨯=. 23.(8分)如图,在ABC ∆中,AB AC =,90BAC ∠=︒,点P 是直线AC 上的动点(不和A 、C 重合),CD BP ⊥于点D ,交直线AB 于点Q .(1)当点P 在边AC 上时,求证:AP AQ =(2)若点P 在AC 的延长线上时,(1)的结论是否成立?若成立,请画出图形(不写画法,画出示意图);若不成立,请直接写出正确结论.【解答】解:(1)CD BP ⊥90BAC BDQ ∴∠=∠=︒90Q QBD ∴∠+∠=︒,90Q ACQ ∠+∠=︒,QBD ACQ ∴∠=∠,且AB AC =,90BAC QAC ∠=∠=︒,()ABP ACQ ASA ∴∆≅∆AP AQ ∴=;(2)成立理由如下:如图,CD BP ⊥90BAC BDQ ∴∠=∠=︒90Q QBD ∴∠+∠=︒,90Q ACQ ∠+∠=︒,QBD ACQ ∴∠=∠,且AB AC =,90BAC QAC ∠=∠=︒,()ABP ACQ ASA ∴∆≅∆AP AQ ∴=;24.(8分)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的43倍. (1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?【解答】解:(1)该第一批箱装饮料每箱的进价是x 元,则第二批购进(20)x +元, 根据题意,得600048800320x x ⨯=+ 解得:200x =(2)设每箱饮料的标价为y 元,根据题意,得(304010)0.810(136%)(60008800)y y +-+⨯++解得:296y答:至少标价296元.25.(10分)如图所示,点O 是线段AC 的中点,OB AC ⊥,9OA =.(1)如图1,若30ABO ∠=︒,求证ABC ∆是等边三角形;(2)如图1,在(1)的条件下,若点D 在射线AC 上,点D 在点C 右侧,且BDQ ∆是等边三角形,QC 的延长线交直线OB 于点P ,求PC 的长度;(3)如图2,在(1)的条件下,若点M 在线段BC 上,OMN ∆是等边三角形,且点M 沿着线段BC 从点B 运动到点C ,点N 随之运动,求点N 的运动路径的长度.【解答】解:(1)30ABO ∠=︒,OB AC ⊥, 60BAO ∴∠=︒, O 是线段AC 中点,OB AC ⊥, BA BC ∴=,又60BAO ∠=︒, ABC ∴∆是等边三角形;(2)ABC ∆和BDQ ∆为等边三角形, BA BC ∴=,BD BQ =,60BAC ∠=︒,60DBQ ∠=︒, ABD CBQ ∴∠=∠,在BAD ∆和BCQ ∆中,BA BC ABD CBQ BD BQ =⎧⎪∠=∠⎨⎪=⎩,()BAD BCQ SAS ∴∆≅∆60BCQ BAD ∴∠=∠=︒,60BCA ∠=︒,60OCP ∴∠=︒,90POC ∠=︒,30OPC ∴∠=︒,218PC OC ∴==;(3)取BC 的中点H ,连接OH ,连接CN , 则12OH BC BH CH ===, HOC ∴∆为等边三角形,60HOC OHC ∴∠=∠=︒,OH OC =, 当M 在BH 上时,60MON ∠=︒,60HOC ∠=︒, MOH NOC ∴∠=∠,在OMH ∆和ONC ∆中,OM ON MOH NOC OH OC =⎧⎪∠=∠⎨⎪=⎩,()OMH ONC SAS ∴∆≅∆, 120OCN OHM ∴∠=∠=︒, 当点M 与点B 重合时,在OBC ∆和△N BC '中,30BO BN OBC N BC BC BC ='⎧⎪∠=∠'=︒⎨⎪=⎩, OBC ∴∆≅△()N BC SAS '60BCN BCO ∴∠'=∠=︒,120OCN ∴∠'=︒,即C 、N 、N '在同一条直线上, 9CN OC ∴'==,∴点N 从起点到C 作直线运动路径为9, 当M 在HC 上时,OCN ∆为等边三角形, 9CN OC ∴==,∴点N 从C 到终点作直线运动路径长为9 综上所述,N 的路径长度为:9918+=.。

相关文档
最新文档