高中物理电磁感应经典计算题
高考物理《法拉第电磁感应定律》真题练习含答案专题
![高考物理《法拉第电磁感应定律》真题练习含答案专题](https://img.taocdn.com/s3/m/ea131500814d2b160b4e767f5acfa1c7aa0082ca.png)
高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。
(完整版)高考物理必做电磁感应大题
![(完整版)高考物理必做电磁感应大题](https://img.taocdn.com/s3/m/9aca839228ea81c758f57890.png)
高考复习物理 电磁感应大题1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。
开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。
已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p ,不计空气阻力及其它电阻。
求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
3、(16分)t =0时,磁场在xOy 平面内的分布如图所示。
其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反。
每个同向磁场区域的宽度均为l 0。
整个磁场以速度v 沿x 轴正方向匀速运动。
⑴若在磁场所在区间,xOy 平面内放置一由n 匝线圈串联而成的矩形导线框abcd ,线框的bc 边平行于x 轴.bc =l B 、ab =L ,总电阻为R ,线框始终保持静止。
高中物理电磁感应经典练习题(含答案)
![高中物理电磁感应经典练习题(含答案)](https://img.taocdn.com/s3/m/5381a24b773231126edb6f1aff00bed5b9f373c3.png)
高中物理电磁感应经典练习题(含答案)问题一在一个磁场强度为 0.5 T 的均匀磁场中,一根长度为 0.3 m 的导线以速率 5 m/s 垂直于磁场的方向进入,而后又以同样的速率垂直于磁场的方向退出。
求导线内的感应电动势大小。
解答:根据法拉第电磁感应定律,感应电动势的大小可以用以下公式表示:E = B * l * v其中,E 为感应电动势的大小,B 为磁场强度,l 为导线长度,v 为导线进出磁场的速率。
代入已知值,可以得到:E = 0.5 T * 0.3 m * 5 m/s = 0.75 V所以,导线内的感应电动势大小为 0.75 V。
问题二一根长度为 0.2 m 的导线以速率 10 m/s 垂直于磁场的方向进入磁感应强度为 0.6 T 的磁场,计算导线内感应电流的大小。
解答:根据法拉第电磁感应定律,感应电流的大小可以用以下公式表示:I = B * l * v其中,I 为感应电流的大小,B 为磁感应强度,l 为导线长度,v 为导线进入磁场的速率。
代入已知值,可以得到:I = 0.6 T * 0.2 m * 10 m/s = 1.2 A所以,导线内感应电流的大小为 1.2 A。
问题三一个直径为 0.4 m 的圆形线圈磁感应强度为 0.8 T 的磁场中转动,每转一圈的时间为 0.5 s。
求圆形线圈内感应电动势的大小。
解答:根据法拉第电磁感应定律,感应电动势的大小可以用以下公式表示:E = B * A * ω * N其中,E 为感应电动势的大小,B 为磁感应强度,A 为线圈面积,ω 为角速度,N 为线圈匝数。
线圈面积可以通过以下公式计算:A = π * r^2其中,r 为线圈半径。
代入已知值,可以得到:A = π * (0.4/2)^2 = 0.04π m^2角速度可以通过以下公式计算:ω = 2π / T其中,T 为每转一圈的时间。
代入已知值,可以得到:ω = 2π / 0.5 s = 4π rad/s代入已知值,可以得到:E = 0.8 T * 0.04π m^2 * 4π rad/s * N感应电动势的大小取决于线圈的匝数,由于未提及线圈匝数,所以无法计算具体的感应电动势大小。
高中物理电磁感应测试题及参考答案
![高中物理电磁感应测试题及参考答案](https://img.taocdn.com/s3/m/67ec0efefad6195f312ba6f8.png)
高中物理电磁感应测试题及参考答案一、单项选择题:(每题3分,共计18分)1、下列说法中正确的有:()A、只要闭合电路内有磁通量,闭合电路中就有感应电流产生B、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流和感应电动势D、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流,但有感应电动势2、根据楞次定律可知感应电流的磁场一定是:()A、阻碍引起感应电流的磁通量;B、与引起感应电流的磁场反向;C、阻碍引起感应电流的磁通量的变化;D、与引起感应电流的磁场方向相同。
3、穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势每秒减少2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势始终为2V4、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是()A. B. C. D.5、如图所示,竖直放置的螺线管与导线abcd构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力()6.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是()二、多项选择题:(每题4分,共计16分)7、如图所示,导线AB可在平行导轨MN上滑动,接触良好,轨道电阻不计电流计中有如图所示方向感应电流通过时,AB的运动情况是:()A、向右加速运动;B、向右减速运动;C、向右匀速运动;D、向左减速运动。
高中物理电磁感应习题
![高中物理电磁感应习题](https://img.taocdn.com/s3/m/b5169f9a50e79b89680203d8ce2f0066f5336432.png)
4、如图所示,光滑导轨竖直放置,匀强磁场的磁感 应强度为B=0.5T,磁场方向垂直于导轨平面向外,导 体棒ab长L=0.2m,电阻R=1.0Ω.导轨电阻不计,当导 体棒紧贴导轨匀速下滑时,均标有“6V 3W”字样的两 小灯泡恰好正常发光,求
(1)通过ab的电流的大小和方向.
(2)ab的运动速度.
B
7、两根相距d=20厘米的平行金属长导轨固定在同一水 平面内,并处于竖直方向的匀强磁场中,磁场的磁感应 强度B=0.20特,导轨上面横放着两条金属细杆构成矩形 回路,两条金属杆的电阻为r=0.25欧,回路中其余部分 的电阻可不计,已知两金属细杆在平行于导轨的拉力的 作用下沿导轨朝相反的方向匀速平移,速度大小都是 v=5.0米/秒,如图4-97所示,不计导轨上的摩擦.
19.如图所示,竖直放置的螺线管与导线abcd构成回路, 导线所围区域内有一垂直纸面向里的变化的匀强磁场, 螺线管下方水平桌面上有一导体圆环,导线abcd所围 区域内磁场的磁感强度按下列哪一图线所表示的方式 随时间变化时,导体圆环将受到向上的磁场作用力
20.如图所示,xoy坐标系y轴左侧和右侧分别有垂直 于纸面向外、向里的匀强磁场,磁感应强度均为B, 一个围成四分之一圆形的导体环oab,其圆心在原点o, 半径为R,开始时在第一象限。从t=0起绕o点以角速 度ω逆时针匀速转动。试画出环内感应电动势E随时 间t而变的函数图象(以顺时针电动势为正)。
30.如图4-72所示,两个互相连接的金属圆环用同样规
(1)求作用于每条金属细杆的拉力的大小.
(2)求两金属细杆在间距增加0.40米的滑动过程中共产 生的热量
8.如图4-89所示,闭合的单匝线圈放在匀强磁场中, 以角速度ω=300弧度/秒绕中心轴oo′逆时针匀速转动 (沿oo′方向看).oo′轴垂直磁场方向.线圈的ab边 长为0.1米,bc边长为0.2米,线圈的总电阻R=0.05欧, B=0.5特.从中性面开始转动,求: (1)单匝线圈的最大感应电动势是多少?位置如何? (2)由中性面开始转过90°时,平均感应电动势是 多少?
高一物理电磁感应现象练习题及答案
![高一物理电磁感应现象练习题及答案](https://img.taocdn.com/s3/m/476a887042323968011ca300a6c30c225901f08c.png)
高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】
![高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】](https://img.taocdn.com/s3/m/8ed96fd6d0d233d4b14e69a9.png)
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
高中物理大题(带答案)——电磁感应
![高中物理大题(带答案)——电磁感应](https://img.taocdn.com/s3/m/8ef4e6cf58fb770bf68a55a0.png)
电磁感应1.【杭州模拟】如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。
一质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。
初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。
整个运动过程中导体棒始终与导轨垂直并保持良好接触。
已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;(3)导体棒最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q。
1.【解析】(1)棒产生的感应电动势E1=BLv0通过R的电流大小根据右手定则判断得知:电流方向为b→a(2)棒产生的感应电动势为E2=BLv感应电流棒受到的安培力大小,方向沿斜面向上,如图所示.根据牛顿第二定律有|mgsinθ-F|=ma解得(3)导体棒最终静止,有mgsinθ=kx弹簧的压缩量设整个过程回路产生的焦耳热为Q0,根据能量守恒定律有解得电阻R上产生的焦耳热2.【雄安新区模拟】如图所示,两平行的光滑金属导轨安装在竖直面上,导轨间距为L、足够长,下部条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直,上部条形匀强磁场的宽度为2d,磁感应强度大小为B0,方向平行导轨平面向下,在上部磁场区域的上边缘水平放置导体棒(导体棒与导轨绝缘),导体棒与导轨间存在摩擦,动摩擦因数为μ。
长度为2d的绝缘棒将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上,导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出),线框的边长为d(d<L),下边与磁场区域上边界重合。
将装置由静止释放,导体棒恰好运动到磁场区域的下边界处返回,导体棒在整个运动过程中始终与导轨接触并且相互垂直。
高考物理:带你攻克电磁感应中的典型例题(附解析)
![高考物理:带你攻克电磁感应中的典型例题(附解析)](https://img.taocdn.com/s3/m/8b62b6e2250c844769eae009581b6bd97f19bc68.png)
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
电磁感应经典高考题综合
![电磁感应经典高考题综合](https://img.taocdn.com/s3/m/2dfda7f40b4e767f5bcfce96.png)
高考电磁感应经典试题(精选)专题训练1.(2013全国新课标理综1第25题)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系。
2.(2012·上海物理)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。
一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。
棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱。
导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。
以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。
在t=0时,一水平向左的拉力F垂直作用在导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。
(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多长时间拉力F达到最大值,拉力F的最大值为多少?(3)某过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。
3.(22分)(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。
如图所示,自行车后轮由半径r1=5.0×10-2m的金属内圈、半径r2=0.40m的金属外圈和绝缘幅条构成。
后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡。
在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=π/6 。
高中物理电磁感应经典计算题
![高中物理电磁感应经典计算题](https://img.taocdn.com/s3/m/3c2d59020066f5335b812127.png)
电磁感应综合练习1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。
导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。
金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。
若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。
2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。
磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。
已知cd 边刚进入磁场时线框恰好做匀速运动。
重力加速度为g 。
(1)求cd 边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。
3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。
高考物理电磁学计算题(五)含答案与解析
![高考物理电磁学计算题(五)含答案与解析](https://img.taocdn.com/s3/m/d0317c1576c66137ee0619d9.png)
高考物理电磁学计算题(五)组卷老师:莫老师一.计算题(共50小题)1.如图甲所示,竖直虚线MN、PQ间有垂直于纸面向里的匀强磁场,MN左侧有水平的平行金属板,板的右端紧靠虚线MN,在两板的电极E、F上加上如图乙所示的电压,在板的左端沿两板的中线不断地射入质量为m,电荷量为+q的带电粒子,粒子的速度均为v0,侧移最大的粒子刚好从板的右侧边缘射入磁场,两板长为L,若远大于T,磁场的磁感应强度为B,U0=不计粒子的重力,求:(1)两板间的距离d为多少?(2)要使所有粒子均不能从边界PQ射出磁场,PQ、MN间的距离至少多大?(3)若将下板下移,则所有粒子进入磁场后,要使所有粒子均不能从边界PQ射出磁场,PQ、MN间的距离又至少为多大?2.如图所示的xoy坐标系中,在第Ⅰ象限内存在沿y轴负向的匀强电场,第Ⅳ象限内存在垂直纸面向外的匀强磁场,一质量为m、电荷量为q的带正电粒子,从y轴上的P点垂直进入匀强电场,经过x轴上的Q点以速度v进入磁场,方向与x轴正向成30°.若粒子在磁场中运动后恰好能再回到电场,已知OQ=3L,粒子的重力不计,求(1)磁感应强度B的大小;(2)粒子从P点运动至第3次到x轴的时间.3.示波器是研究交变电流变化规律的重要仪器,其主要结构可简化为:电子枪中的加速电场、两水平放置的平行金属板中的偏转电场和竖直放置的荧光屏组成,如图所示.若已经加速电场的电压为U1.两平行金属板的板长、板间距离均为d,荧光屏距两平行金属板右侧距离也为d,电子枪发射的质量为m、电荷量为﹣e 的电子,从两平行金属板的中央穿过,打在荧光屏的中点O,不计电子在进入加速电场时的速度及电子重力.若两金属板间只存在竖直方向的匀强电场,两板间的偏转电压为U2,电子会打在荧光屏上某点,该点距O点距离为d,求U1和U2的比值.4.如图所示,两根水平放置的平行金属导轨,其末端连接等宽的四分之一圆弧导轨,圆弧半径r=0.41m,导轨的间距为L=0.5m,导轨的电阻与摩擦均不计.在导轨的顶端接有阻值为R1=1.5Ω的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度B=0.2T,现有一根长度稍大于L、电阻R2=0.5Ω、质量m=1.0kg的金属棒,金属棒在水平拉力F作用下,从图中位置ef由静止开始匀加速运动,在t=0时刻,F0=1.5N,经2.0s运动到cd时撤去拉力,棒刚好能冲到最高点ab、(重力加速度g=10m/s2).求:(1)金属棒做匀加速直线运动的加速度;(2)金属棒运动到cd时电压表的读数;(3)金属棒从cd运动到ab过程中电阻R1上产生的焦耳热.5.法拉第电磁感应定律的发现,建立了电与磁联系,如图所示,一边长为r正方形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过倒下接一对水平放置的平行金属板1、2,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从零开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m,带电量大小为q的液滴以初速度υ0水平向右射入两板间,该液滴(可视为质点)恰好从板1右端边缘射出.(重力不可忽略)(1)判断液滴所带电荷电性.(2)求磁感应强度B随时间t的变化关系.6.如图所示极板PK间为加速电场,极板AB间是偏转电场,A、B两极板长度为L,板间距离为d,.若已知P、K间所加电压为U1,AB板间所加电压为U2.电子经加速电场加速后平行AB板进入偏转电场,且电子能够穿过偏转电场.电子质量为m,电子的电荷量为e.设从P极板出来的电子初速度为0,整个装置处于真空状态.试求:(1)电子经加速电场加速后通过K板的速度υ0;(2)电子在偏转电场中的加速度a;(3)电子从偏转电极出来时的侧移量y.7.如图所示,在xOy坐标系原点O处有一点状的放射源,它向xOy平面内的x 轴上方各个方向发射α粒子,α粒子的速度大小均为v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小为E=,其中q与m分别为α粒子的电量和质量;在d<y<2d的区域内有垂直于xOy平面向里的匀强磁场,mn为电场和磁场的边界线,ab为一块很大的平面感光板垂直于xOy平面且平行于x轴,放置于y=2d处,如图所示,观察发现此时恰好无粒子打到ab板上.(不考虑α粒子的重力及粒子间的相互作用).求:(1)α粒子通过电场和磁场边界mn时距y轴的最大距离;(2)磁感应强度B的大小;(3)将ab板至少向下平移多大距离才能使所有的粒子均能打到板上?8.如图a所示,一对平行光滑导轨固定放置在水平面上,两轨道间距L=0.5m,电阻R=2Ω,有一质量为m=0.5kg的导体棒ab垂直放置在两轨道上,导体棒与导轨的电阻皆可忽略不计,整个装置处在匀强磁场中,磁场方向垂直导轨平面,开始用一个外力F沿轨道方向拉导体棒,使之做初速度为零的匀加速直线运动,外力F与时间t的关系如图b所示,经过一段时间后将外力F撤去,导体棒在导轨上滑行一端距离后停止.要使撤去外力F前导体棒运动时通过电阻R的电量等于撤去外力后导体棒运动时通过电阻R的电量,求:(1)导体棒匀加速直线运动的加速度?(2)匀强磁场的磁感应强度B?(3)外力F作用在导体棒上的时间?9.如图所示,A、B间相距L=6.25m的水平传送带在电机带动下始终以v=3m/s 的速度向左匀速运动,传送带B端正上方固定一挡板,挡板与传送带无限接近但未接触,传送带所在空间有水平向右的匀强电场,场强E=l×l06N/C.现将一质量m=2kg.电荷量q=l×10﹣5C的带正电绝缘小滑块轻放在传送带上A端.若滑块每次与挡板碰后都以原速率反方向弹回,已知滑块与传送带间的动摩擦因数为μ=0.3,且滑块所受最大静摩擦力等于滑动摩擦力,取g=10m/s2.求:(1)滑块放上传送带后瞬间的加速度;(2)滑块第一次反弹后能到达的距B端的最远距离;(3)滑块做稳定的周期性运动后,电机相对于空载时增加的机械功率.10.如图所示,ab、cd为间距l的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,ac间接有阻值为R的电阻,空间存在磁感应强度为B0、方向竖直向上的匀强磁场,将一根阻值为r、长度为l、质量为m的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好。
电磁感应典型题目(含答案)
![电磁感应典型题目(含答案)](https://img.taocdn.com/s3/m/02412202cfc789eb172dc86f.png)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
高中物理之电磁感应解题技巧及相应例题
![高中物理之电磁感应解题技巧及相应例题](https://img.taocdn.com/s3/m/82b94ce8e43a580216fc700abb68a98270feac5f.png)
逐渐增加时,则cd中电流的方向( )
A.无电流产生
B.由d向C C.由C向d D.B、C两情况都有可能
· ·×·×·×·· · · · × ×·×··
解析:
①判断线框所在位置的磁场(原磁场)方向:垂直纸面向外
②判断原磁场磁通量的变化:变大
③判断线框内部感应电流磁场的方向:垂直纸面外里
④由安培定则判断感应电流的方向:由d向C
电磁感应现象
产生感应电流的条件
感应电动 磁通量 感应电流(电
势的大小
动势)的方向
E n
t
BS cos 楞次定律
E Blv sin
应用
右手定则
1
1.磁通量:
1)定义:磁感应强度B与垂直磁场的回路 面积S的乘积.公式为Φ=BS
注意:如果面积S与B不垂直, 如图所示,则应以B乘以在垂 直磁场方向上的投影面积S', 即Φ=BS'=BSsinα
36
楞次定律练习
I
37
例与练
9、如图所示,导线框abcd与导线AB在同一
平面内,直导线中通有恒定电流I,当线框由左向右匀速通
过直导线过程中,线框中感应电流的方向是 A.先abcda,再dcbad,后abcda
D
B.先abcda,再dcbad
C.始终是dcbad D.先dcbad,再abcda,后dcbad
22
一、电磁感应与电路规律的综合
• 问题的处理思路 • 1、确定电源:产生感应电动势的那部分导体
或电路就相当于电源,它的感应电动势就 是此电源的电动势,它的电阻就是此电源 的内电阻。根据法拉第电磁感应定律求出 感应电动势,利用楞次定律确定其正负极. • 2、分析电路结构,画等效电路图. • 3、利用电路规律求解,主要有欧姆定律,串 并联规律等.
高考物理电磁感应练习题及答案
![高考物理电磁感应练习题及答案](https://img.taocdn.com/s3/m/cea1e851cd7931b765ce0508763231126fdb7748.png)
高考物理电磁感应练习题及答案1. 单选题:(1) 当穿过一根金属导线的电流方向改变时,导线中的电磁场磁感应强度的变化过程是:A. 逐渐增大,然后逐渐减小B. 逐渐减小C. 总是不变D. 逐渐增大答案:D(2) 一个圆形回路平面内以T/秒的速度向外运动,一匀强磁场的磁感应强度大小为B,方向垂直于回路平面。
圆形回路中的恒定磁通量的大小等于:A. BTB. BπT^2C. B/TD. B/T^2答案:B(3) 一根长度为l的匀强磁场中有一导线,导线以v的速度作匀速运动。
如果导线与磁感线的夹角为α,则磁感应强度大小的变化率为:A. l/vcosαB. vcosα/lC. v/lcosαD. v/(lcosα)答案:A2. 多选题:(1) 关于法拉第电磁感应定律的描述,下列说法中正确的是:A. 在一个闭合电路中,当磁通量发生变化时,电路中会产生感应电流B. 直流电流产生的磁感应强度可以通过法拉第电磁感应定律计算C. 在一个闭合电路中,当磁感应强度发生变化时,电路中会产生感应电流D. 电流在导体中流动会产生磁场,这是法拉第电磁感应定律的基础答案:A、B(2) 以下哪些现象可以用电磁感应来解释?A. 电动机的工作原理B. 发电机的工作原理C. 变压器的工作原理D. 电磁铁的吸铁石的原理答案:A、B、C3. 计算题:(1) 一根直导线的长度为0.2m,电流强度为2A。
将这根导线竖直放置在一个垂直于地面的匀强磁场中,磁感应强度为0.5T。
求导线上电流产生的磁场的磁感应强度大小。
解答:根据安培定律,导线产生的磁场的磁感应强度大小与电流强度和导线与磁感应强度之间的夹角有关。
在这个问题中,导线与磁场方向垂直,所以夹角为90°。
由于导线长度为0.2m,电流强度为2A,根据毕奥-萨伐尔定律,我们可以使用以下公式来计算导线上电流产生的磁场的磁感应强度大小:磁感应强度大小= (μ0/4π) * (I/l)其中,μ0是真空中的磁导率,其数值为4π * 10^-7 T·m/A,I是电流强度,l是导线长度。
电磁感应经典例题及解析
![电磁感应经典例题及解析](https://img.taocdn.com/s3/m/5c5906a36aec0975f46527d3240c844769eaa003.png)
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】
![高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】](https://img.taocdn.com/s3/m/8ed96fd6d0d233d4b14e69a9.png)
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
(完整版)高中物理电磁感应经典例题总结
![(完整版)高中物理电磁感应经典例题总结](https://img.taocdn.com/s3/m/9e94ee87763231126edb11ef.png)
1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。
当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。
答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。
2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。
则此过程 ( BD )A.杆的速度最大值为B.流过电阻R 的电量为C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量解析:当杆达到最大速度v m 时,022=+--r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式()()rR BdLr R S B r R q +=+=+=∆∆Φ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:K f F E W W W ∆=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。
专练5 电磁感应典题(一)--决胜2021年高考物理二轮复习计算题专练
![专练5 电磁感应典题(一)--决胜2021年高考物理二轮复习计算题专练](https://img.taocdn.com/s3/m/81ac24ee376baf1ffd4fad32.png)
《冲刺高考 摘金夺银》计算题专练之电磁感应典题(一)1.如图甲所示,两根完全相同的光滑平行导轨固定,每根导轨均由两段与水平面成θ=30°的长直导轨和一段圆弧导轨平滑连接而成,导轨两端均连接电阻,阻值R 1=R 2=2Ω,导轨间距L =0.6m .在右侧导轨所在斜面的矩形区域M 1M 2P 2P 1内分布有垂直斜面向上的磁场,磁场上下边界M 1P 1、M 2P 2的距离d =0.2m ,磁感应强度大小随时间的变化规律如图乙所示.t =0时刻,在右侧导轨斜面上与M 1P 1距离s =0.1m 处,有一根阻值r =2Ω的金属棒ab 垂直于导轨由静止释放,恰好独立匀速通过整个磁场区域,取重力加速度g =10m/s 2,导轨电阻不计.求: (1)ab 在磁场中运动速度的大小v ;(2)在t 1=0.1s 时刻和t 2=0.25s 时刻电阻R 1的电功率之比; (3)整个过程中,电路产生的总热量Q .【典题特征】本题涉及到感生电动势、动生电动势,电磁感应的图像、电路、力、运动和能量等除动量外的所有主要知识,而且两个过程中焦耳热的两种不同计算方法,是一道很典型的电磁感应综合题。
【答案】(1)1m/s (2)4:1(3)0.01 J 【解析】 (1)由mgs ·sinθ=12mv 2 得2sin 1m/s v gs θ=⋅=(2)棒从释放到运动至M 1P 1的时间0.2s sin vt g θ==在t 1=0.1 s 时,棒还没进入磁场,有10.6V BE Ld t tϕ∆∆===∆∆ 此时,R 2与金属棒并联后再与R 1串联 R 总=3 Ω1110.4V E U R R== 由图乙可知,t =0.2s 后磁场保持不变,ab 经过磁场的时间'0.2dt s v== 故在t 2=0.25 s 时ab 还在磁场中运动,电动势E 2=BLv =0.6V 此时R 1与R 2并联,R 总=3Ω,得R 1两端电压U 1′=0.2V电功率2U P R =,故在t 1=0. 1s 和t 2=0.25 s 时刻电阻R 1的电功率比值211'221==4P U P U(3)在t =0~0.2s 内:R 2两端的电压U 2=0.2V ,产生的热量22120.004U Q t J R == 在t =0.2s 后:设ab 的质量为m ,ab 在磁场中运动时,通过ab 的电流 2E I R =总由mg sinθ= BIL 解得m =0.024kgab 最终将在M 2P 2下方的轨道区域内往返运动,到M 2P 2处的速度为零,由功能关系得在t =0.2s 后,整个电路最终产生的热量Q =mgd sinθ+12mv 2=0.036J 由电路关系可得R 2产生的热量Q 2=16Q =0.006J 故R 2产生的总热量Q 总= Q 1+ Q 2=0.01 J2.在光滑水平面上,有一个粗细均匀的单匝正方形闭合线框abcd ,在水平外力的作用下,从静止开始沿垂直磁场边界从静止开始向右运动,穿过磁感应强度为B 的有界匀强磁场,磁场区域的宽度大于线框边长,如图甲所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应经典计算题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。
导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。
金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。
若金属棒以v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。
2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。
磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。
已知cd 边刚进入磁场时线框恰好做匀速运动。
重力加速度为g 。
(1)求cd 边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。
3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。
设cd 边刚进入磁场时,线框恰好开始做匀速运动。
(g 取10m /s 2) 求:(1)线框进入磁场前距磁场下边界的距离H 。
(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少?4.如图所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP '是磁场的上边界,磁感应强度为B,方向是水平的,垂直于纸面向里。
在磁场的正上方,有一个位于竖直平面内的a b d cll闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R 。
使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP '为止。
从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q 。
求:(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电量是多少? (2)线框是从cd 边距边界PP'多高处开始下落的? (3)线框的cd 边到达地面时线框的速度大小是多少?6.如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属环,在M 、 N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知 R 1=12R ,R 2=4R 。
在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小 均为B 。
现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。
已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。
(1)求导体棒ab 从A 下落r /2时的加速度大小;(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2;(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。
7. 如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场 Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。
区域中两条平行直光 滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。
ab 棒静 止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量, ab 棒以速度v 1开始向右运动。
(1)求ab 棒开始运动时的加速度大小;(2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间;Hh l 2l 1a b c dP P ′ B(3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。
12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。
试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?13.图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B ,两个区域的高度都为l 。
一质量为m 、电阻为R 、边长也为l 的单匝矩形导线框abcd ,从磁场区上方某处竖直自由下落,ab 边保持水平且线框不发生转动。
当ab 边刚进入区域1时,线框恰开始做匀速运动;当线框的ab 边下落到区域2的中间位置时,线框恰又开始做匀速运动。
求:(1)当ab 边刚进入区域1时做匀速运动的速度v 1;(2)当ab 边刚进入磁场区域2时,线框的加速度的大小与方向; (3)线框从开始运动到ab 边刚要离开磁场区域2时的下落过程中产生的热量Q 。
17.在图甲中,直角坐标系0xy 的1、3象限内有匀强磁场,第1象限内的磁感应强度大小为2B ,第3象限内的磁感应强度大小为B ,磁感应强度的方向均垂直于纸面向里.现将半径为l ,圆心角为900的扇形导线框OPQ 以角速度ω绕O 点在纸面内沿逆时针匀速转动,导线框回路vl a bc d电阻为R .(1)求导线框中感应电流最大值.(2)在图乙中画出导线框匀速转动一周的时间内感应电流I 随时间t 变化的图象.(规定与图甲中线框的位置相对应的时刻为t =0).18.如图甲所示是某同学设计的一种振动发电装置的示意图,它的结构是一个套在辐向形永久磁铁槽中的半径为r=0.10m 、匝数n=20的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示)。
在线圈所在位置磁感应强度B 的大小均为B =0.20T ,线圈的电阻为R 1=0.50Ω,它的引出线接有R 2=9.5Ω的小电珠L 。
外力推动线圈框架的P 端,使线圈沿轴线做往复运动,便有电流通过电珠。
当线圈向右的位移x 随时间t 变化的规律如图丙所示时(x 取向右为正)。
求:⑴线圈运动时产生的感应电动势E 的大小;⑵线圈运动时产生的感应电流I 的大小,并在图丁中画出感应电流随时间变化的图象,至少画出0~0.3s 的图象(在图甲中取电流由C 向上通过电珠L 到D 为正);⑶每一次推动线圈运动过程中作用力F 的大小;⑷该发动机的输出功率P (摩擦等损耗不计)。
/s 0.1 0.2 0.3 0.4 0.5 0.6 丙 /s 乙 甲19.平行轨道PQ 、MN 两端各接一个阻值R 1=R 2=8Ω的电热丝,轨道间距L =1m ,轨道很长,本身电阻不计. 轨道间磁场按如图所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度为2cm ,磁感应强度的大小均为B =1T ,每段无磁场的区域宽度为1cm.导体棒ab 本身电阻r =1Ω,与轨道接触良好. 现让ab 以v =10m/s 的速度向右匀速运动. 求:(1)当ab 处在磁场区域时,ab 中的电流为多大?ab 两端的电压为多大?ab 所受磁场力为多大?(2)整个过程中,通过ab 的电流是否是交变电流?若是,则其有效值为多大?并画出通过ab 的电流随时间的变化图象.20.如图所示,一个被x 轴与曲线方程y =0.2 sin10 x /3(m )所围的空间中存在着匀强磁场.磁场方向垂直纸面向里,磁感应强度B =0.2 T .正方形金属线框的边长是0.40 m ,电阻是0.1 ,它的一条边与x 轴重合.在拉力F 的作用下,线框以10.0 m/s 的速度水平向右匀速运动.试求:(1)拉力F 的最大功率是多少? (2)拉力F 要做多少功才能把线框拉过磁场区?22.用密度为d 、电阻率为ρ、横截面积为A 的薄金属条制成边长为L 的闭合正方形框abb a ''。
如图所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行。
设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计。
可认为方框的aa '边和bb '边都处在磁极之间,极间磁感应强度大小为B 。
方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力)。
⑴求方框下落的最大速度v m (设磁场区域在数值方向足够长);⑵当方框下落的加速度为g /2时,求方框的发热功率P ;⑶已知方框下落时间为t 时,下落高度为h ,其速度为v t (v t <v m )。
若在同一时间t 内,方框内产生的热与一恒定电流I 0在该框内产生的热相同,求恒定电流I 0的表达式。
23.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚无 无 无 1cm R 2cm 2cmR 2 P Q M N v a b …… x y/m O 0.3F 金属方框磁极图2 装置俯视示意图 L a a / b b /S好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f 且线框不发生转动.求: (1)线框在下落阶段匀速进人磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q .参考答案1. (1)金属棒产生的电动势大小为E=B2Lv =0.42V=0.56V(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻大小为 R 并=1.0,根据闭合电路欧姆定律I=rR E +并=0.47A 根据右手定则,电流方向从N 到M(3)导线框消耗的功率为:P 框=I 2R 并=0.22W2.(1)设导线框cd 边刚进入磁场时的速度为v ,则在cd 边进入磁场过程时产生的感应电动势为E =Blv ,根据闭合电路欧姆定律,导线框的感应电流为I=RBlv导线框受到的安培力为F 安= BIl =Rv l B 22,因cd 刚进入磁场时导线框做匀速运动,所以有F 安=mg ,以上各式联立,得:22lB mgRv =。