圆的标准方程说课(朱秀山)
圆的标准方程 说课稿
圆的标准方程说课稿一、教学目标交代本课程的目标,让学生理解圆的标准方程的含义和应用。
二、教学重点教授学生圆的标准方程的推导过程和解题方法。
三、教学难点让学生理解圆的标准方程的几何意义和应用。
四、教学过程1. 引入课程以一道问题为例引入课程:问题:已知一个圆的圆心坐标为(2, 3),半径为4,求圆的标准方程。
通过这个问题,学生可以感受到对于一个圆而言,圆心坐标和半径是非常重要的信息,而圆的标准方程可以把这些信息整合在一起。
2. 回顾坐标系和圆复习直角坐标系的概念,以及点的坐标表示方式。
回顾圆的定义:圆是平面上距离圆心相等的所有点的集合。
3. 推导圆的标准方程在笔记本上画出一个坐标系,然后以圆心为原点,以半径为半径画出一个圆。
让学生观察这个圆,并思考如何用方程来表示它。
引导学生通过观察得出结论:圆上的点到圆心的距离等于半径。
得出圆的标准方程:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径长度。
4. 解题示例通过几个具体的实例,教授学生如何使用圆的标准方程解题。
例1:已知圆心坐标为(3, -2),半径为5,求圆的标准方程。
解答:根据圆的标准方程,将圆心坐标和半径代入公式,得到方程:(x - 3)^2 + (y + 2)^2 = 25。
例2:已知圆的标准方程为(x + 1)^2 + (y - 4)^2 = 16,求圆心坐标和半径。
解答:根据圆的标准方程,通过比较系数得到圆心坐标为(-1, 4),半径为4。
5. 练习题布置一些练习题,让学生运用所学知识解答。
例题:已知圆的标准方程为(x - 2)^2 + (y + 3)^2 = 9,求圆的面积。
解答:通过比较系数得到圆心坐标为(2, -3),半径为3。
圆的面积公式为πr^2,代入半径值计算得到面积为9π。
6. 拓展思考提出一些拓展问题,让学生深入思考和探索。
问题:如何通过圆的标准方程推导出圆的一般方程?引导学生思考,并向学生提供一些线索和指导。
高中数学说课稿:《圆的标准方程》.doc
高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。
下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。
高一必修二《圆的标准方程》的说课稿
高一必修二《圆的标准方程》的说课稿
【小编寄语】数学网小编给大家整理了高一必修二《圆的标准方程》的说课稿,希望能给大家带来帮助!
【一】教学背景分析
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握。
圆的标准方程说课稿
圆的标准方程说课稿圆的标准方程说课稿1(一)说教材1、教材结构编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。
2、教学目标知识目标:(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、(2)已知圆心和半径会写出圆的标准方程、能力目标:(1)培养学生数形结合能力、(2)培养学生应用数学知识解决实际问题的能力情感目标:(1)培养学生主动探究知识,合作交流的意识。
(2)在体验数学美的过程中激发学生学习的兴趣。
3、教学重点(1)圆的标准方程(2)已知圆的标准方程会写出圆的圆心和半径(3)已知圆心坐标和半径会写出圆的标准方程4、教学难点(1)圆的标准方程的推导(2)圆的标准方程的应用(二)说教法本节课采用讲练结合,启发式教学(三)说学法1、主动探究学习2、小组合作学习(四)说教学过程1、导入通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。
2、知识衔接(1)圆的定义,圆上的点具备的特征性质(2)平面上两点间的距离公式通过复习为后边推导圆的标准方程奠定基础,降低难度。
3、新课学习(1)推导圆的标准方程(化解难点)怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。
(2)圆的标准方程(突出重点)先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。
为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。
人教版高中数学必修二《圆的标准方程》说课稿
《圆的标准方程》说课稿说教学目标:本节课的知识目标是:理解掌握圆的定义及标准方程。
能力目标是:能根据圆的标准方程指出圆心和半径;能根据已知条件求圆的标准方程。
情感目标:培养学生勇于发现、勇于探索的精神。
说教学重难点,重点是理解掌握圆的定义及标准方程。
难点是圆的标准方程的推导说教法:本节课主要采用讲练结合法和引导发现法。
说学法:主要采用自主探究法说本节课使用的教具:主要采用多媒体教学说教学过程:一、师生问好 二、复习提问:两点间的距离公式和线段的中点坐标公式。
三、 导入新课用图片导入本节课主要内容㈠ 圆的定义圆是平面内到定点的距离等于定长的点的轨迹。
㈡ 圆的标准方程222()()x a y b r -+-=㈢ 例题讲解及练习例1 写出圆22(2)(1)5x y -++=的圆心的坐标及半径. 解 方程 22(2)(1)5x y -++=可化为 []222(2)(1)x y -+--=,所以 2,1,a b r ==-=,故,圆心的坐标为(2,1)C -,半径为r =.【注意】使用公式(8.8)求圆心的坐标时,要注意公式中两个括号内都是“-”号.练习1:说出圆的圆心坐标及半径(1) (x-1)2+(y-2)2=9 (2) (x+1)2+(y+2)2=4 (3) (x-3)2+y 2=5 (4) x 2+(y+5)2=8 (5) x 2+y 2=16 (6) (x-2)2+(y+8)2=(-6)2例2 设点A(4,3)、B (6,-1),求以线段AB 为直径的圆的标准方程。
解:所求圆的圆心为C ,则C 为线段AB 的中点,半径为线段AB 的长度的一半,即 2211(46)(31)20522r =-++==故所求圆的方程为22(5)(1)5x y -+-=.练习2:1.求以点C(-1,3)为圆心,r=3为半径的圆的标准方程.2. 求以点(-2,5)为圆心,并且过点(3, -7)的圆的标准方程强化练习1.求圆心为点C(2,-3)且过点A (5,1)的圆的标准方程.2.已知点A (1,2),B(3,0),求以AB 为直径的圆的标准方程.四、说课堂小结1.圆的定义 2.圆的标准方程五、说作业布置 读书部分:认真读教材64,65页;预习教材65—66页内容。
高中数学必修第二册上《圆的标准方程》说课稿共23页文档
( 7 ,10)的切线的方程。
引导:你打算怎样求过P点的切线方程?
斜率怎样求?
启发:已知条件有哪些?能利用吗? 不妨结合图形来看看(如图),圆 的切线有怎样的性质?
y P
•
o
x
设计意图:通过教师的引导,启发学生,让他们自己观察、
探索,自己分析、解决相关问题。
2、变式题.
①求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方
程。
答案:(x-1)2 + (y-3)2 = 256/25
②已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。
答案: C(a,0), r=|a|
设计意图:互动练习,旨在理解巩固圆的标准方程
例题分析、巩固应用
学法分析
学生是主体,教师起引导作 用,启发他们,让他们自己 观察、类比、猜想、尝试、 探索、归纳并引导加以证明, 自己分析、解决相关问题。 为此,我想应充分调动学生 学习的积极性,引导他们自
ab
己动手、动脑、动口,分析、 讨论,得出结论。通过反馈 练习,指导学生尽快克服难 点。
教学程序
I. 引入课题 II. 讲授新课 III. 学生练习 IV. 课时小结 V. 课后作业
①圆心在原点,半径是3:
____________X_2_+_y_2=_9_________
②圆心在点C(3,4),半径是 5 :______(x_-_3_)2_+_(_y_-4_)_2=__5_____
③经过点P(5,1),圆心在点C(8,-3):_(x_-_8)_2_+_(_y+__3_)2_=_2_5_
《圆的标准方程》说课稿范文
《圆的标准方程》说课稿《圆的标准方程》说课稿范文作为一位杰出的老师,常常要根据教学需要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那要怎么写好说课稿呢?以下是小编为大家收集的《圆的标准方程》说课稿范文,希望能够帮助到大家。
一、说教材:1.地位及作用:“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的.学习打好基础,因此本节内容具有承前启后的作用。
2.教学目标:根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:(a)培养学生灵活应用知识的能力。
(b)培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3.重点、难点和关键点:因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
二、说教材处理为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:1.学生状况分析及对策:2.教材内容的组织和安排:本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业三、说教法和学法1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。
《圆的标准方程》说课稿
《圆的标准方程》说课稿把握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.下面是小编精心收集的《圆的标准方程》说课稿,希望能对你有所帮助。
《圆的标准方程》说课稿一、教材分析1、教材的地位与作用《圆的标准方程》是在学习《直线与方程》等知识的基础上对解析几何进一步深入认识,提高学生运用方程思想、等价转化思想、数形结合的思想研究解析几何的能力,为后来进一步学习圆锥曲线奠定基础。
2、学习重点、难点学习重点:圆的标准方程的求法及其应用。
学习难点:如何运用坐标法研究圆的问题。
二、教学目标:1、知识目标:让学生理解圆的标准方程的推导,并能正确使用标准方程解决简单问题。
2、能力目标:①进一步培养学生用坐标法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。
3、情感目标:①培养学生勇于探究问题的能力,学会在错误中反思并获得学习自信;②增强学生学习的积极性,提高学习的乐趣。
三、教法、学法分析1、学情分析学习基础:学生在初中时对圆有了初步的认识,学生通过必修二的第三章“直线的方程”的学习,对解析法有了初步认识,但是对于解析几何的解题方法,学生接触不多;学习障碍:对同一问题的不同分析方法形成思维的多样性较弱。
2、教法学生为主体的探究性学习模式。
四、教学过程(一)创设情境(引入课题)画一画:分别由两个学生在黑板上各画一个圆。
问题1:初中几何中圆的定义是什么?确定圆的要素有几个?问题2:我们如何用坐标法来研究圆呢?(小组交流,学生代表到台前讲述)(二)深入探究(探究圆的方程,获得新知)方法一:坐标法:由两点间的距离公式,方法二:图形变换法;方法三:向量平移法(三)应用举例(巩固提高)I.直接应用(内化新知)例1.写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(设计意图:几何法角度分析点与圆的位置关系:讨论圆心离原点的距离d与半径r的大小;坐标法角度分析点与圆的位置关系:讨论将点的坐标代人方程的式子与II.灵活应用(提升能力)例2.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上,求圆心为C的圆的标准方程。
《圆的标准方程》说课稿(通用)
学生参与度高
3
通过引导学生参与课堂讨论和练习,使学生能够 更加积极地参与到学习中来,提高了学生的学习 效果。
2024/1/28
20
存在问题剖析
2024/1/28
部分学生基础薄弱
01
部分学生在初中阶段对圆的知识掌握不够扎实,导致在学习圆
的标准方程时存在困难。
练习题难度不够
02
本次教学中,练习题的难度相对较低,没有充分考虑到学生的
在线题库
利用在线题库资源,供学生练习和巩固圆的方程相关知识,提高解 题能力。
26
THANKS
2024/1/28
27
数学文化
引入与圆相关的数学文化,如圆周率、圆的美学价值等,拓宽学生的 数学视野。
2024/1/28
25
网络资源利用
2024/1/28
网络课程
推荐优质的网络课程资源,如慕课、微课等,供学生自主学习和 拓展知识。
数学软件
介绍数学软件在圆的方程教学中的应用,如GeoGebra、Desmos 等,提高学生的实践能力和数学素养。
案例法
通过展示具体案例,让学 生感受圆的标准方程在实 际问题中的应用,加深对 知识的理解和记忆。
13
学生活动安排
01
观察与思考
引导学生观察圆形物体或图案 ,思考圆形的特征和描述方法 ,培养学生的观察能力和思维
能力。
02
小组合作探究
组织学生进行小组合作探究, 共同探讨圆的标准方程的特点 和规律,培养学生的合作精神
练习法
布置相关练习题,让学生在实践中巩固 所学知识。
9
教学手段运用
多媒体辅助教学
利用PPT、视频等多媒体手段,展示 圆的图形、动画等,帮助学生直观 理解圆的概念和性质。
圆的标准方程说课稿
《圆的标准方程》说课稿《圆的标准方程》说课稿(第一课时)大家好,我今天说课的题目是圆的标准方程。
下面我将从以下几个方面来阐述我的教学设计。
一、教材分析《圆的标准方程》选基础模块下册第八章第4节的内容,在此之前我们学了直线方程,圆的标准方程是是进一步学习圆的一般方程、直线与圆的位置关系的基础,所以本节内容在整个解析几何中起着承前启后的作用。
二、学情分析我教授的是幼教二年级的学生,他们在知识、能力和情感上有以下特征。
在新课开始之前教师借助“问卷星”创建网络问卷,通过微信将问卷发布到班级微信群,学生填写提交。
老师在手机浏览每一份问卷,并获得详细的统计分析报告,准确了解学生知识准备情况。
三、教学目标依据教学大纲和新课程理念,结合本专业学生的认知特点,我确定本节课的教学目标如下:四、重点、难点分析重点:圆的标准方程的推导和初步运用。
难点:利用待定系数法求圆的标准方程,五、教法学法分析结合本节课的教学目标,我主要采用了以下教学策略,本着以学生发展为核心的理念,我引导学生形成以下几种学习方法下面我将着重阐述我教学过程设计。
六、教学过程设计(一)课前诊测,扫除障碍根据课前调查了解的情况,学生对两点间距离公式有关知识不太熟悉了。
我制作微课以便学生在线学习。
课前教师通过问卷星设计课前检测,让学生可以在线答题。
(二)创设情境,导入新课通过播放赵州桥的视频,设置问题引起学生思考。
使学生感受到数学源于生活,学会用数学的眼光去关注生活,体现了数学的应用价值。
(三)合作交流,探究新知本环节旨在探究圆的标准方程,整个教学环节分三步完成。
第一步,深入探究圆的定义我指出“不以规矩,无以成方圆。
”要求学生用圆规在直角坐标系中作出一个圆,我又利用几何画板演示了一遍圆的定义。
让他们尝试回忆出圆的定义,最后说出完整的圆的定,也为下一步方程的推导奠定了基础。
第二步,探究圆的标准方程中职学生数学基础薄弱,很大部分原因是没有建立基本数学思维,因此我让他们自学圆的标准方程的推导过程。
圆的标准方程说课稿
圆的标准方程说课稿各位评委:晚上好!今天我说课的课题是《圆的标准方程》。
下面我对本课题进行分析:首先是我的说课思路:是1、教材分析2、教法分析3、学法分析4、教学过程5、板书设计。
一、教材分析1、教材的地位与作用《圆的标准方程》是人教版必修教材第7章第6节的第1个课题。
在此之前,学生已经学习了曲线及其方程,这为过渡到本课题起到铺垫的作用。
同时,学好本课题为今后学习圆锥曲线及其方程奠定了基础,所以本课题在整个教材中起到承上启下的作用。
2、教学目标根据本教材的结构和内容分析,结合高二年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:(1)知识目标①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程③利用圆的标准方程解决简单的实际问题。
(2)能力目标①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解;③增强学生用数学的意识。
(3)情感目标①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
3、教学重难点⑴重点:圆的标准方程的求法及其简单应用;⑵难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题。
二、教法分析我们都知道数学是一门培养人的逻辑思维能力的重要学科。
因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。
我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。
为了充分调动学生学习的积极性,本节课采用“启发式”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
借助创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
三、学法分析通过推导圆的标准方程,求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。
通过应用圆的标准方程,使学生认识到数学在实际问题中的应用。
四、教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
圆的标准方程说课稿
圆的标准方程我说课的内容是《圆的标准方程》,下面我将从教材、学情、教学目标、教学方法与手段、教学过程、板书设计和教学反思等几个方面来阐述我对这节课的分析和设计。
一、教材分析《圆的方程》是人教版高中数学必修二第四章《圆与方程》第一节的内容。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.计划安排两课时,本节是圆的标准方程的第一课时。
二、学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.因此,计划与学生一起推导圆的标准方程,以便学生进一步了解坐标在解决实际问题中的运用.推导出圆的标准方程后,加强对圆是标准方程的直接运用的练习题,通过这样的训练来达到让学生充分掌握圆的标准方程的形式的目的.三、教学目标1. 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。
2.能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。
3.情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
四、教学重点与难点(1)重点:会根据不同的已知条件求圆的标准方程。
(2)难点:求点的轨迹方程方法的理解及灵活应用已知条件求圆的方法。
五、教法学法分析1.教法分析:为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
圆的标准方程说课稿01
关于圆的标准方程的说课稿一、教材分析1、教材所处的地位和作用:《圆的标准方程》,是高中数学教材第二册上册第7 章第 6 节第1课时.在学生初中已经学习了圆的概念和基本性质,本章第五节又掌握了求曲线方程的一般方法的基础上进行研究的.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,在整个解析几何中起着承前启后的作用.2、教育教学目标:根据教材分析,结合教学大纲的要求,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③能够利用圆的标准方程解决简单的实际问题.(2)、能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生的数学应用意识.(3)、情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.3、重点,难点分析:由于学生对于坐标法求曲线方程还不熟练,圆的概念和求曲线方程的步骤可能遗忘,所以本课的重点是(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.(解决办法:(1)通过设问,消除障碍;(2)通过练习、巩固重点.)本课的难点是运用圆的标准方程解决一些简单的实际问题.二:教法分析如何突出重点,突破难点,从而实现教学目标。
我在教学过程中拟计划进行如下操作:通过创设情景积极培养学生学习兴趣和动机,充分调动学生的学习积极性,激发来自学生主体的最有力的动力.本节课设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。
应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了兴趣、增强了信心。
《圆的标准方程》说课稿和教案
《圆的标准方程》的说课稿各位评委、老师们,大家好!今天我说课的题目是《圆的标准方程》,按大纲要求《圆的方程》这一节共分三课时,我今天要说的是第一课时的内容——圆的标准方程.下面我将从三个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、和从纵、横两条主线分别阐述我的教学过程与设计.首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明.【一】教学背景分析1、教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点: 圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求r、的过程.ba、下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?0x y r M(x,y)C(a,b)通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD 的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为r 的圆的方程?2.如果圆心在),(b a ,半径为r 时又如何呢? 这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I .直接应用 内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点)1,5(P ,圆心在点)3,8( C . yx0B A 2.74C D2.写出圆222)2()2(-=++y x 的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II .灵活应用 提升能力问题四 1.求以点)3,1(C 为圆心,并且和直线0743=--y x 相切的圆的方程.2.求过点)4,1(C ,圆心在直线03=-y x 上且与y 轴相切的圆的方程.3.已知圆的方程为2522=+y x ,求过圆上一点)3,4(-A 的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是什么? 我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III .实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到0.01m ).我选用了教材的例3,它是待定系数法求出圆的三个参数r b a 、、的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点),(11P ,且圆心在直线0132=++y x 上的圆的标准方程.2.求圆1322=+y x 过点)3,2(-P 的切线方程.3.求圆2522=+y x 过点)2,5(-B 的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为),(b a C ,半径为r 的圆的标准方程为:222)()(r b y a x =-+- ;圆心在原点时,半径为r 的圆的标准方程为:222r y x =+.②已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是:200r y y x x =+.2.分层作业 (A )巩固型作业:教材P81-82:(习题7.6)1,2,4.(B )思维拓展型作业:试推导过圆222)()(r b y a x =-+-上一点),(00y x M 的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程0208622=++-+y x y x 表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.谢谢大家!《圆的标准方程》教案一、教学目标(一)知识教学点使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.(二)能力训练点通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.(三)学科渗透点圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.二、教材分析1.重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.(解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解.)2.难点:运用圆的标准方程解决一些简单的实际问题.(解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简单,最后解决实际问题.)三、活动设计问答、讲授、设问、演板、重点讲解、归纳小结、阅读.四、教学过程(一)复习提问前面,大家学习了圆的概念,哪一位同学来回答?问题1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明.其中步骤(1)(3)(4)必不可少.下面我们用求曲线方程的一般步骤来建立圆的标准方程.(二)建立圆的标准方程1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).2.写点集根据定义,圆就是集合P={M||MC|=r}.3.列方程由两点间的距离公式得:4.化简方程将上式两边平方得:(x-a)2+(y-b)2=r2.(1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.这时,请大家思考下面一个问题.问题5:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.(三)圆的标准方程的应用例1写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.教师纠错,分别给出正确答案:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5;指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(x+4)2+(y+3)2=7;(3)(x+2)2+ y2=4教师指出:已知圆的标准方程,要能够熟练地求出它的圆心和半径.例3 (1)已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解(1):分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决.解法一:(学生口答)设圆心C(a,b)、半径r,则由C为P1P2的中点得:又由两点间的距离公式得:∴所求圆的方程为:(x-5)2+(y-6)2=10分析二:从图形上动点P性质考虑,用求曲线方程的一般方法解决.解法二:(给出板书)∵直径上的四周角是直角,∴对于圆上任一点P(x,y),有PP1⊥PP2.化简得:x2+y2-10x-12y+51=0.即(x-5)2+(y-6)2=10为所求圆的方程.解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点M在圆上,点N在圆外,点Q在圆内.这时,教师小结本题:1.求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法.2.点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上d=r;(2)点在圆外d>r;(3)点在圆内d<r.3.以A(x1,y1)、B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0(证明留作作业)例4图2-10是某圆拱桥的—孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01m).此例由学生阅读课本,教师巡视并做如下提示:(1)先要建立适当直角坐标系,使圆的标准方程形式简单,便于计算;(2)用待定系数法求圆的标准方程;(3)要注意P2的横坐标x=-2<0,纵坐标y>0,所以A2P2的长度只有一解.(四)本课小结1.圆的方程的推导步骤;2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.五、布置作业1.求下列条件所决定的圆的方程:(1)圆心为 C(3,-5),并且与直线x-7y+2=0相切;(2)过点A(3,2),圆心在直线y=2x上,且与直线y=2x+5相切.2.已知:一个圆的直径端点是A(x1,y1)、B(x2,y2).证明:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.4.赵州桥的跨度是37.4m,圆拱高约为7.2m,求这座圆拱桥的拱圆的方程.作业答案:1.(1)(x-3)2+(y+5)2= 322.因为直径的端点为A(x1,y1)、B(x2,y2),则圆心和半径分别为所以圆的方程为化简得:x2-(x1+x2)x+x1x2+y2-(y1+y2)y+y1y2=0即(x-x1)(x-x2)+(y-y1)(y-y2)=04.如图2-11建立坐标系,得拱圆的方程:x2+(y+27.88)2=27.882(-7.2≤y≤0)六、板书设计。
圆的标准方程说课稿
圆的标准方程说课稿各位评委老师好!今天我说课的题目是《圆的标准方程》.《圆的标准方程》是高中数学必修二第四章“圆与方程”的第一节第一课时的内容.下面我将从教学背景分析、教学目标分析,教学方法分析、教学过程与设计四个方面,来阐述我对本节课的教学认识.一、教学背景分析1.教材结构分析圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学重难点:3. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.根据以上对教材、学情及教学重难点的分析,我确定如下的教学目标:二、教学目标分析(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生应用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:三、教学方法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境,激发学生的学习兴趣.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求圆的方程的过程.下面我就对具体的教学过程和设计加以说明:一孔圆拱的示意图,该圆拱跨度AB=20m ,OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到板书设计以上就是我对本节课的理解和设计,敬请各位评委批评指正.谢谢大家!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分 层 作 业 激 发 新 疑
2分钟
教材分析
目标分析
过程分析
教法分析
评价分析
一、复习提问、导入新课
设计意图
情景导入 感受生活 中圆的美
00:20
教材分析
目标分析
过程分析
教法分析
评价分析
一、复习提问、导入新课
问题一:初中时我们是怎样 给圆下定义的?
设计意图
1、帮助学生回忆圆 的定义,并激发学习 兴趣。
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动2(大家来找茬):
猜想 学习活动1
1、圆心在原点, 半径为2的圆的方程
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
教法分析
评价分析
3. 教材重难
重点 圆的标准方程的求法及其应用 直接应用 内化新知 灵活应用 能力提升 难点
突出 重点
教材分析
目标分析
过程分析
教法分析
评价分析
3. 教材重难
重点 难点
1、根据不同的已知条件求圆的标准方程; 2、选择恰当的坐标系解决与圆有关的实际问题。 灵活应用 能力提升 实际应用 回归自然
突破 难点
教材分析
目标分析
过程分析
教法分析
评价分析
4. 取材分析
导入
2分钟
新知
13分钟
巩固
26分钟
小结
2分钟
作业
2分钟
教材分析
目标分析
过程分析
教法分析
评价分析
二、目标分析
知识与技能目标 过程与方法目标 情感态度价值观 1、掌握圆的标准方程; 2、会由圆的标准方程写出圆心坐标和半径,能 根据条件写出圆的标准方程; 3、利用圆的标准方程解决简单的实际问题。
二次曲线(圆锥曲线等)
教材分析
目标分析
过程分析
教法分析
评价分析
学情分析
学生具备的 学生欠缺的 帮助学生体会数形结合思想
2. 教材作用
1、对解析几何的解 1、圆的基本性质; 题方法还不太熟练; 形成用代数方法解决几何问题的能力。 2、对轨迹方程有了 2、对曲线方程还未知 初步认识
教材分析
目标分析
过程分析
12:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
特殊→一般:圆心是C(a,b),半径 是R的圆的方程是什么?(分组 探究)
设计意图
学习活动2
特殊→一般 预设两种方法:坐标法, 图形变换法。 可能遇到困难:忘记两 点间距离公式,用提问 法等解决。
(x-a)2+(y-b)2=R2
人民教育出版社 《普通高中课程标准实验教科书.数学》 必修2
4.1.1圆的标准方程
y
O
r
A
凤阳中学:朱秀山
x
目 录
1
教材分析 目标分析
2
3 4 5
过程分析
教法分析 评价分析
教材分析
目标分析
过程分析
教法分析
评价分析
教材 地位
教材 作用
重点 难点
组织 取材
教材分析
教材分析
目标分析
过程分析
教法分析
评价分析
教材分析
目标分析
过程分析
教法分析
评价分析
二、目标分析
知识与技能目标 过程与方法目标 情感态度价值观 1、培养学生用代数法研究几何问题的能力; 2、培养学生观察、发现、分析、解决问题的能力;
3、使学生学会运用观察、类比、联想、猜测、证明 等的合情推理方法。
教材分析
目标分析
过程分析
教法分析
评价分析
二、目标分析
12:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
特殊→一般:圆心是C(a,b),半径 是R的圆的方程是什么?(分组 探究)
设计意图
学习活动2
特殊→一般 预设两种方法:坐标法, 图形变换法。 可能遇到困难:忘记两 点间距离公式,用提问 法等解决。
(x-a)2+(y-b)2=R2
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
Hale Waihona Puke 二、师生合作、共探新知探究活动1(大家来找茬):
猜想 学习活动1
1、圆心在原点, 半径为2的圆的方程
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动1(大家来找茬):
猜想 学习活动1
(二)灵活应用,能力提升
例1 求圆心为C(8,-3),过点 P(5, 1)的圆的标准方程。
设计意图 突破难点1 ——会根 据不同的已知条件求 圆的标准方程。 例1:利用两点间距 离公式求半径,从而 求圆的标准方程。
变式1 求圆心为(2,-1),与
直线x+y=6相切的圆的标准方程 (09年广东高考题)。
1、圆心在原点, 半径为2的圆的方程
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动1(大家来找茬):
猜想 学习活动1
1、圆心在原点, 半径为2的圆的方程
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
12:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
特殊→一般:圆心是C(a,b),半径 是R的圆的方程是什么?(分组 探究)
设计意图
学习活动2
特殊→一般 预设两种方法:坐标法, 图形变换法。 可能遇到困难:忘记两 点间距离公式,用提问 法等解决。
(x-a)2+(y-b)2=R2
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动1(大家来找茬):
猜想 学习活动1
1、圆心在原点, 半径为2的圆的方程
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动1(大家来找茬):
猜想 学习活动1
1、圆心在原点, 半径为2的圆的方程
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
特殊→一般:圆心是C(a,b),半径 是R的圆的方程是什么?如何推 导?(分组探究)
设计意图
教学活动2
特殊→一般 两种方法:坐标法,图 形变换法。 可能遇到困难:忘记两 点间距离公式,可由学 生板演讲解、提问法等 解决。
(x-a)2+(y-b)2=R2
12:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
特殊→一般:圆心是C(a,b),半径 是R的圆的方程是什么?(分组 探究)
设计意图
学习活动2
特殊→一般 预设两种方法:坐标法, 图形变换法。 可能遇到困难:忘记两 点间距离公式,用提问 法等解决。
(x-a)2+(y-b)2=R2
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动2(大家来找茬):
猜想 学习活动1
1、圆心在原点, 半径为2的圆的方程
2、圆心为(2,1), 半径为4的圆的方程
08:00
教材分析
目标分析
过程分析
教法分析
评价分析
二、师生合作、共探新知
探究活动2(大家来找茬):
猜想 学习活动1
知识与技能目标 过程与方法目标 情感态度价值观
1、培养学生主动探究,合作交流的意识; 2、通过解决实际问题,激发学生的学习兴趣。
教材分析
目标分析
过程分析
教法分析
评价分析
三、过程分析
复 习 提 问 导 入 新 课
2分钟
师 生 合 作 共 探 新 知
13分钟
应 用 举 例 巩 固 提 高
26分钟
师 生 总 结 感 受 收 获
34:00
变式1:利用直线方程 知识求半径,与前一 章紧密相联,承上作 用。
教材分析
目标分析
过程分析
教法分析
评价分析
三、应用举例、巩固提高
(二)灵活应用,能力提升
例2 △ABC的三个顶点坐标分 别是A(5,1)、B(7,-3)、C(2, -8),求其外接圆的标准方程 。
设计意图
突破难点1 ——会根据不同的 已知条件求圆的标准方程。 例2:两种方法,可以提高学 生运算能力及优化解题策略的 能力。
变式2 已知圆心为C的圆经过点
A(1, 1)和B(2, -2),且圆心C 在直线 l:x -y +1=0上,求圆 的标准方程。
34:00
变式2:巩固待定系数法;让 学生深刻理解必须确定三个独 立条件才能求出圆的标准方程; 感受数形结合思想。
教材分析
目标分析
过程分析
教法分析
评价分析