曲线积分与曲面积分总结

合集下载

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。

(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。

②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。

(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。

例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。

曲线、曲面积分方法小结

曲线、曲面积分方法小结

求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。

例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。

本题以下采用多种方法进行计算。

解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx xx x dy --=⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[dx xx x x dx xx x x xx x ⎰⎰--+----=20220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。

解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--10212dy yy ⎰-=10221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。

曲线积分曲面积分总结

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.第一节 对弧长的曲线积分一、 对弧长的曲线积分的概念与性质在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ.如图13-1我们可以将物体分为n 段,分点为n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ∆∆∆.取其中的一小段弧i i M M 1-来分析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点(),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于(),i i i s ρξη∆.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即()∑=∆≈ni i i i s y x M 1,ρ.用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到1lim (,).ni i i i M s λρξη→∞==∆∑即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到.上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义:定义 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入一点图13-1列n M M M ,...,,21将曲线分为n 个小段. 设第i 段的长度为i s ∆(1,2,,i n =L ),又()i i ηξ,为第i 个小段上任意取定的一点,作乘积()i i i s f ∆ηξ,,并作和()iiini s f ∆∑=ηξ,1,若当各小段的长度λ的最大值趋于零时,此和式的极限存在,称此极限为函数()y x f ,在曲线L 上对弧长的曲线积分, 也称为第一类曲线积分, 记作()⎰L ds y x f ,, 即1(,)lim (,)n i i i Li f x y ds f s λξη→==∆∑⎰,其中()y x f ,叫做被积函数,L 称为积分弧段.当L 是光滑封闭曲线时,记为()⎰Lds y x f ,.类似地,对于三元函数()z y x f ,,在空间的曲线L 上光滑,也可以定义()z y x f ,,在曲线L 上对弧长的曲线积分()⎰Lds z y x f ,,.这样,本节一开始所要求的构件质量就可表示为(,).LM x y ds ρ=⎰由对弧长的曲线积分的定义可以知道,第一类曲线积分具有下面的性质: 性质1(线性性)若,f g 在曲线L 上第一类曲线积分存在,,αβ是常数, 则(,)(,)f x y g x y αβ+在曲线L 上第一类曲线积分也存在,且()()()()(),,,,LLLf x yg x y ds f x y ds g x y ds αβαβ±=±⎰⎰⎰;性质2(对路径的可加性)设曲线L 分成两段12,L L . 如果函数f 在L 上的第一类曲线积分存在,则函数分别在1L 和2L 上的第一类曲线积分也存在. 反之,如果函数f 在1L 和2L 上的第一类曲线积分存在,则函数f 在L 上的第一类曲线积分也存在. 并且下面等式成立1212L L L L fds fds fds +=+⎰⎰⎰.(12L L +表示L )对于三元函数也有类似的性质,这里不再一一列出. 二、 第一类曲线积分的计算定理 设有光滑曲线():,[,].()x t L t y t ϕαβψ=⎧∈⎨=⎩ 即'()t ϕ,'()t ψ连续. 若函数(,)f x y 在L 上连续,则它在L 上的第一类曲线积分存在,且()()()(,,Lf x y ds f t t βαϕψ=⎰⎰证明 如前面定义一样,对L 依次插入121,,...,n M M M -,并设0((),())M ϕαψα=,((),())n M ϕβψβ=. 注意到01.n t t t αβ=<<<=L 记小弧段1i i M M -的长度为i s ∆,那么,1,2,.ii t i t s i n -∆==⎰L1,(').i i t i i i i t s t t τ--∆=<<⎰所以, 当('')i i x ϕτ=,('')i i y ψτ=时,ii i 11(,)((''),(t ,n niiii i f x y s f ϕτψτ==∆=∑∑这里i 1i i i t ',''t .ττ-≤≤ 设ni i i 1f ((''),(i t σϕτψτ==∆∑则有n niiiii i i 1i 1f (x ,y )s f ((''),(t .ϕτψτσ==∆=+∑∑令12n t max{t ,t ,,t },∆=∆∆∆L 要证明的是t 0lim 0.σ∆→=因为复合函数f ((t),(t))ϕψ关于t 连续,所以在闭区间[,]αβ上有界,即存在M ,对一切t [,]αβ∈有|f ((t),(t))|M.ϕψ≤再由[,]αβ上连续,所以它在[,]αβ上一致连续. 即当任给0ε>,必存在0δ>,当t δ∆<时有|.ε≤从而1||().ni i M t M σεεβα=≤∆=-∑所以lim 0.t σ∆→=再从定积分定义得n22i i i i i 0i 1lim f ((''),(''))'('')'('')t t ϕτψτϕτψτ∆→=+∆∑22((),())'()'().f t t t t dt βαϕψϕψ=+⎰所以当n n22iiiii i i i i 1i 1f (x ,y )s f ((''),(''))'('')'('')t ϕτψτϕτψτσ==∆=+∆+∑∑两边取极限后,即得所要证的结果.特别地,如果平面上的光滑曲线的方程为(),,y y x a x b =≤≤则()()()()()2,,1'b Laf x y ds f x y x y x dx =+⎰⎰.例 计算曲线积分⎰Lds y ,其中L 是抛物线2x y =上的点()0,0A 与点()1,1B 之间的一段弧.(如图)图13-2解:积分曲线由方程[]1,0,2∈=x x y给出,所以()()⎰⎰+=1222'1dx x x ds y L12014x dx =+⎰()1241121⎥⎦⎤⎢⎣⎡+=x =()155121-.例 计算积分()22nLxyds +⎰Ñ,其中L 为圆周:sin ,x a t =cos ,y a t =02t π≤≤.解:由于L 为圆周:π20,cos ,sin ≤≤==t t a y t a x ,所以()()()()222220sin cos nnLxyds a t a t π+=+⎰⎰Ñ⎰==ππ20222nn a dt a . 对于三元函数的对弧长的曲线积分,可以类似地计算.例如:若曲线L 由参数方程()()()t z z t y y t x x ===,,,βα≤≤t 确定,则有()()()dt t z t y t x ds 222'''++=,从而()()()()()()()()dt t z t y t x t z t y t x f ds z y x f L⎰⎰++=βα222''',,,,.例13.3 计算曲线积分()⎰Γ++ds z y x222,其中Γ是螺旋线cos ,x a t = sin ,y a t =z kt =上相应于t 从0到π2的一段弧.解:由上面的结论有()()()()()()()dt k t a t a kt t a t a ds z y x⎰⎰++-++=++Γπ20222222222cos sin sin cos()()2222220222224332k a k a dtk a t k aπππ++=++=⎰例 计算2Lx ds ⎰, 其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周.解:由对称性可知222,LLLx ds y ds z ds ==⎰⎰⎰所以22222312().333L L L a x ds x y z ds ds a π=++==⎰⎰⎰习题1. 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度1μ=).2. 计算曲线积分222()x y z ds Γ++⎰,其中Γ为螺旋线cos x a t =,sin y a t =,z kt=上相应于t 从0到2π的一段弧.3. 计算,x Cye dS -⎰其中C 为曲线2ln(1),23x t y arctgt t =+=-+由0t =到1t =间的一段弧.4. 求L xydS ⎰,其中L 是椭圆周22221x y a b+=位于第一象限中的那部分。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分一、 知识要点 1、定义、定理(1)定理1(格林公式):设分段光滑的有向闭曲线L 为有界闭区域D 的正向边界,函数P(x,y),Q(x,y)在D 上具有一阶连续偏导数,则有:⎰⎰⎰+=∂∂-∂∂L DQdy Pdx dxdy yPx Q )((2) 定理2(曲线积分与路径无关的充要条件) :设G 为平面单连通开区域,函数),(y x P ,),(y x Q 在G 内具有连续的一阶偏导数,那么曲线积分⎰+LQdy Pdx 与路径无关xQ yP ∂∂≡∂∂⇔在G 内成立。

(3) 定理3 :设函数),(),,(y x Q y x P 在开区域G 内具有一阶连续偏导,则曲线积分()()dy y x Q dx y x P ,,+ 在G内为某一函数()y x u ,的全微分的充要条件是等式()()x y x Q y y x P ∂∂=∂∂,,在G 内恒成立。

(4)定理4(高斯公式):设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数()z y x P ,,、()z y x Q ,,、()z y x R ,,在Ω上具有一阶连续偏导数,则有⎰⎰⎰⎰⎰Ω∑++=∂∂+∂∂+∂∂Rdxdy Qdxdz Pdydz dv z Ry P x Q )(或()⎰⎰⎰⎰⎰Ω∑++=∂∂+∂∂+∂∂dS R Q P dv z R y P x Q γβαcos cos cos )(,其中,γβαcos ,cos ,cos 为外法向量的方向余弦。

(5)定理4(斯托克斯公式):设L 为分段光滑的空间有向闭曲线,∑是以L 为边界的分片光滑的有向曲面,L 的正向与∑的侧符合右手规则,函数()()()z y x R z y x Q z y x P ,,,,,,、、在包含∑在内的一个空间区域内具有一阶连续偏导数,则有⎰⎰⎰++=∂∂∂∂∂∂∑L Rdz Qdy Pdx R Q P z y x dxdy dzdx dydz ,或⎰⎰⎰++=∂∂∂∂∂∂∑L Rdz Qdy Pdx dS RQ P z y x γβαcos cos cos 2、 公式(1)对弧长的曲线积分的计算公式:(ψϕ,在相应区间上具有一阶连续导数)①若)( )()(:βαψϕ≤≤⎩⎨⎧==t t y t x L ,则dt t t t t f ds y x f L ⎰⎰'+'=βαψϕψϕ)()()](),([),(22 )(βα<②若)( )(:b x a x y L ≤≤=ϕ,则⎰⎰'+=b aL dx x x x f ds y x f )(1)](,[),(2ϕϕ)(b a < ③若)( )(:d y c y x L ≤≤=ψ,则⎰⎰+'=d cL dy x y y f ds y x f 1)()]),([),(2ψψ )(d c <(2)对坐标的曲线积分的计算公式:(ψϕ,在相应区间上具有一阶连续导数)①若):( )()(:βαψϕ→⎩⎨⎧==∧t t y t x AB ,则dt t t t Q t t t P dy y x Q dx y x P AB⎰⎰'+'=+∧βαψψϕϕψϕ)}()](),([)()](),([{),(),( ②若):( )(:b a x x y AB →=∧ϕ,则⎰∧+ABdy y x Q dx y x P ),(),(⎰'+=ba dx x x x Q x x P )}()](,[)](,[{ϕϕϕ ③若):( )(:d c y y x AB →=∧ψ,则⎰∧+ABdy y x Q dx y x P ),(),(()()⎰+'=dcdy y y Q y y y P ]},[)(],[{ψψψ(3)两类曲线积分的转换公式:①()⎰⎰+=+LLds Q P dy y x Q dx y x P βαcos cos ),(),(,其中,()()y x y x ,,βα、为有向曲线弧L 上点()y x ,处的切线向量的方向角。

曲线积分曲面积分公式

曲线积分曲面积分公式

曲线积分曲面积分公式曲线积分和曲面积分是微积分学中重要的概念和计算方法,它们在物理学、工程学、计算机图形学等领域中有广泛的应用。

本文将详细介绍曲线积分和曲面积分的概念、计算方法以及它们的应用。

一、曲线积分1. 概念曲线积分是沿着曲线路径的函数值在该路径上的积分,它可以用来计算曲线上的物理量或计算路径上的某个量的总和。

一条曲线通常可以用参数方程表示,即根据一个或多个参数的变化来描述曲线上的点的坐标。

2. 计算方法曲线积分可以分为第一类曲线积分和第二类曲线积分两种。

第一类曲线积分是对曲线上的函数施加一个标量面积进行积分,计算公式为:∫f(x,y,z) ds其中,f(x,y,z)是曲线上的函数,s是弧长。

第二类曲线积分是对曲线上的矢量场进行积分,计算公式为:∫F·dr 或∫F ds其中,F是曲线上的矢量场,dr是位移矢量,ds是弧长。

3. 应用曲线积分在物理学中有广泛的应用,例如计算电场沿着路径上的功、磁场沿着闭合路径上的环流等。

它还可以用来计算空间曲线上的质心、质量等。

在工程学中,曲线积分可以用来计算管道的流量、线段上的力等。

二、曲面积分1. 概念曲面积分是对曲面上的函数的某个量在整个曲面上的积分,它可以用来计算曲面上的物理量或计算函数在曲面上的平均值。

一般情况下,曲面可以用参数方程表示,即根据两个参数的变化来描述曲面上的点的坐标。

2. 计算方法曲面积分可以分为第一类曲面积分和第二类曲面积分两种。

第一类曲面积分是对曲面上的函数施加一个标量面积进行积分,计算公式为:∬f(x,y,z) dS其中,f(x,y,z)是曲面上的函数,dS是面积元。

第二类曲面积分是对曲面上的矢量场进行积分,计算公式为:∬F·dS 或∬F dS其中,F是曲面上的矢量场,dS是面积元。

3. 应用曲面积分在物理学中有广泛的应用,例如计算电场通过曲面的电通量、磁场通过闭合曲面的磁通量等。

它还可以用来计算物体的总质量、质心等物理量。

高数下第十一章曲线积分与曲面积分

高数下第十一章曲线积分与曲面积分

(3) f ( x, y)ds f ( x, y)ds f ( x, y)ds.
L
L1
L2
(L L1 L2 ).
5、对弧长曲线积分的计算
定理
设 f ( x, y)在曲线弧L上有定义且连续,
L的参数方程为
x y
( t ), ( t ),
( t )其中
(t), (t)在[ , ]上具有一阶连续导数, 且
3、 ( x 2 y 2 )ds,其中 L为曲线 L
x a(cos t t sin t)
y
a(sin
t
t
cos
t
)
(0 t 2 );
练习题答案
1、ea (2 a) 2; 4
2、9;
3. 22a3 (1 22 );
二、对坐标的曲线积分的概念
1. 定义:
函数 P(x,y)在有向曲线弧L上对坐标 x 的曲线积分
线 AB是半径为r 的圆在
第一象限部分.
A
D
o
L
Bx
解 引入辅助曲线L, L OA AB BO
应用格林公式, P 0, Q x 有
dxdy L xdy
D
OA xdy AB xdy BO xdy,
由于 OA
xdy
0,
BO xdy 0,
xdy dxdy 1 r2.
f ( x, y)ds f [ (t), (t)] 2 (t) 2 (t)dt
L
( )
注意: 1. 定积分的下限 一定要小于上限 ;
2. f ( x, y)中x, y不彼此独立, 而是相互有关的.
例1
求I
L xyds,
L
:
椭圆

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]

曲线积分与曲面积分重点总结+例题教学文稿

曲线积分与曲面积分重点总结+例题教学文稿

曲线积分与曲面积分重点总结+例题第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法。

3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。

4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。

【教学重点】1.两类曲线积分的计算方法;2.格林公式及其应用;3. 第一类曲面积分的计算方法;【教学难点】1.两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3.应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.仅供学习与交流,如有侵权请联系网站删除谢谢2仅供学习与交流,如有侵权请联系网站删除 谢谢3[3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、 对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量.把曲线分成n 小段, ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n (∆s i 也表示弧长);任取(ξi , ηi )∈∆s i , 得第i 小段质量的近似值μ(ξi , ηi )∆s i ;整个物质曲线的质量近似为i i i ni s M ∆≈=∑),(1ηξμ;令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n }→0, 则整个物质曲线的质量为i i i ni s M ∆==→∑),(lim 10ηξμλ. 这种和的极限在研究其它问题时也会遇到.定义 设函数f (x , y )定义在可求长度的曲线L 上, 并且有界.,将L 任意分成n 个弧段: ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n , 并用∆s i 表示第i 段的弧长; 在每一弧段∆s i 上任取一点(ξi , ηi ), 作和i i i ni s f ∆=∑),(1ηξ; 令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n }, 如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的仅供学习与交流,如有侵权请联系网站删除 谢谢4曲线积分或第一类曲线积分, 记作ds y x f L),(⎰, 即 i i i n i L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.曲线积分的存在性: 当f (x , y )在光滑曲线弧L 上连续时, 对弧长的曲线积分ds y x f L ),(⎰是存在的. 以后我们总假定f (x , y )在L 上是连续的.根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分ds y x L),(⎰μ的值, 其中μ(x , y )为线密度.对弧长的曲线积分的推广: i i i i n i s f ds z y x f ∆==→Γ∑⎰),,(lim ),,(10ζηξλ. 如果L (或Γ)是分段光滑的, 则规定函数在L (或Γ)上的曲线积分等于函数在光滑的各段上的曲线积分的和. 例如设L 可分成两段光滑曲线弧L 1及L 2, 则规定 ds y x f ds y x f ds y x f L L L L ),(),(),(2121⎰⎰⎰+=+. 闭曲线积分: 如果L 是闭曲线, 那么函数f (x , y )在闭曲线L 上对弧长的曲线积分记作 ds y x f L),(⎰. 对弧长的曲线积分的性质:性质1 设c 1、c 2为常数, 则ds y x g c ds y x f c ds y x g c y x f c LL L ),(),()],(),([2121⎰⎰⎰+=+; 性质2 若积分弧段L 可分成两段光滑曲线弧L 1和L 2, 则ds y x f ds y x f ds y x f L L L ),(),(),(21⎰⎰⎰+=;仅供学习与交流,如有侵权请联系网站删除 谢谢5性质3设在L 上f (x , y )≤g (x , y ), 则⎰⎰≤LL ds y x g ds y x f ),(),(. 特别地, 有⎰⎰≤LL ds y x f ds y x f |),(||),(| 二、对弧长的曲线积分的计算法根据对弧长的曲线积分的定义, 如果曲线形构件L 的线密度为f (x , y ), 则曲线形构件L 的质量为 ⎰Lds y x f ),(. 另一方面, 若曲线L 的参数方程为x =ϕ(t ), y =ψ (t ) (α≤t ≤β),则质量元素为 dt t t t t f ds y x f )()()]( ),([),(22ψϕψϕ'+'=,曲线的质量为 ⎰'+'βαψϕψϕdt t t t t f )()()]( ),([22. 即 ⎰⎰'+'=βαψϕψϕdt t t t t f ds y x f L )()()]( ),([),(22. 定理 设f (x , y )在曲线弧L 上有定义且连续, L 的参数方程为 x =ϕ(t ), y =ψ(t ) (α≤t ≤β),其中ϕ(t )、ψ(t )在[α, β]上具有一阶连续导数, 且ϕ'2(t )+ψ'2(t )≠0, 则曲线积分ds y x f L ),(⎰存在, 且 dt t t t t f ds y x f L )()()](),([),(22ψϕψϕβα'+'=⎰⎰(α<β).仅供学习与交流,如有侵权请联系网站删除 谢谢6应注意的问题: 定积分的下限α一定要小于上限β.讨论:(1)若曲线L 的方程为y =ψ(x )(a ≤x ≤b ), 则ds y x f L),(⎰=? 提示: L 的参数方程为x =x , y =ψ(x )(a ≤x ≤b ), dx x x x f ds y x f ba L ⎰⎰'+=)(1)](,[),(2ψψ. (2)若曲线L 的方程为x =ϕ(y )(c ≤y ≤d ), 则ds y x f L),(⎰=? 提示: L 的参数方程为x =ϕ(y ), y =y (c ≤y ≤d ), dy y y y f ds y x f dc L ⎰⎰+'=1)(]),([),(2ϕϕ. (3)若曲Γ的方程为x =ϕ(t ), y =ψ(t ), z =ω(t )(α≤t ≤β),则ds z y x f ),,(⎰Γ=? 提示: dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψϕωψϕβα'+'+'=⎰⎰Γ. 例1 计算ds y L ⎰, 其中L 是抛物线y =x 2上点O (0, 0)与点B (1, 1)之间的一段弧. 解 曲线的方程为y =x 2 (0≤x ≤1), 因此 ⎰⎰'+=10222)(1dx x x ds y L ⎰+=10241dx x x )155(121-=. 例2 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度为μ=1).解 取坐标系如图所示, 则⎰=Lds y I 2. 曲线L 的参数方程为 x =R cos θ, y =R sin θ (-α≤θ<α).仅供学习与交流,如有侵权请联系网站删除 谢谢7于是 ⎰=L ds y I 2⎰-+-=ααθθθθd R R R 2222)cos ()sin (sin ⎰-=ααθθd R 23sin =R 3(α-sin α cos α). 例3 计算曲线积分ds z y x )(222++⎰Γ, 其中Γ为螺旋线x =a cos t 、y =a sin t 、z =kt 上相应于t 从0到达2π的一段弧.解 在曲线Γ上有x 2+y 2+z 2=(a cos t )2+(a sin t )2+(k t )2=a 2+k 2t 2, 并且 dt k a dt k t a t a ds 22222)cos ()sin (+=++-=,于是 ds z y x )(222++⎰Γ⎰++=π2022222)(dt k a t k a )43(3222222k a k a ππ++=.小结用曲线积分解决问题的步骤:(1)建立曲线积分;(2)写出曲线的参数方程 ( 或直角坐标方程) , 确定参数的变化范围;(3)将曲线积分化为定积分;(4)计算定积分.教学方式及教学过程中应注意的问题在教学过程中要注意曲线积分解决问题的步骤,要结合实例,反复讲解。

曲线积分与曲面积分总结

曲线积分与曲面积分总结

曲线积分与曲面积分总结standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive第十一章:曲线积分与曲面积分一、对弧长的曲线积分 ⎰⎰+=LLy d x d y x f ds y x f 22),(),(若 ⎩⎨⎧==)()(:t y y t x x L βα≤≤t则 原式=dt t y t x t y t x f ⎰'+'βα)()())(),((22对弧长的曲线积分 (,,)((),(),(LLf x y z ds f x t y t z t =⎰⎰若 ():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩βα≤≤t则 原式=((),(),(f x t y t z t βα⎰常见的参数方程为:特别的:22222.2xy LLLe ds e ds e ds e π+===⎰⎰⎰22=2(0)L x y y +≥为上半圆周二、对坐标的曲线积分 ⎰+L dy y x q dx y x p ),(),( 计算方法一: 若 ⎩⎨⎧==)()(:t y y t x x L 起点处α=t ,终点处β=t 则原式=dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'⎰βα对坐标的曲线积分 (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++⎰():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩起点处α=t ,终点处β=t 则原式=((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++⎰计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。

曲面积分曲线积分总结(推荐3篇)

曲面积分曲线积分总结(推荐3篇)

曲面积分曲线积分总结第1篇对坐标积分,第二型积分是有方向的,对应的物理意义是力沿曲线做功两种方法1.根据对称性、代入性 2.采用化为参数方程例题一、曲线L为 \begin {cases} x^2+y^2+z^2=R^2 \\ x+y+z=0 \end{cases} ,计算\int_{L}xyds (代入性、对称性)例题二、L为 \begin {cases} 2x^2+y^2=2\\ z=x \end {cases} ,计算 \oint_{L}(x^2+y^2)ds (转空间曲线为参数方程形式)\oint_{L}\frac{(x+y)dx-(x-y)dy}{x^2+y^2} ,其中L为 x^2+y^2=a^2 的正向直接使用xxx就是“经典错误,标准错误”当 \frac{\partial P}{dy}=\frac{\partial Q}{dx}证明与路径无关,则可以重新选择简单路径,注意选择新的路径时,一定不能含有奇点。

计算 \int_{L} \frac{x-y}{x^2+y^2}dx+\frac{x+y}{x^2+y^2}dy ,L是从A(-a,0)到B(a,0)的椭圆 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(y\geq0,a>0,b>0)的一段。

①当区域里面还有奇点,就采用挖洞法②挖洞有讲究,不能乱挖,最好挖得和分母式子是一样的,比如分母是4x^2+y^2 ,那就挖一个椭圆 4x^2+y^2=\xi^2③挖洞的方向要和所求区域是一致的同学问的题,发现这方面的题还没做到,就写一下例题:计算曲面积分 \oint_{c}(x^2+y^2)^2ds ,其中曲线c为 \begin{cases} x^2+y^2+z^2=1 \\ x=y \end{cases}解释:1投是把积分曲面投影到相应的平面,2代是把需要变的值代换,3微变是变换积分例题、求 \iint_{\Sigma}x\sqrt{y^2+z^2}dS , \Sigma 为 x=\sqrt{y^2+z^2}与x=1围成立体的边界曲面思路:这题不是常规的直接投影到xoy平面,但我们可以通过改变坐标轴来改变积分解释:1投求那个面上的积分就往那个面上投影,2代把不在平面的值代换,3定号看与z轴的夹角,若为锐角则正号,若为钝角,则是负值。

曲线积分曲面积分公式

曲线积分曲面积分公式

曲线积分曲面积分公式曲线积分和曲面积分是数学中重要的概念,在物理学和工程学等领域也有广泛的应用。

本文将以生动、全面和有指导意义的方式介绍曲线积分和曲面积分的公式及其应用。

首先,我们来介绍曲线积分。

曲线积分是沿一个曲线对矢量场进行积分运算的方法。

它可以用于求解电流的环流、质点的环量以及力场中的功等问题。

曲线积分的公式是:∮C F·dr = ∫ab F(r(t))⋅r'(t) dt其中,∮C表示沿曲线C的积分,F是一个矢量场,r(t)是曲线C上的参数化表示,ab是曲线C上的取点区间。

r'(t)是r关于t的导数,表示曲线C的切向量。

这个公式用于计算矢量场F沿曲线C的积分。

曲线积分的计算方法是首先确定曲线C的参数化表示r(t),然后计算矢量场F在曲线C上的取点区间ab的取值并代入公式中进行积分运算。

最后得到曲线C上的积分值。

举个例子来说明曲线积分的应用。

假设有一个力场F(x, y) = (y, x),现在我们需要计算力场F沿曲线C的积分。

曲线C是一个由点A(0, 0)到点B(1, 1)的直线段。

我们可以将这条曲线表示为r(t) = (t, t),其中t的取值范围是0到1。

根据曲线积分的公式,把r(t)代入公式中得到:∫0^1 (t, t)⋅(1, 1) dt = ∫0^1 2t dt = [t^2]0^1 = 1因此,力场F沿曲线C的积分结果为1。

接下来,我们来介绍曲面积分。

曲面积分是对标量场或矢量场在曲面上的积分运算。

它可以用于求解电场的通量、热传导的通量以及流体力学中的流量等问题。

曲面积分的公式有两种情况。

对于标量场的曲面积分,公式如下:∬S f dS = ∫∫S f(r(u, v)) |ru × rv| dudv其中,∬S表示对曲面S的积分,f是一个标量场,r(u, v)是曲面S上的参数化表示,ru和rv是r关于u和v的偏导数,ru × rv 表示曲面S的法向量,|ru × rv|是它的模。

十一章曲线积分与曲面积分

十一章曲线积分与曲面积分

- -第十一章 曲线积分与曲面积分一 、内容提要(一)曲线积分1.第一类曲线积分(对弧长)(1)定义:设),(y x f 是光滑曲线L 上的有界函数,把L 分成n 段,设i 段的弧长为i s ∆(最长者记{}i s ∆=max λ),在其上任取一点),(i i ηξ,则),(y x f 在L 上的第一类(对弧长)曲线积分为 ∑⎰=>-∆=ni i i i Ls f ds y x f 1),(lim ),(ηξλ.(2) 几何意义与物理意义几何意义是柱面面积,该柱面以L 为准线、其母线平行于z 轴、介于平面0=z 和曲面),(y x f z =之间的部分(图10.1). 物理意义是线密度为),(y x f 的物质曲线L 的质量. (3)计算方法 : 即“定限、代入”两步法第一步(定限):写出L 的方程及自变量的变化范围,用不等式表示,例如 βα≤≤t ,并且一定有βα<.第二步(代入):计算出弧长的微分式ds .将L 的方程和ds 一并代人曲线积分公式,即转变为定积分.共有三种形式: 参数式 L : ⎩⎨⎧≤≤==,),(),(βαψϕt t y t x ds t t ds 22))(())((ψϕ'+'=⎰⎰'+'=Ldt t t t t f ds y x f βαψϕψϕ22))(())(())(),((),(;直角坐标 把L :)()(b x a x y ≤≤=ψ看做曲线参数表达式⎩⎨⎧==)(x y xx ψ可以得到如下公式:⎰⎰'+=Lb adx x x x f ds y x f 2))((1))(,(),(ψψ;极坐标 L :,),(βθαθ≤≤=r r θθθd r r ds 22))(()('+=,⎰⎰'+=Ld r r r r f ds y x f βαθθθθθθθ22))(()()sin )(,cos )((),(.2.第二类曲线积分(对坐标)(1)定义 : 设),(y x P 和),(y x Q 是有向光滑曲线L 上的有界函数,把L 分成n 段,设第i段的- -分点为),(i i i y x M ,在弧 ⋂-i i M M 1上任取一点),(i i ηξ,设1--=∆i i i x x x , 1--=∆i i i y y y ,则),(y x P 在L 上对坐标x 的曲线积分是⎰∑=>-∆=Lni i i i x P dx y x P 1),(lim ),(ηξλ;而),(y x Q 在L 上对坐标y 的曲线积分是⎰∑=>-∆=Lni iiiyQ dy y x Q 1),(lim ),(ηξλ;在应用上往往表现为两者的和:⎰⎰⎰+=+LLLdy y x Q dx y x P dyy x Q dx y x P ),(),(),(),((记为).(2)物理意义第二类曲线积分的物理意义是变力j y x Q i y x P F),(),(+=沿有向曲线L 移动所作的功,即⎰⋅=Lr d F W⎰+=L dy y x Q dx y x P ),(),(.其中 j dy i dx r d+= .由微分三角形知ds dy dx r d =+=22,向量r d在切线上.(4)计算方法直接计算 即“定向、代入”两步法. 第一步(定向):写出L 的方程及自变量的变化范围,α和β分别对应L 的起点(下限)和终点(上限).即变量“t 由α向β”积分.与第一类曲线积分不同,在这里可能出现βα>的情况.第二步(代入):把L 的方程及dy dx ,代入被积分式中,即变为定积分,α和β分别是下限和上限.例如, (定向)L :⎩⎨⎧==βαψϕ向由t t y t x ),(),(.(代入)⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),((([.间接计算 主要使用两个重要定理.格林定理 设:① D 是由分段光滑曲线L 围成,L 的方向为正;② ),(y x P 和),(y x Q 在D 上具有一阶连续偏导数.则⎰⎰⎰=⎪⎪⎭⎫⎝⎛∂∂-∂∂=+L D dxdy y P x Q Qdy Pdx dxdy QP y x D⎰⎰∂∂∂∂. 注意 : 如果D 是单连通域,则L 逆时针方向为正.如果D 是复连通域,则 L 的外周界逆时针方向为正,而内周界顺针方向为正.如果L 的方向为负,那么在使用格林时时一定要补加一个负号.与路径无关定理 设:① D 是单连通域,有向曲线L ∈D ;② ),(y x P 和),(y x Q 在D 中有- -连续的偏导数.则⎰+LQdy Pdx 与路径无关<=>yPx Q ∂∂=∂∂ 对于一个第二类曲线积分计算题,如果不宜直接计算或直接计算较繁,就需要计算yPx Q ∂∂∂∂和,依不同情况,或使用格林定理或改变积分路径.(5)曲线积分与全微分的关系设D 是单连通域;P 和Q 具有连续偏导数.则在D 中存在),(y x u 使yPx Q Qdy Pdx du ∂∂=∂∂⇔+= .其计算公式是 ⎰⎰⎰+=+=xx yy y x y x dy y x Q dx y x P dy y x Q dx y x P y x u 000),(),(),(),(),(0),(),(⎰⎰+=y y x x dx y x P dy y x Q 0),(),(0. 3.两类曲线积分之间的转换设曲线了L :)(),(t y t x ψϕ==.在曲线上L 任一点的切向量是=t {)(),(t t ψϕ''},容易求出单位切向量{}ααsin ,cos 0=t,由微分三角形知ααsin ,cos ds dy ds dx ==.将这两式代入第二类曲线积分中得⎰⎰+=+LLds Q P Qdy Pdx ]sin cos [αα如用向量表示,{}{}{}{}ds t ds ds dy dx r d y x r Q P A 0sin ,cos ,,,,, =====αα,于是ds t A r d A LL⎰⎰⋅=⋅0(此式在三维空间也正确).4.常用计算技巧代人技巧 若计算⎰Lds y x f ,),(而L 的方程恰是a y x f =),(,则⎰⎰==LLal ads ds y x f ),((l 是l 的长度).注意: 这种代入技巧在两类曲线积分和两类曲面积分中都适用.但是绝不可以用在重积分上.例如,设D 是由222a y x =+围成的区域,则下面的“代入”是错误的:⎰⎰⎰=+DDdxdy a dxdy y x 222)( 错误的原因是在D 的内部222a y x <+.利用奇偶对称性 第一类曲线积分的奇偶对称性与二重积分类似.设L 关于y 轴对称,则- -⎰⎰⎪⎩⎪⎨⎧=LL x y x f x y x f ds y x f 为偶函数,关于当为奇函数,关于当),(2),(,0),(1其中1L 是L 在y 轴右边的部分.若L 关于x 对称,则有结果类似. 第二类曲线积分的奇偶对称性与第一类曲线积分相反.设L 关于y 轴对称,(1L 是L 在y 轴右边的部分)则⎰⎰⎪⎩⎪⎨⎧=LL x Q x Q dy y x Q 为偶函数。

曲线积分与曲面积分内容小结

曲线积分与曲面积分内容小结

第四章曲线积分与曲面积分内容小结本章介绍了曲线积分与曲面积分。

从数学角度来讲,与重积分类似,曲线积分与曲面积分都就是定积分得推广,它们都就是用于处理非均匀变化,具有可加性得整体量得。

诸如求质量不均匀分布得各种形体得质量,变力所做得功,不均匀流体得流量等,其处理得方法都就是将整体进行分割,在微小得局部取近似,求与,令分割无限变细取极限.正因为曲线、曲面积分得基本思
想与定积分一致,所以它们得定义及性质也与定积分得类似。

本章得重点有两部分,一部分就是曲线、曲面积分得计算,其基本方法就就是转化为定积分或重积分得计算;另一部分就是介绍揭示平面有界闭区域上得二重积分与该区域边界曲线得对坐标得曲线积分之间关系得格林公式与揭示空间有界闭区域上得三重积分与该区域得边界曲面得对坐标得曲面积分之间关系得高斯公式.
一、曲线积分、曲面积分得计算公式
3.对面积得曲面积分
二、格林公式与平面曲线积分与路径无关得条件。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分和曲面积分是微积分中的重要概念,它们在物理、工程等领域中有着广泛的应用。

本文将详细介绍曲线积分和曲面积分的定义、计算方法以及应用。

一、曲线积分曲线积分是沿曲线上的各点对一个矢量场进行积分的操作。

它可以帮助我们计算曲线周围矢量场的某种性质,如流量、环量等。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分又称为曲线上的标量场积分,它的计算只涉及到被积函数。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第一类曲线积分的定义为:∫[f(x,y,z)]•ds=∫[f(x(t),y(t),z(t))•r'(t)]dt其中[f(x,y,z)]为被积函数,ds为曲线C上各点的弧长元素,r'(t)为曲线C在P点处的切向量。

2. 第二类曲线积分第二类曲线积分又称为曲线上的矢量场积分,计算是将矢量场与切向量进行点积。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第二类曲线积分的定义为:∫[F(x,y,z)]•dr=∫[F(x(t),y(t),z(t))•r'(t)]dt其中[F(x,y,z)]为矢量场,dr为曲线C上各点的位置矢量元素,即dr=r'(t)dt。

二、曲面积分曲面积分是在曲面上对一个矢量场或标量场进行积分的操作。

它可以帮助我们计算曲面上矢量场的通量、曲面的面积等。

曲面积分同样可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分又称为曲面上的标量场积分,它的计算只涉及到被积函数。

设曲面S的参数方程为x=g(u,v),y=h(u,v),z=k(u,v),其中D 为曲面S在(u,v)平面上的投影区域。

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分是微积分领域中的重要概念,它们在实际应用中具有广泛的应用,例如在物理、工程、计算机科学等领域中都有重要的应用。

本文将对高等数学曲线积分和曲面积分的概念、计算方法和应用进行总结。

一、曲线积分的概念
曲线积分是指对一维曲线上的点的函数值求导的积分,也称为路径积分。

曲线积分的基本思想是通过对曲线上的点进行积分,得到曲线的面积或体积。

曲线积分的计算公式为:
∫Cf(x,y)dS = ∫∫∫Cf(x^TC(y), y^TC(z))dxdydz
其中,C是曲线,f(x,y)是曲线上的点值函数,T是曲线上的任意一点,S是曲线上的面积,z是曲线上的任意一点。

二、曲面积分的概念
曲面积分是指对三维曲面上的点的函数值求导的积分,也称为向量场积分。

曲面积分的基本思想是通过对曲面上的点进行积分,得到曲面的面积或体积。

曲面积分的计算公式为:
∫∫∫Sf(x,y,z)dsdV = ∫∫∫Sf(x^TS(y^TS(z)))dsdV
其中,S是曲面,f(x,y,z)是曲面上的点值函数,T是曲面上的任意一点,V是曲面上的任意体积,s是曲面上的任意法向量,dV是曲面上的任意体积法向量。

拓展:曲线积分和曲面积分在物理学中的应用
曲线积分和曲面积分在物理学中具有广泛的应用。

例如,在量子力学中,曲线积分被用来计算波函数的面积,而曲面积分被用来计算量子场论的场速可变的相对性原理。

在相对论中,曲线积分被用来计算相对论效应的积分,而曲面积分被用
来计算四维空间中的弯曲曲面。

高数:曲线积分与曲面积分总结

高数:曲线积分与曲面积分总结

与路径无关的四个等价命题
条 件
在单连通开区域D 上 P ( x , y ), Q( x , y ) 具有 连续的一阶偏导数,则以下四个命题成立.
等 (1) 在D内L Pdx Qdy与路径无关
价 命 ( 3) 在D内存在U ( x , y )使du Pdx Qdy
P Q 题 (4) 在D内, y x
三重积分

当 R3 上区域时,
f ( M )d
f ( x , y, z )dV

曲线积分 当 R3 上空间曲线时,


f ( M )d


f ( x , y , z )ds .
曲面积分 当 R3 上曲面时,


f ( M )d
f ( x , y, z )dS .
Rdz

R Q P R Q P ( )dydz ( )dzdx ( )dxdy y z z x x y
斯托克斯
2.二型曲线积分计算
把曲面Σ向yoz , xoz , xoy面投影,得区域 D yz , Dzx , D xy . 进行三个代换, 化为三个坐标面上的二 重积分.
y
x
投影法
(1)把曲面Σ向xoy面投影,得区域D xy
( 2)把曲面Σ的方程z f ( x , y )代入被积函数 .
n { z x , z y ,1},
R( x , y, z )dxdy R( x , y, z ) cos dS
cos

1
2 1 z2 z x y
P[ x ( y , z ), y , z ]dydz Q[ x , y( z , x ), z ]dzdx R[ x , y , z ( x , y )]dxdy

曲线积分与曲面积分总结文字

曲线积分与曲面积分总结文字

曲线积分与曲面积分总结文字曲线积分和曲面积分是微积分中的两个重要概念,它们在物理、工程、数学等领域中都有广泛的应用。

本文将对曲线积分和曲面积分进行总结和介绍。

一、曲线积分曲线积分是对曲线上的函数进行积分的一种方法。

曲线积分可以用来计算曲线上的弧长、质量、电荷等物理量。

曲线积分的计算方法有两种:第一种是参数化曲线积分,第二种是非参数化曲线积分。

1. 参数化曲线积分参数化曲线积分是将曲线表示为参数方程的形式,然后对参数方程中的函数进行积分。

例如,对于曲线C:y=x^2,0≤x≤1,可以将其表示为参数方程C:r(t)=(t,t^2),0≤t≤1。

然后对函数f(x,y)在曲线C上进行积分,可以表示为:∫Cf(x,y)ds=∫1 0f(r(t))|r'(t)|dt其中,|r'(t)|表示曲线C在t时刻的切线长度,也就是曲线的弧长。

参数化曲线积分的计算方法比较简单,但是需要先将曲线表示为参数方程的形式。

2. 非参数化曲线积分非参数化曲线积分是将曲线表示为一般的方程形式,然后对方程中的函数进行积分。

例如,对于曲线C:y=x^2,0≤x≤1,可以将其表示为一般的方程形式C:y=f(x),0≤x≤1。

然后对函数f(x,y)在曲线C上进行积分,可以表示为:∫Cf(x,y)ds=∫1 0f(x,f(x))√(1+(dy/dx)²)dx其中,√(1+(dy/dx)²)表示曲线C在x时刻的切线长度,也就是曲线的弧长。

非参数化曲线积分的计算方法比较复杂,但是可以将曲线表示为一般的方程形式,更加灵活。

二、曲面积分曲面积分是对曲面上的函数进行积分的一种方法。

曲面积分可以用来计算曲面上的面积、质量、电荷等物理量。

曲面积分的计算方法有两种:第一种是参数化曲面积分,第二种是非参数化曲面积分。

1. 参数化曲面积分参数化曲面积分是将曲面表示为参数方程的形式,然后对参数方程中的函数进行积分。

例如,对于曲面S:z=x^2+y^2,0≤x≤1,0≤y≤1,可以将其表示为参数方程S:r(u,v)=(u,v,u^2+v^2),0≤u≤1,0≤v≤1。

高数第十章曲线积分与曲面积分

高数第十章曲线积分与曲面积分

第十章 曲线积分与曲面积分一、对弧长的曲线积分(又称第一类曲线积分) 1、定义ini iiLs f ds y x f ∆ηξλ∑⎰=→=1),(lim),(, i ni i i i s f ds z y x f ∆=∑⎰=→Γ1),,(lim ),,(ζηξλ2、物理意义 线密度为),(y x ρ的曲线L 质量为ds y x M L⎰=),(ρ线密度为),,(z y x f 的曲线Γ质量为ds z y x f M ⎰Γ= ),,(3、几何意义 曲线L 的弧长=s ds L⎰,曲线Γ的弧长ds s ⎰Γ=4、若L :k y x f =),((常数),则ks ds k ds k ds y x f LLL===⎰⎰⎰),(5、计算(上限大于下限)(1),(t) ,(t) :ψϕ==y x L ()βα≤≤t ,则[][][]dt t t t t f ds y x f L22)()()( ),( ),(ψϕψϕβα'+'=⎰⎰(2)L :0()()y x x x X ψ=≤≤,则0(,)[,(XLx f x y ds f x x ψ=⎰⎰(3)L :0()()x y y y Y ϕ=≤≤,则0(,)[(),.Y Ly f x y ds f y y ϕ=⎰⎰(4))().(),(),(:βαωψϕ≤≤===Γt t z t y t x ,则(,,)[(),(),(()f x y z ds f t t t βαϕψωαβΓ=<⎰⎰二、对坐标的曲线积分 1、定义dy y x Q dx y x P L),(),( +⎰[]∑=→+=ni i i i iiiy Q xP 1),(),(lim∆ηξ∆ηξλdz z y x R dy z y x Q dx z y x P ),,(),,(),,(++⎰Γ[]∑=→++=n i i i i i i i i i ii iiz R y Q x P 1),,(),,(),,(lim ∆ζηξ∆ζηξ∆ζηξλ2、计算(下限对应起点,上限对应终点)(1),(t) ,(t) :ψϕ==y x L ()βα→:t ,则(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰(2)L :()y x ψ=()X x t →0:,则{[,()][,()]()}bLa Pdx Qdy P x x Q x x x dx ψψψ'+=+⎰⎰(3)L :()x y ϕ=()Y y t →0:,则{[(),]()[(),]}dLcPdx Qdy P y y y Q y y dy ϕϕϕ'+=+⎰⎰(4)):().(),(),(:βαωψϕ→===Γt t z t y t x ,则(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰ {[(),(),()]()[(),(),()]()[(),(),()]()}P t t t t Q t t t t R t t t t dt βαϕψωϕϕψωψϕψωω'''=++⎰ 3、两类曲线积分之间的联系(cos cos )LLPdx Qdy P Q ds αβ+=+⎰⎰其中,(,),(,)x y x y αβ为有向曲线弧L 上点(,)x y 处的切线向量的方向角。

曲线积分曲面积分公式总结

曲线积分曲面积分公式总结

曲线积分曲面积分公式总结曲线积分是在曲线上计算函数的积分,通常用来计算沿曲线的弧长、质量、电流等物理量。

曲线积分的公式为:1.第一类曲线积分:设曲线为C,参数方程为r(t) = (x(t), y(t), z(t)),函数为f(x, y, z),则第一类曲线积分的公式为:∫[C] f(x, y, z) ds = ∫[a,b] f(r(t)) ||r'(t)|| dt其中,ds表示弧长元素,||r'(t)||表示曲线的切向量的模。

2.第二类曲线积分:设曲线为C,参数方程为r(t) = (x(t), y(t), z(t)),向量场为F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),则第二类曲线积分的公式为:∫[C] F(x, y, z) · dr = ∫[a,b] F(r(t)) · r'(t) dt其中,·表示向量的点乘,dr表示位移向量,r'(t)表示曲线的切向量。

曲面积分是在曲面上计算函数的积分,通常用来计算流量、电通量等物理量。

曲面积分的公式为:1.第一类曲面积分:设曲面为S,参数方程为r(u, v) = (x(u,v), y(u,v), z(u,v)),函数为f(x, y, z),则第一类曲面积分的公式为:∬[S] f(x, y, z) dS = ∬[D] f(r(u, v)) ||ru × rv|| du dv其中,dS表示面积元素,||ru × rv||表示曲面的法向量的模。

2.第二类曲面积分:设曲面为S,参数方程为r(u, v) = (x(u,v), y(u,v), z(u,v)),向量场为F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),则第二类曲面积分的公式为:∬[S] F(x, y, z) · dS = ∬[D] F(r(u, v)) · (ru × rv)du dv其中,·表示向量的点乘,dS表示面积元素,ru和rv分别表示曲面参数u和v方向的偏导数。

曲线积分与曲面积分总结

曲线积分与曲面积分总结

第十一章:曲线积分与曲而积分“・ (x = x(t) c若—)S则原式二£7(曲),w))X(/)+y"M对弧长的曲线积分 J/ /(x, y, z)ds = £ f(x(r), y(r), z(t))yjd2x + cl2y + d2z.X = x(t)L:< y = y(t) a <t < pz = z(/)则原式二J:/(4r),y(0,z(r))J(#a))U + ()())2+(z0))2/常见的参数方程为:特别的:j Q ds = J e2ds =,J ds =孑2TC厶为上半圆周x2 + y2=2 (y > 0)二对坐标的曲线积分 [p^y)dx + q{x9y)dy计算方法一:若L:f=%(Z)起点处t=a,终点处20则 =y(0原式二["(双。

,W))x'("〃 + g(x(f), y(/))y(r”〃对坐标的曲线积分 f P(x, y, z)dx + e(x, y,z)dy + R(x,y,讹J LX = x(t)L:< y = y⑴起点处t =a终点处/ = 0则z = z(/)原式二 J: P(x(/),W),Z(t))x\t\lt + Q(x(f), y(/), z(t))y\t)dt + R(x ⑴,y(/), z ⑴)z‘⑴〃/ 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。

如图:边界特别地:当竺=叟时,积分与路径无关,且 I:;:P(X' y)厶+q(x,y)dy = [ /心 y )dx + J:q(x2, y)dy注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
注:在计算曲面积分时,通过适当得添加平面或曲面,就是之变成一个封闭曲面上得曲面积分与所添加平面或曲面上得曲面积分之差,从而对前者利用高斯公式。
六、高斯公式
其中就是得边界曲面得外侧。
注:在计算曲面积分时,通过适当得添加平面或曲面,就是之变成一个封闭曲面上得曲面积分与所添加平面或曲面上得曲面积分之差,从而对前者利用高斯公式.
第十一章:曲线积分与曲面积分
一、对弧长得曲线积分

则原式=
对弧长得曲线积分

则原式=
常见得参数方程为:
特别得:
二、对坐标得曲线积分
计算方法一:若起点处,终点处 则
原式=
对坐标得曲线积分
起点处,终点处则
原式=
计算方法二:在计算曲线积分时,通过适当得添加线段或曲线,就是之变成一个封闭曲线上得曲线积分与所添加线段或曲线上得曲线积分之差,从而对前者利用格林公式,后者利用参数方程。
如图:
三、格林公式其中L为D得正向边界
特别地:当时,积分与路径无关,

就是某个函数得全微分
注:在计算曲线积分时,通过适当得添加线段或曲线,就是之变成一个封闭曲线上得曲线积分与所添加线段或曲线上得曲线积分之差,从而对前者利用格林公式。
四、对面积得曲特别得:
例:
为上半球面
五、对坐标得曲面积分
1、中,只能为,它在面得投影为,且外法向量与Z轴正向得夹角为锐角,则原式=,否则为负;
2、中,只能为,它在面得投影为,且外法向量与Y轴正向得夹角为锐角,则 原式=,否则为负;
3、中,只能为,它在面得投影为,且外法向量与X轴正向得夹角为锐角,则原式=,否则为负;
计算方法:
相关文档
最新文档