(完整)初中直线与圆的位置关系经典练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与直线的基本性质

一、定义

[例1]在ABC

Rt∆中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么?

(1)r=2cm;

(2)r=2.4cm;

(3)r=3cm。

[例2]在ABC

∆中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?

[变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】

A.相切B.相离C.相离或相切

D.相切或相交

二、性质

例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】

A.30B.

45

C.

60D.

67.5

例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】

A.80° B.110°

C.120° D.140°

变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°.

例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm ,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.

(1)求证:OM=AN;

(2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD.

(1)求证:BD平分∠ABH;

(2)如果AB=12,BC=8,求圆心O到BC的距离.

三、切线的判定定理:

例1:如图,AB是⊙O的直径,AC和BD是它的两条

切线,CO平分∠ACD.(1)求证:CD是⊙O的切线;

(2)若AC=2,BC=3,求AB的长.

例2:如图,已知AB=AC,∠BAC=120º,在BC上取一点O,以O为圆心OB为半径作圆,

①且⊙O过A点,过A作AD∥BC交⊙O于D,

求证:(1)AC是⊙O的切线;

(2)四边形BOAD是菱形。变式1:如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。

(1)求证:AB是⊙O的切线;

(2)若CD的弦心距为1,BE=EO.求BD的长.

相关文档
最新文档