(历年中考)黑龙江省哈尔滨市数学中考试题 含答案

合集下载

2012年黑龙江省哈尔滨市中考数学试卷(解析)(1)

2012年黑龙江省哈尔滨市中考数学试卷(解析)(1)

2012年黑龙江省哈尔滨市中考数学试卷一.选择题(共10小题) 1.(2012哈尔滨)2-的绝对值是( ) A .12-B .12C .2D .2-考点:绝对值。

解答:解:|﹣2|=2,, 故选C .2.(2012哈尔滨)下列运算中,正确的是( )A .4312a a a ⋅=B .3412()a a =C .45a a a +=D .22()()a b a b a b +-=+ 考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

解答:解:A .a 3a 4=a 7,故本选项错误;B .(a 3)4=a 12,故本选项正确;C .a 与a 4不是同类项,不能合并,故本选项错误;D .(a+b )(a ﹣b )=a 2﹣b 2,故本选项错误. 故选B .3.(2012哈尔滨)下列图形是中心对称图形的是( )A .B .C .D .考点:中心对称图形。

解答:解:A .是轴对称图形,也是中心对称图形; B .是轴对称图形,不是中心对称图形; C .是轴对称图形,不是中心对称图形;D .既不是轴对称图形,又不是中心对称图形. 故选A .4.(2012哈尔滨)如图所示的几何体是由六个小正方体组合而成的,它的左视图是( )A .B .C .D .考点:简单组合体的三视图。

解答:解:从左边看得到的图形,有两列,第一列有两个正方形,第二列有一个正方形, 故选C .5.(2012哈尔滨)如图,在Rt △ABC 中,∠C=90°,AC=4,AB=5,则sinB 的值是( )A .23B .35C .34D .45考点:锐角三角函数的定义。

解答:解:∵在△ABC 中,∠C=90°,AC=4,AB=5,∴sin ∠B==,故选D . 6.(2012哈尔滨)在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是( ) A .110B .15C .25D .45考点:概率公式。

2019-2020年黑龙江省哈尔滨市中考数学测试试卷(三) 解析版

2019-2020年黑龙江省哈尔滨市中考数学测试试卷(三)  解析版

2020年黑龙江省哈尔滨市中考数学测试试卷(三)一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=60°,在Rt△ACP中,tan∠PAC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是 2 .【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9 .【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144 .【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB=AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB=∠CDB =2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN=PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F 作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ(ASA),求得RZ=FM 根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B 作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。

2014年黑龙江省哈尔滨市中考数学试卷(含答案和解析)

2014年黑龙江省哈尔滨市中考数学试卷(含答案和解析)

2014年黑龙江省哈尔滨市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃2.(3分)(2014•哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×1033.(3分)(2014•哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab34.(3分)(2014•哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.5.(3分)(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<16.(3分)(2014•哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.7.(3分)(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)(2014•哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+39.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.310.(3分)(2014•哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014•哈尔滨)计算:=_________.12.(3分)(2014•哈尔滨)在函数y=中,自变量x的取值范围是_________.13.(3分)(2014•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是_________.14.(3分)(2014•哈尔滨)不等式组的解集是_________.15.(3分)(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_________.16.(3分)(2014•哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为_________.17.(3分)(2014•哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为_________.18.(3分)(2014•哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是_________度.19.(3分)(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为_________.20.(3分)(2014•哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为_________.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014•哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.22.(6分)(2014•哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.23.(6分)(2014•哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?24.(6分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).25.(8分)(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.26.(8分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?27.(10分)(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.28.(10分)(2014•哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.2014年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃考点:有理数的减法.分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2014•哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014•哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、不是同底数幂的乘法,指数不能相加,故B错误;C、底数不变指数相加,故C正确;D、积的乘方等于每个因式分别乘方,再把所得的幂相乘;故D错误;故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2014•哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k ﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y 随x的增大而增大.6.(3分)(2014•哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2014•哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2014•哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014•哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2014•哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2014•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014•哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2014•哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2014•哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2014•哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2014•哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=CD.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.故答案为:.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014•哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2014•哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2014•哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.。

2024届黑龙江省哈尔滨市呼兰区中考联考数学试题含解析

2024届黑龙江省哈尔滨市呼兰区中考联考数学试题含解析

2024届黑龙江省哈尔滨市呼兰区中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.4的平方根是( )A.2 B.2C.±2 D.±22.16=()A.±4 B.4 C.±2 D.23.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)25.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.10cm C.10cm D.1010cm6.若kb<0,则一次函数y kx b=+的图象一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限7.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×10108.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠9.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )A .27.1×102B .2.71×103C .2.71×104D .0.271×10510.若,则的值为( )A .﹣6B .6C .18D .30二、填空题(共7小题,每小题3分,满分21分)11.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,此时轮船与小岛C 的距离为_________海里.(结果保留根号)12.函数的自变量的取值范围是 .13.如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC=6,BC :AC=1:2,则AB 的长为_____.14.已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于________厘米.15.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过顶点B ,则k 的值为_____.16.方程21x x =-的解是__________. 17.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x =-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.三、解答题(共7小题,满分69分)18.(10分)反比例函数k y x =的图象经过点A (2,3). (1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图象上,并说明理由.19.(5分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?20.(8分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D . (1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .21.(10分)化简: 23x 11x 2?x 4+⎛⎫+÷ ⎪--⎝⎭ 22.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018 23.(12分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .24.(14分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】,然后再根据平方根的定义求解即可.【题目详解】=2,2的平方根是的平方根是.故选D.【题目点拨】正确化简是解题的关键,本题比较容易出错.2、B【解题分析】表示16的算术平方根,为正数,再根据二次根式的性质化简.【题目详解】,4故选B.【题目点拨】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.3、D【解题分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【题目详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、C【解题分析】按照“左加右减,上加下减”的规律,从而选出答案.【题目详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【题目点拨】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.5、C【解题分析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.【题目详解】设母线长为R,则圆锥的侧面积=236360R=10π,∴R=10cm,故选C.【题目点拨】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.6、D【解题分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【题目详解】∵kb<0,∴k、b异号。

2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣57的绝对值是( )A .57B .75C .−57D .−75【解答】解:|−57|=57,故选:A .2.(3分)下列运算一定正确的是( ) A .(m +n )2=m 2+n 2 B .(mn )3=m 3n 3C .(m 3)2=m 5D .m•m 2=m 2【解答】解:A 、(m +n )2=m 2+2mn +n 2,故此选项错误; B 、(mn )3=m 3n 3,正确; C 、(m 3)2=m 6,故此选项错误; D 、m•m 2=m 3,故此选项错误; 故选:B .3.(3分)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A 、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B 、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C 、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D 、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意; 故选:C .4.(3分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.5.(3分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3√3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.6.(3分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x +1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x +1)2+3D .y=﹣5(x ﹣1)2+3【解答】解:将抛物线y=﹣5x 2+1向左平移1个单位长度,得到y=﹣5(x +1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x +1)2﹣1. 故选:A .7.(3分)方程12x =2x+3的解为( )A .x=﹣1B .x=0C .x=35 D .x=1【解答】解:去分母得:x +3=4x , 解得:x=1,经检验x=1是分式方程的解, 故选:D .8.(3分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠ABD=34,则线段AB 的长为( )A .√7B .2√7C .5D .10【解答】解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO=CO ,OB=OD , ∴∠AOB=90°, ∵BD=8, ∴OB=4,∵tan ∠ABD=34=AOOB,∴AO=3,在Rt △AOB 中,由勾股定理得:AB=√AO 2+OB 2=√32+42=5, 故选:C .9.(3分)已知反比例函数y=2k−3x的图象经过点(1,1),则k 的值为( )A .﹣1B .0C .1D .2【解答】解:∵反比例函数y=2k−3x的图象经过点(1,1), ∴代入得:2k ﹣3=1×1, 解得:k=2, 故选:D .10.(3分)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是( )A .AB AE =AG AD B .DF CF =DG ADC .FG AC =EG BD D .AE BE =CF DF【解答】解:∵GE ∥BD ,GF ∥AC , ∴△AEG ∽△ABD ,△DFG ∽△DCA ,∴AE AB =AG AD ,DG DA =DF DC , ∴AE BE =AG DG =CF DF. 故选:D .二、填空题(每小题3分,共计30分)11.(3分)将数920000000科学记数法表示为 9.2×108 . 【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10812.(3分)函数y=5xx−4中,自变量x 的取值范围是 x ≠4 .【解答】解:由题意得,x ﹣4≠0, 解得,x ≠4, 故答案为:x ≠4.13.(3分)把多项式x 3﹣25x 分解因式的结果是 x (x +5)(x ﹣5) 【解答】解:x 3﹣25x =x (x 2﹣25) =x (x +5)(x ﹣5).故答案为:x (x +5)(x ﹣5).14.(3分)不等式组{x −2≥15−2x >3x −15的解集为 3≤x <4 .【解答】解:{x −2≥1①5−2x >3x −15②∵解不等式①得:x ≥3, 解不等式②得:x <4,∴不等式组的解集为3≤x <4, 故答案为;3≤x <4.15.(3分)计算6√5﹣10√15的结果是 4√5 .【解答】解:原式=6√5﹣10×√55=6√5﹣2√5=4√5,故答案为:4√5.16.(3分)抛物线y=2(x +2)2+4的顶点坐标为 (﹣2,4) . 【解答】解:∵y=2(x +2)2+4, ∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).17.(3分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是 13.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26=13.故答案为:13.18.(3分)一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是 6π cm 2.【解答】解:设扇形的半径为Rcm , ∵扇形的圆心角为135°,弧长为3πcm ,∴135π×R 180=3π,解得:R=4, 所以此扇形的面积为135π×42360=6π(cm 2),故答案为:6π.19.(3分)在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为 130°或90° . 【解答】解:∵在△ABC 中,AB=AC ,∠BAC=100°, ∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形, ∴当∠BAD=90°时,则∠ADB=50°, ∴∠ADC=130°, 当∠ADB=90°时,则 ∠ADC=90°,故答案为:130°或90°.20.(3分)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=√10,则线段BC 的长为 4√2 .【解答】解:设EF=x ,∵点E 、点F 分别是OA 、OD 的中点, ∴EF 是△OAD 的中位线, ∴AD=2x ,AD ∥EF , ∴∠CAD=∠CEF=45°,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC=2x , ∴∠ACB=∠CAD=45°, ∵EM ⊥BC , ∴∠EMC=90°,∴△EMC 是等腰直角三角形, ∴∠CEM=45°, 连接BE , ∵AB=OB ,AE=OE ∴BE ⊥AO ∴∠BEM=45°, ∴BM=EM=MC=x , ∴BM=FE ,易得△ENF ≌△MNB ,∴EN=MN=12x ,BN=FN=√10,Rt △BNM 中,由勾股定理得:BN 2=BM 2+MN 2,∴(√10)2=x 2+(12x)2,x=2√2或﹣2√2(舍),∴BC=2x=4√2.故答案为:4√2.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣1a−2)÷a2−6a+92a−4的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2√3+3原式=a−3a−2•2(a−2)(a−3)2=2 a−3=√3 322.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2√2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.23.(8分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×40120=320人.24.(8分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE•DE=12•2a•a=a 2,∵BH 是△ABE 的中线, ∴AH=HE=a , ∵AD=CD 、AC ⊥BD , ∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a +2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中, ∵{∠AED =∠BEGDE =GE ∠ADE =∠BGE ,∴△ADE ≌△BGE (ASA ), ∴BE=AE=2a ,∴S △ABE =12AE•BE=12•(2a )•2a=2a 2,S △BCE =12CE•BE=12•(2a )•2a=2a 2,S △BHG =12HG•BE=12•(a +a )•2a=2a 2,综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG .25.(10分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;若购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【解答】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:{8x +5y =2204x +6y =152,解得:{x =20y =12,答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.26.(10分)已知:⊙O是正方形ABCD的外接圆,点E在AB̂上,连接BE、DE,点F在AD̂上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为74,求线段BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H 作HM ⊥KD ,垂足为点M , ∵∠F=90°, ∴HF ⊥FD , ∵DA 平分∠EDF , ∴HM=FH , ∵FH=BP , ∴HN=BP , ∵KH ∥BN , ∴∠DKH=∠DLN , ∴∠ELP=∠DLN , ∴∠DKH=∠ELP , ∵∠BED=∠A=90°, ∴∠BEP +∠LEP=90°, ∵EP ⊥BN ,∴∠BPE=∠EPL=90°, ∴∠LEP +∠ELP=90°, ∴∠BEP=∠ELP=∠DKH , ∵HM ⊥KD ,∴∠KMH=∠BPE=90°, ∴△BEP ≌△HKM , ∴BE=HK ;(3)解:如图3,连接BD , ∵3HF=2DF ,BP=FH , ∴设HF=2a ,DF=3a , ∴BP=FH=2a ,由(2)得:HM=BP ,∠HMD=90°, ∵∠F=∠A=90°,∴tan ∠HDM=tan ∠FDH ,∴HM DM =FH DF =23,∴DM=3a ,∵四边形ABCD 为正方形, ∴AB=AD ,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE ,∠DBF=45°﹣∠ABF ,∠BDE=45°﹣∠ADE , ∴∠DBF=∠BDE , ∵∠BED=∠F ,BD=BD , ∴△BED ≌△DFB , ∴BE=FD=3a ,过H 作HS ⊥BD ,垂足为S ,∵tan ∠ABH=tan ∠ADE=AH AB =23,∴设AB=3√2m ,AH=2√2m ,∴BD=√2AB=6m ,DH=AD ﹣AH=√2m ,∵sin ∠ADB=HS DH =√22,∴HS=m ,∴DS=√DH 2−HS 2=m , ∴BS=BD ﹣DS=5m ,∴tan ∠BDE=tan ∠DBF=HS BS =15,∵∠BDE=∠BRE ,∴tanBRE=BP PR =15,∵BP=FH=2a , ∴RP=10a ,在ER 上截取ET=DK ,连接BT ,由(2)得:∠BEP=∠HKD , ∴△BET ≌△HKD , ∴∠BTE=∠KDH , ∴tan ∠BTE=tan ∠KDH ,∴BP PT =23,即PT=3a , ∴TR=RP ﹣PT=7a ,∵S △BER ﹣S △DHK=74,∴12BP•ER ﹣12HM•DK=74, ∴12BP•(ER ﹣DK )=12BP•(ER ﹣ET )=74, ∴12×2a ×7a=74, 解得:a=12(负值舍去),∴BP=1,PR=5, 则BR=√12+52=√26.27.(10分)已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线y=﹣√3x +72√3与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB=60°,点E 在线段AP 上,点F 在线段BP 上,且BF=AE ,连接AF 、EF ,若∠AFE=30°,求AF 2+EF 2的值;(3)如图3,在(2)的条件下,当PE=AE 时,求点P 的坐标.【解答】解:(1)如图1中,∵y=﹣√3x+7√3 2,∴B(72,0),C(0,7√32),∴BO=72,OC=7√32,在Rt△OBC中,BC=√OC2+OB2=7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣72=72,∴A(﹣72,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT=√AP2−TP2=√3m,在Rt△ABT中,∵AT2+TB2=AB2,∴(√3m)2+(2m)2=72,解得m=√7或﹣√7(舍弃),∴BF=√7,AT=√21,BP=3√7,sin∠ABT=ATAB =√217,∵OK=PQ=BP•sin∠PBQ=3√7×√217=3√3,BQ=√BP2−PQ2=6,∴OQ=BQ﹣BO=6﹣72=52,∴P(﹣52,3√3)。

2022年中考必做真题:黑龙江哈尔滨中考数学试卷含解析

2022年中考必做真题:黑龙江哈尔滨中考数学试卷含解析

2022年中考必做真题:哈 尔 滨 市 初 中 升 学 考 试数 学 试 卷(含答案)考生须知:1. 本试卷满分为120分, 考试时间为120分钟。

2. 答题前, 考生先将自己的 ”姓名”、 “考号”、 “考场"、 ”座位号”在答题卡上填写清楚, 将“条形码”准确粘贴在条形码区域内。

3. 请按照题号顺序在答题卡各题目的 答题区域内作答, 超出答题区域书写的 答案无效;在草稿纸、 试题纸上答题无效。

4. 挑选题必须使用2B 铅笔填涂;非挑选题必须使用0. 5毫米黑色字迹的 签字笔书写, 字体工整、 笔迹清楚。

5. 保持卡面整洁, 不要折叠、 不要弄脏、 不要弄皱, 不准使用涂改液、 修正带、 刮纸刀。

第Ⅰ卷挑选题(共30分) (涂卡)一、 挑选题(每小题3分, 共计30分) 1. 75-的 绝对值是 ( ) . (A)75 (B) 57 (C) 75- (D) 57- 2.下列运算一定正确的 是 ( ) .(A) ()222n m n m +=+ (B) ()333n m mn = (C) ()523m m = (D) 22m m m =⋅3. 下列图形中既是 轴对称图形又是 中心对称图形的 是 ( ) .4. 六个大小相同的 正力体搭成的 几何体如图所示, 其俯视图是 ( ) .5. 如图, 点P 为⊙O 外一点, PA 为⊙0的 切线, A 为切点, PO 交⊙0于点B ,∠P=30°, OB=3, 则线段BP 的 长为( ) . (A) 3 (B) 33 (C) 6 (D) 96. 将抛物线y=-5x 2+l 向左平移1个单位长度, 再向下平移2个单位长度, 所得到的 抛物线为( ) . (A)y=-5(x+1) 2-1 (B) y=-5(x-1) 2-1 (C) y=-5(x+1) 2+3 (D) y=-5(x-1) 2+37. 方程3221+=x x 的 解为( ) . (A) x=-1 (B) x=0 (C) x=53(D) x=1 8. 如图, 在菱形ABCD 中, 对角线AC 、 BD 相交于点0, BD=8, tan ∠ABD=43, 则线段AB 的 长为( ) .(A) 7 (B) 27 (C) 5 (D) 109. 已知反比例函数xk y 32-=的 图象经过点(1, 1) , 则k 的 值为( ) .(A) -1 (B) 0 (C) 1 (D) 210. 如图, 在△ABC 中, 点D 在BC 边上, 连接AD, 点G 在线段AD 上, GE ∥BD,且交AB 于点E, GF ∥AC, 且交CD 于点F, 则下列结论一定正确的 是 ( ) .(A) ADAG AEAB =(B) AD DGCFDF =(C) BDEG ACFG = (D) DFCF BEAE =第Ⅱ卷非挑选题(共90分)二、 填空题(每小3分, 共计30分) 11. 将数920 000 000用科学记数法表示为. 12. 函数45y -=x x中, 自变量x 的 取值范围是 . 13. 把多项式x 3-25x 分解因式的 结果是 .14. 不等式组{1215325≥---x x x >的 解集为.15. 计算5110-56的 结果是 . 16. 抛物线y=2(x+2) 2+4的 顶点坐标为.17. 一枚质地均匀的 正方体骰子, 骰子的 六个面上分別刻有1到6的 点数, 张兵同学掷一次骰子, 骰子向上的 一面出现的 点数是 3的 倍数的 概率是 .18. 一个扇形的 圆心角为135°, 弧长为3πcm, 则此扇形的 面积是 .19. 在△ABC 中, AB=AC, ∠BAC=100°, 点D 在BC 边上, 连接AD, 若△ABD 为直角三角形, 则∠ADC 的度数为.20. 如图, 在平行四边形ABCD 中, 对角线AC 、 BD 相交于点0, AB=OB , 点E 、 点F 分别是 OA 、 OD 的 中点, 连接EF, ∠CEF=45°EM ⊥BC 于点M, EM 交BD 于点N, FN=10, 则线段BC 的 长为.三、 解答题(其中21~22题各7分, 23~24题备8分, 25-27题各10分, 共计60分 21(本题7分)先化简, 再求代数式429621-12-+-÷⎪⎭⎫ ⎝⎛-a a a a 的 值, 其中a=4cos30°+3tan45°. 22. (本题7分)如图, 方格纸中每个小正方形的 边长均为1, 线段AB 的 两个端点均在小正方形的 顶点上.(1) 在图中画出以线段AB 为一边的 矩形ABCD(不是 正方形) , 且点C 和点D 均在小正方形的 顶点上;(2) 在图中画出以线段AB 为一腰, 底边长为22的 等腰 三角形ABE, 点E 在小正方形的 顶点上. 连接CE, 请直接写出线段 CE 的 长. 23. (本题8分)为使中华传统文化教育更具有实效性, 军宁中学开展以“我最喜欢的 传统文化种类”为主题的 调查活动, 围绕“在诗词、 国画、 对联、 书法、 戏曲五种传统文化中, 你最喜欢哪一种?(必选且只选一种) ”的 问题, 在全校范围内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的 不完整的 统计图. 请你根据图中提供的 信息回答下列问题:(1) 本次调查共抽取了几 名学生? (2) 通过计算补全条形统计图;(3) 若军宁中学共有960名学生, 请你估计该中学最喜欢国画的学生有几名?24. (本题8分)已知:在四边形ABCD中, 对角线AC、 BD相交于点E,且AC⊥BD, 作BF⊥CD垂足为点F, BF 与AC交于点G. ∠BGE=∠ADE.(1) 如图1, 求证:AD=CD;(2) 如图2, BH是△ABE的中线, 若AE=2DE, DE=EG, 在不添加任何辅助线的情况下, 请直接写出图2中四个三角形, 使写出的每个三角形的面积都等于△ADE面积的 2倍.25. (本题10分)春平中学要为学校科技活动小组提供实验器材, 计划购买A型, B型两种型号的放大镜, 若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1) 求每个A型放大镜和每个B型放大镜各几元?(2) 春平中学决定购买A型放大镜和B型放大镜共75个, 总费用不超过1180元, 那么最多可以购买几个A型放大镜?26. (本题10分)已知:⊙O 是 正方形ABCD 的 外接圆, 点E 在弧AB 上, 连接BE 、 DE, 点F 在弧AD 上, 连接BF, DF, BF 与DE 、 DA 分别交于点G 、 点H, 且DA 平分∠EDF.(1) 如图1, 求证:∠CBE=∠DHG;(2) 如图2, 在线段AH 上取一点N (点N 不与点A 、 点H 重合) , 连接BN 交DE 于点L, 过点H 作HK ∥BN 交DE 于点K, 过点E 作EP ⊥BN 垂足为点P , 当BP=HF 时, 求证:BE=HK;(3) 如图3, 在(2) 的 条件下, 当3HF=2DF 时, 延长EP 交⊙0于点R, 连接BR, 若△BER 的 面积与△DHK 的 面积的 差为47, 求线段BR 的 长.27. (本题10分)已知:在平面直角坐标系中, 点0为坐标原点, 点A 在x 轴的 负半轴上, 直线3273+-=x y 与x 轴、 y 轴分别交于B 、 C 两点, 四边形ABCD 为菱形. (1) 如图1, 求点A 的 坐标;(2) 如图2, 连接AC, 点P 为△ACD 内一点, 连接AP 、 BP, BP 与AC 交于点G, 且∠APB=60°, 点E 在线段AP 上, 点F 在线投BP 上, 且BF=AE. 连接AF 、 EF, 若∠AFE=30°, 求AF 2+EF 2的 值;(3) 如图3在(2) 的 条件下, 当PE=AE 时, 求点P 的 坐标.。

2019年黑龙江省哈尔滨市中考数学试卷及答案解析

2019年黑龙江省哈尔滨市中考数学试卷及答案解析

2019年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣9的相反数是()A.﹣9B.−19C.9D.192.下列运算一定正确的是()A.2a+2a=2a2B.a2•a3=a6C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b23.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A .60°B .75°C .70°D .65°6.将抛物线y =2x 2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A .y =2(x +2)2+3B .y =2(x ﹣2)2+3C .y =2(x ﹣2)2﹣3D .y =2(x +2)2﹣37.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ) A .20% B .40%C .18%D .36%8.方程23x−1=3x的解为( )A .x =311 B .x =113C .x =37D .x =739.点(﹣1,4)在反比例函数y =k x 的图象上,则下列各点在此函数图象上的是( ) A .(4,﹣1)B .(−14,1)C .(﹣4,﹣1)D .(14,2)10.如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .AM BM=NE DEB .AM AB=AN ADC .BCME=BE BDD .BD BE=BC EM二、填空题(每小题3分,共计30分) 11.将数6260000用科学记数法表示为 . 12.在函数y =3x2x−3中,自变量x 的取值范围是 . 13.把多项式a 3﹣6a 2b +9ab 2分解因式的结果是 .14.不等式组{3−x2≤03x +2≥1的解集是 .15.二次函数y =﹣(x ﹣6)2+8的最大值是 .16.如图,将△ABC 绕点C 逆时针旋转得到△A ′B ′C ,其中点A ′与A 是对应点,点B ′与B 是对应点,点B ′落在边AC 上,连接A ′B ,若∠ACB =45°,AC =3,BC =2,则A ′B 的长为 .17.一个扇形的弧长是11πcm ,半径是18cm ,则此扇形的圆心角是 度.18.在△ABC 中,∠A =50°,∠B =30°,点D 在AB 边上,连接CD ,若△ACD 为直角三角形,则∠BCD 的度数为 度.19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为 .20.如图,在四边形ABCD 中,AB =AD ,BC =DC ,∠A =60°,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若AB =8,CE =6,则BC 的长为 .三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分) 21.(7分)先化简再求值:(x+2x−2−x 2−2x x 2−4x+4)÷x−4x−2,其中x =4tan45°+2cos30°.22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD 的面积为8.23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.24.(8分)已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F . (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF 、CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?26.(10分)已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB ⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN 交于点R,连接RG,若HK:ME=2:3,BC=√2,求RG的长.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=43x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为−25,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=2423,求直线PM的解析式.2019年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣9的相反数是()A.﹣9B.−19C.9D.19【解答】解:﹣9的相反数是9,故选:C.2.下列运算一定正确的是()A.2a+2a=2a2B.a2•a3=a6C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b2【解答】解:2a+2a=4a,A错误;a2•a3=a5,B错误;(2a2)3=8a6,C错误;故选:D.3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.4.七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.5.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A.60°B.75°C.70°D.65°【解答】解:连接OA、OB,∵P A、PB分别与⊙O相切于A、B两点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣50°=130°,∴∠ACB=12∠AOB=12×130°=65°.故选:D.6.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.7.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%【解答】解:设降价的百分率为x根据题意可列方程为25(1﹣x)2=16解方程得x1=15,x2=95(舍)∴每次降价得百分率为20%故选:A.8.方程23x−1=3x的解为()A.x=311B.x=113C.x=37D.x=73【解答】解:去分母得:2x=9x﹣3,解得:x=3 7,经检验x=37是分式方程的解,故选:C.9.点(﹣1,4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(−14,1)C.(﹣4,﹣1)D.(14,2)【解答】解:将点(﹣1,4)代入y=k x,∴k=﹣4,∴y=−4 x,∴点(4,﹣1)在函数图象上,故选:A.10.如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .AM BM=NE DEB .AM AB=AN ADC .BCME=BE BDD .BD BE=BC EM【解答】解:∵在▱ABCD 中,EM ∥AD ∴易证四边形AMEN 为平行四边形 ∴易证△BEM ∽△BAD ∽△END ∴AM BM=NE BM=DE BE,A 项错误AM AB =ND AD ,B 项错误 BC ME =ADME =BD BE ,C 项错误 BD BE=AD ME=BC ME,D 项正确故选:D .二、填空题(每小题3分,共计30分)11.将数6260000用科学记数法表示为 6.26×106 . 【解答】解:6260000用科学记数法可表示为6.26×106, 故答案为:6.26×106.12.在函数y =3x 2x−3中,自变量x 的取值范围是 x ≠32 . 【解答】解:函数y =3x2x−3中分母2x ﹣3≠0, ∴x ≠32; 故答案为x ≠32;13.把多项式a 3﹣6a 2b +9ab 2分解因式的结果是 a (a ﹣3b )2 . 【解答】解:a 3﹣6a 2b +9ab 2 =a (a 2﹣6ab +9b 2)=a (a ﹣3b )2. 故答案为:a (a ﹣3b )2.14.不等式组{3−x2≤03x +2≥1的解集是 x ≥3 .【解答】解:解不等式3−x 2≤0,得:x ≥3,解不等式3x +2≥1,得:x ≥−13, ∴不等式组的解集为x ≥3, 故答案为:x ≥3.15.二次函数y =﹣(x ﹣6)2+8的最大值是 8 . 【解答】解:∵a =﹣1<0, ∴y 有最大值,当x =6时,y 有最大值8. 故答案为8.16.如图,将△ABC 绕点C 逆时针旋转得到△A ′B ′C ,其中点A ′与A 是对应点,点B ′与B 是对应点,点B ′落在边AC 上,连接A ′B ,若∠ACB =45°,AC =3,BC =2,则A ′B 的长为 √13 .【解答】解:∵将△ABC 绕点C 逆时针旋转得到△A ′B ′C , ∴AC =A 'C =3,∠ACB =∠ACA '=45° ∴∠A 'CB =90° ∴A 'B =√BC 2+A′C2=√13故答案为√1317.一个扇形的弧长是11πcm ,半径是18cm ,则此扇形的圆心角是 110 度. 【解答】解:根据l =nπr 180=nπ⋅18180=11π, 解得:n =110, 故答案为:110.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为60°或10度.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为16.【解答】解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有36种情况,两枚骰子点数相同的有6种, 所以两枚骰子点数相同的概率为636=16,故答案为:16.20.如图,在四边形ABCD 中,AB =AD ,BC =DC ,∠A =60°,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若AB =8,CE =6,则BC 的长为 2√7 .【解答】解:如图,连接AC 交BD 于点O∵AB =AD ,BC =DC ,∠A =60°, ∴AC 垂直平分BD ,△ABD 是等边三角形 ∴∠BAO =∠DAO =30°,AB =AD =BD =8, BO =OD =4 ∵CE ∥AB∴∠BAO =∠ACE =30°,∠CED =∠BAD =60° ∴∠DAO =∠ACE =30°∴AE =CE =6 ∴DE =AD ﹣AE =2 ∵∠CED =∠ADB =60° ∴△EDF 是等边三角形 ∴DE =EF =DF =2∴CF =CE ﹣EF =4,OF =OD ﹣DF =2 ∴OC =√CF 2−OF 2=2√3 ∴BC =2+OC2=2√7三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分) 21.(7分)先化简再求值:(x+2x−2−x 2−2xx 2−4x+4)÷x−4x−2,其中x =4tan45°+2cos30°. 【解答】解:原式=[x+2x−2−x(x−2)(x−2)2]÷x−4x−2=(x+2x−2−x x−2)•x−2x−4=2x−2•x−2x−4 =2x−4, 当x =4tan45°+2cos30°=4×1+2×√32=4+√3时,原式=4+3−4=3 =2√33. 22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)在图1中画出以AC 为底边的等腰直角三角形ABC ,点B 在小正方形顶点上; (2)在图2中画出以AC 为腰的等腰三角形ACD ,点D 在小正方形的顶点上,且△ACD 的面积为8.【解答】解;(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;(2)以C为圆心,AC为半径作圆,格点即为点D;23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.【解答】解:(1)根据题意得:18÷30%=60(名), 答:在这次调查中,一共抽取了60名学生; (2)60﹣(18+9+12+6)=15(名),则本次调查中,选取国防类书籍的学生有15名, 补全条形统计图,如图所示:(3)根据题意得:1500×960=225(名), 答:该校最想读科技类书籍的学生有225名.24.(8分)已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F . (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF 、CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.【解答】(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD ,AD ∥BC , ∴∠ABE =∠CDF ,∵AE ⊥BD 于点E ,CF ⊥BD 于点F , ∴∠AEB =∠CFD =90°,在△ABE 和△CDF 中,{∠ABE =∠CDF ∠AEB =∠CFDAB =CD ,∴△ABE ≌△CDF (AAS ), ∴AE =CF ;(2)解:△ABE 的面积=△CDF 的面积=△BCE 的面积=△ADF 的面积=矩形ABCD 面积的18.理由如下:∵AD ∥BC ,∴∠CBD =∠ADB =30°, ∵∠ABC =90°, ∴∠ABE =60°, ∵AE ⊥BD , ∴∠BAE =30°, ∴BE =12AB ,AE =12AD ,∴△ABE 的面积=12BE ×AE =12×12AB ×12AD =18AB ×AD =18矩形ABCD 的面积, ∵△ABE ≌△CDF ,∴△CDF 的面积═18矩形ABCD 的面积;作EG ⊥BC 于G ,如图所示: ∵∠CBD =30°,∴EG =12BE =12×12AB =14AB , ∴△BCE 的面积=12BC ×EG =12BC ×14AB =18BC ×AB =18矩形ABCD 的面积,同理:△ADF 的面积=18矩形ABCD 的面积.25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【解答】解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:{3x +5y =988x +3y =158, ∴{x =16y =10, ∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40﹣z )副,根据题意得:16z +10(40﹣z )≤550,∴z ≤25,∴最多可以购买25副围棋;26.(10分)已知:MN 为⊙O 的直径,OE 为⊙O 的半径,AB 、CH 是⊙O 的两条弦,AB⊥OE 于点D ,CH ⊥MN 于点K ,连接HN 、HE ,HE 与MN 交于点P .(1)如图1,若AB 与CH 交于点F ,求证:∠HFB =2∠EHN ;(2)如图2,连接ME 、OA ,OA 与ME 交于点Q ,若OA ⊥ME ,∠EON =4∠CHN ,求证:MP =AB ;(3)如图3,在(2)的条件下,连接OC 、BC 、AH ,OC 与EH 交于点G ,AH 与MN交于点R,连接RG,若HK:ME=2:3,BC=√2,求RG的长.【解答】解:(1)如图1,∵AB⊥OE于点D,CH⊥MN于点K∴∠ODB=∠OKC=90°∵∠ODB+∠DFK+∠OKC+∠EON=360°∴∠DFK+∠EON=180°∵∠DFK+∠HFB=180°∴∠HFB=∠EON∵∠EON=2∠EHN∴∠HFB=2∠EHN(2)如图2,连接OB,∵OA⊥ME,∴∠AOM=∠AOE∵AB⊥OE∴∠AOE=∠BOE∴∠AOM+∠AOE=∠AOE+∠BOE,即:∠MOE=∠AOB∴ME=AB∵∠EON=4∠CHN,∠EON=2∠EHN∴∠EHN=2∠CHN∴∠EHC=∠CHN∵CH⊥MN∴∠HPN=∠HNM∵∠HPN=∠EPM,∠HNM=HEM∴∠EPM=∠HEM∴MP=ME∴MP=AB(3)如图3,连接BC,过点A作AF⊥BC于F,过点A作AL⊥MN于L,连接AM,AC,由(2)知:∠EHC=∠CHN,∠AOM=∠AOE∴∠EOC=∠CON∵∠EOC+∠CON+∠AOM+∠AOE=180°∴∠AOE+∠EOC=90°,∠AOM+∠CON=90°∵OA⊥ME,CH⊥MN∴∠OQM=∠OKC=90°,CK=HK,ME=2MQ,∴∠AOM+∠OMQ=90°∴∠CON=∠OMQ∵OC=OA∴△OCK≌△MOQ(AAS)∴CK=OQ=HK∵HK:ME=2:3,即:OQ:2MQ=2:3∴OQ:MQ=4:3∴设OQ=4k,MQ=3k,则OM=√OQ2+MQ2=√(4k)2+(3k)2=5k,AB=ME=6k在Rt△OAC中,AC=√OA2+OC2=√(5k)2+(5k)2=5√2k∵四边形ABCH内接于⊙O,∠AHC=12∠AOC=12×90°=45°,∴∠ABC=180°﹣∠AHC=180°﹣45°=135°,∴∠ABF=180°﹣∠ABC=180°﹣135°=45°∴AF=BF=AB•cos∠ABF=6k•cos45°=3√2k在Rt△ACF中,AF2+CF2=AC2即:(3√2k)2+(3√2k+√2)2=(5√2k)2,解得:k1=1,k2=−17(不符合题意,舍去)∴OQ=HK=4,MQ=OK=3,OM=ON=5∴KN=KP=2,OP=ON﹣KN﹣KP=5﹣2﹣2=1,在△HKR中,∠HKR=90°,∠RHK=45°,∴RKHK=tan∠RHK=tan45°=1∴RK=HK=4∴OR=RN﹣ON=4+2﹣5=1∵∠CON=∠OMQ∴OC∥ME∴∠PGO=∠HEM∵∠EPM=∠HEM∴∠PGO=∠EPM∴OG=OP=OR=1∴∠PGR=90°在Rt△HPK中,PH=2+PK2=√42+22=2√5∵∠POG=∠PHN,∠OPG=∠HPN∴△POG∽△PHN∴PGPO =PNPH,即PG1=2√5,PG=2√55∴RG=√RP2−PG2=22−(255)2=4√55.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=43x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为−25,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=2423,求直线PM的解析式.【解答】解:(1)∵y=43x+4,∴A(﹣3,0),B(0,4),∵点C与点A关于y轴对称,∴C(3,0),设直线BC 的解析式为y =kx +b ,将B (0,4),C (3,0)代入,{3k +b =0b =4, 解得k =−43,b =4,∴直线BC 的解析式y =−43x +4;(2)如图1,过点A 作AD ⊥BC 于点D ,过点P 作PN ⊥BC 于N ,PG ⊥OB 于点G .∵OA =OC =3,OB =4,∴AC =6,AB =BC =5,∴sin ∠ACD =AD AC =OB BC , 即AD 6=45, ∴AD =245,∵点P 为直线y =43x +4上,∴设P (t ,43t +4), ∴PG =﹣t ,cos ∠BPG =cos ∠BAO ,即PG PB =OA AB=35, ∴PB =−53t ,∵sin ∠ABC =PN PB =AD AB =2455=2425, ∴PN =2425PB =2425×(−53t)=−85t ,∵AP=BQ,∴BQ=5+53 t,∴S=12BQ⋅PN=12(5+53t)⋅(−85t),即S=−43t2−4t;(3)如图,延长BE至T使ET=EP,连接AT、PT、AM,PT交OA于点S.∵∠APE=∠EBC,∠BAC=∠BCA,∴180°﹣∠APE﹣∠BAC=180°﹣∠EBC﹣∠ACB,∴∠PEA=∠BEC=∠AET,∴PT⊥AE,PS=ST,∴AP=AT,∠TAE=∠P AE=∠ACB,AT∥BC,∴∠TAF=∠FQB,∵∠AFT=∠BFQ,AT=AP=BQ,∴△ATF≌△QBF,∴AF=QF,TF=BF,∵∠PSA=∠BOA=90°,∴PT∥BM,∴∠TBM=∠PTB,∵∠BFM=∠PFT,∴△MBF≌△PTF,∴MF=PF,BM=PT,∴四边形AMQP为平行四边形,∴AP∥MQ,MQ=AP=BQ,∴∠MQR=∠ABC,过点R作RH⊥MQ于点H,∵sin∠ABC=sin∠MQR=RHRQ=2425,设QR=25a,HR=24a,则QH=7a,∵tan∠QMR=24 23,∴MH=23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,过点R作RK⊥x轴于点K.∵点R的纵坐标为−2 5,∴RK=2 5,∵sin∠BCO=BOBC=sin∠KCR=KRCR=45,∴CR=12,BR=112,∴55a=112,a=110,∴BQ=30a=3,∴5+53t=3,t=−65,∴P(−65,125),∴PS=12 5,∵BM=PT=2PS=245,BO=4,∴OM=4 5,∴M(0,−4 5),设直线PM的解析式为y=mx+n,∴{−65m+n=125n=−45,解得{m =−83n =−45, ∴直线PM 的解析式为y =−83x −45.。

2020年黑龙江省哈尔滨市中考数学试卷(含解析)

2020年黑龙江省哈尔滨市中考数学试卷(含解析)

2020年黑龙江省哈尔滨市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+37.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE =∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC 于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.参考答案与试题解析一、选择1.【解答】解:﹣8的倒数是﹣,故选:A.2.【解答】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.3.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.4.【解答】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.5.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.6.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y =x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.7.【解答】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.8.【解答】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x﹣5,解得x=9,经检验,x=9是原方程的解.故选:D.9.【解答】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是=,故选:A.10.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.二、填空题11.【解答】解:4790000=4.79×106,故答案为:4.79×106.12.【解答】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.13.【解答】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.14.【解答】解:原式=.故答案为:.15.【解答】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.【解答】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).17.【解答】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.18.【解答】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.19.【解答】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD﹣CD=6﹣1=5,故答案为:7或5.20.【解答】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA==,在Rt△AOE中,AE==2.故答案为2.三、解答题21.【解答】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.22.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.23.【解答】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.24.【解答】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.25.【解答】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则每个小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.26.【解答】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.27.【解答】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,)。

黑龙江省哈尔滨市中考数学试卷含参考解析

黑龙江省哈尔滨市中考数学试卷含参考解析

2018 年·黑龙江省哈尔滨市中考数学试卷·参照答案与试题解析一、选择题(每题 3 分,共计 30 分)1.(3.00 分)﹣的绝对值是()A.B.C.D.【解析】计算绝对值要依据绝对值的定义求解,第一步列出绝对值的表达式,第二步依据绝对值定义去掉这个绝对值的符号.【解答】解:|| =,应选: A.【谈论】此题主要观察了绝对值的定义,绝对值规律总结:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0,比较简单.2.(3.00 分)以下运算必定正确的选项是()22+n2.()333.(3)25.22A.(m+n) =m B mn=m n C m=m D m?m =m【解析】直接利用圆满平方公式以及积的乘方运算法规、同底数幂的乘除运算法则分别计算得出答案.【解答】解: A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m?m2 =m3,故此选项错误;应选: B.【谈论】此题主要观察了圆满平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法规是解题要点.3.(3.00 分)以以下图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解: A、此图形既不是轴对称图形也不是中心对称图形,此选项不切合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不切合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项切合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不切合题意;应选: C.【谈论】此题观察了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特色是解题的要点.4.( 3.00 分)六个大小同样的正方体搭成的几何体以以以下图,其俯视图是()A.B.C.D.【解析】俯视图有 3 列,从左到右正方形个数分别是2, 1, 2.【解答】解:俯视图从左到右分别是2, 1, 2 个正方形.应选: B.【谈论】此题观察了简单组合体的三视图,培育学生的思虑能力和对几何体三种视图的空间想象能力.5.( 3.00 分)如图,点 P 为⊙ O 外一点, PA为⊙ O 的切线, A 为切点, PO 交⊙ O于点 B,∠ P=30°,OB=3,则线段 BP的长为()A.3B.3C.6D.9【解析】直接利用切线的性质得出∠ OAP=90°,从而利用直角三角形的性质得出OP的长.【解答】解:连接 OA,∵PA为⊙ O 的切线,∴∠ OAP=90°,∵∠P=30°,OB=3,∴AO=3,则 OP=6,故 BP=6﹣3=3.应选: A.【谈论】此题主要观察了切线的性质以及圆周角定理,正确作出辅助线是解题要点.6.(3.00 分)将抛物线y=﹣5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位长度,所获得的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣ 5( x﹣1)2﹣1C.y=﹣5(x+1)2+3 D .y=﹣ 5( x﹣1)2+3【解析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线 y=﹣ 5x2+1 向左平移 1 个单位长度,获得 y=﹣ 5(x+1)2+1,再向下平移 2 个单位长度,所获得的抛物线为: y=﹣ 5( x+1)2﹣ 1.应选: A.【谈论】此题主要观察了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00 分)方程=的解为()A.x=﹣1 B.x=0 C. x=D.x=1【解析】分式方程去分母转变为整式方程,求出整式方程的解获得 x 的值,经检验即可获得分式方程的解.【解答】解:去分母得: x+3=4x,解得: x=1,经检验 x=1 是分式方程的解,应选: D.【谈论】此题观察认识分式方程,利用了转变的思想,解分式方程注意要检验.8.(3.00 分)如图,在菱形ABCD中,对角线 AC、BD 订交于点 O, BD=8,tan ∠ ABD= ,则线段 AB 的长为()A.B.2C.5D.10【解析】依据菱形的性质得出 AC⊥BD,AO=CO,OB=OD,求出 OB,解直角三角形求出 AO,依据勾股定理求出 AB 即可.【解答】解:∵四边形 ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠ AOB=90°,∵ BD=8,∴OB=4,∵tan∠ ABD= = ,∴AO=3,在 Rt△AOB中,由勾股定理得: AB===5,应选: C.【谈论】此题观察了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的要点.9.( 3.00 分)已知反比率函数 y=的图象经过点(1,1),则k的值为()A.﹣ 1 B.0C.1D.2【解析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比率函数y=的图象经过点(1,1),∴代入得: 2k﹣3=1× 1,解得: k=2,应选: D.【谈论】此题观察了反比率函数图象上点的坐标特色,能依据已知得出关于 k 的方程是解此题的要点.10.( 3.00 分)如图,在△ ABC中,点 D 在 BC 边上,连接 AD,点 G 在线段 AD 上, GE∥ BD,且交 AB 于点 E,GF∥AC,且交 CD 于点 F,则以下结论必定正确的是()A.=B.=C.=D.=【解析】由 GE∥BD、GF∥AC可得出△ AEG∽△ ABD、△DFG∽△ DCA,依据相似三角形的性质即可找出= =,此题得解.【解答】解:∵ GE∥BD,GF∥ AC,∴△ AEG∽△ ABD,△ DFG∽△ DCA,∴=,=,∴= = .应选: D.【谈论】此题观察了相似三角形的判断与性质,利用相似三角形的性质找出== 是解题的要点.二、填空题(每题 3 分,共计 30 分)11.( 3.00 分)将数 920000000 科学记数法表示为×108.【解析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.88【谈论】此题观察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时要点要正确确立 a 的值以及 n 的值.12.( 3.00 分)函数 y=中,自变量x的取值范围是x≠4.【解析】依据分式分母不为0 列出不等式,解不等式即可.【解答】解:由题意得, x﹣ 4≠ 0,解得, x≠4,故答案为: x≠ 4.【谈论】此题观察的是函数自变量的取值范围,掌握分式分母不为 0 是解题的要点.13.( 3.00 分)把多项式 x3﹣ 25x 分解因式的结果是x( x+5)( x﹣5)【解析】第一提取公因式 x,再利用平方差公式分解因式即可.【解答】解: x3﹣25x=x( x2﹣25)=x( x+5)( x﹣ 5).故答案为: x( x+5)( x﹣5).【谈论】此题主要观察了提取公因式法以及公式法分解因式,正确应用公式是解题要点.14.( 3.00 分)不等式组的解集为3≤x< 4.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得: x≥ 3,解不等式②得: x<4,∴不等式组的解集为3≤x<4,故答案为; 3≤x< 4.【谈论】此题观察认识一元一次不等式组,能依据不等式的解集得出不等式组的解集是解此题的要点.15.( 3.00 分)计算6﹣10的结果是4.【解析】第一化简,此后再合并同类二次根式即可.【解答】解:原式 =6﹣10×=6﹣2=4,故答案为: 4.【谈论】此题主要观察了二次根式的加减,要点是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数同样的二次根式进行合并,合并方法为系数相加减,根式不变..(分)抛物线y=2(x+2)2+4 的极点坐标为(﹣2,4).16【解析】依据题目中二次函数的极点式可以直接写出它的极点坐标.【解答】解:∵ y=2( x+2)2+4,∴该抛物线的极点坐标是(﹣2,4),故答案为:(﹣ 2,4).【谈论】此题观察二次函数的性质,解答此题的要点是由极点式可以直接写出二次函数的极点坐标.17.( 3.00 分)一枚质地平均的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是 3 的倍数的概率是.【解析】共有 6 种等可能的结果数,此中点数是 3 的倍数有 3 和 6,从而利用概率公式可求出向上的一面出现的点数是 3 的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是 3 的倍数的有3,6,故骰子向上的一面出现的点数是 3 的倍数的概率是:=.故答案为:.【谈论】此题观察了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以全部可能出现的结果数.18.(3.00 分)一个扇形的圆心角为 135°,弧长为 3π cm,则此扇形的面积是6π cm2.【解析】先求出扇形对应的圆的半径,再依据扇形的面积公式求出头积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为 3πcm,∴=3π,解得: R=4,=6π(cm2),因此此扇形的面积为故答案为: 6π.【谈论】此题观察了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的要点.19.( 3.00 分)在△ ABC中, AB=AC,∠ BAC=100°,点 D 在 BC 边上,连接AD,若△ ABD为直角三角形,则∠ ADC的度数为 130°或 90° .【解析】依据题意可以求得∠ B 和∠ C 的度数,此后依据分类谈论的数学思想即可求得∠ ADC的度数.【解答】解:∵在△ ABC中, AB=AC,∠ BAC=100°,∴∠ B=∠ C=40°,∵点 D 在 BC边上,△ ABD 为直角三角形,∴当∠ BAD=90°时,则∠ ADB=50°,∴∠ ADC=130°,当∠ ADB=90°时,则∠ADC=90°,故答案为: 130°或 90°.【谈论】此题观察等腰三角形的性质,解答此题的要点是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类谈论的数学思想解答.20.(3.00 分)如图,在平行四边形 ABCD中,对角线 AC、BD 订交于点 O,AB=OB,点 E、点 F 分别是 OA、 OD 的中点,连接 EF,∠ CEF=45°, EM⊥ BC于点 M ,EM 交 BD于点 N,FN=,则线段BC的长为4.【解析】设 EF=x,依据三角形的中位线定理表示 AD=2x,AD∥EF,可得∠ CAD= ∠CEF=45°,证明△EMC 是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则 EN=MN= x, BN=FN= ,最后利用勾股定理计算 x 的值,可得 BC的长.【解答】解:设 EF=x,∵点 E、点 F 分别是 OA、OD 的中点,∴EF是△ OAD 的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ ACB=∠CAD=45°,∵EM⊥ BC,∴∠ EMC=90°,∴△EMC是等腰直角三角形,∴∠ CEM=45°,连接 BE,∵AB=OB, AE=OE∴BE⊥AO∴∠ BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ ENF≌△ MNB,∴EN=MN= x,BN=FN= ,Rt△ BNM 中,由勾股定理得: BN2=BM2+MN 2,∴,x=2 或﹣ 2(舍),∴BC=2x=4 .故答案为: 4 .【谈论】此题观察了平行四边形的性质、等腰直角三角形的判断和性质、全等三角形的判断与性质、勾股定理;解决问题的要点是设未知数,利用方程思想解决问题.三、解答题(此中21-22 题各7 分, 23-24 题各8 分, 25-27 题各10 分,共计60分 )21.(7.00 分)先化简,再求代数式(1﹣)÷的值,此中a=4cos30 +3tan45° °.【解析】依据分式的运算法规即可求出答案,【解答】解:当 a=4cos30°+3tan45 °时,因此 a=2+3原式=?==【谈论】此题观察分式的运算,解题的要点是娴熟运用分式的运算法规,此题属于基础题型.22.(7.00 分)如图,方格纸中每个小正方形的边长均为1,线段 AB 的两个端点均在小正方形的极点上.( 1)在图中画出以线段 AB 为一边的矩形 ABCD(不是正方形),且点 C 和点 D 均在小正方形的极点上;(2)在图中画出以线段 AB 为一腰,底边长为 2 的等腰三角形 ABE,点 E 在小正方形的极点上,连接 CE,请直接写出线段 CE的长.【解析】(1)利用数形联合的思想解决问题即可;( 2)利用数形联合的思想解决问题即可;【解答】解:(1)以以以下图,矩形ABCD即为所求;( 2)如图△ ABE即为所求;【谈论】此题观察作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的要点是学会利用思想联合的思想解决问题,属于中考常考题型.23.(8.00 分)为使中华传统文化教育更拥有实效性,军宁中学张开以“我最喜欢的传统文化种类”为主题的检查活动,环绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷检查,将检查结果整理后绘制成以以以下图的不圆满的统计图,请你依据图中供给的信息回答以下问题:(1)本次检查共抽取了多少名学生?(2)经过计算补全条形统计图;(3)若军宁中学共有 960 名学生,请你预计该中学最喜欢国画的学生有多少名?【解析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其余种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比率.【解答】解:(1)本次检查的学生总人数为24÷20%=120人;(2)“书法”类人数为 120﹣( 24+40+16+8)=32人,补全图形以下:( 3)预计该中学最喜欢国画的学生有960×=320 人.【谈论】此题观察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同样的统计图中获得必需的信息是解决问题的要点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反响部分占整体的百分比大小.24.( 8.00 分)已知:在四边形 ABCD中,对角线 AC、 BD 订交于点 E,且AC⊥ BD,作 BF⊥CD,垂足为点 F, BF与 AC 交于点 C,∠ BGE=∠ADE.(1)如图 1,求证: AD=CD;(2)如图 2,BH 是△ ABE的中线,若 AE=2DE, DE=EG,在不增添任何辅助线的状况下,请直接写出图 2 中四个三角形,使写出的每个三角形的面积都等于△ADE面积的 2 倍.【解析】(1)由 AC⊥BD、 BF⊥CD 知∠ ADE+∠DAE=∠CGF+∠GCF,依据∠ BGE=∠ADE=∠ CGF得出∠ DAE=∠GCF即可得;(2)设 DE=a,先得出 AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知 S△ADC=2a 2=2S△ADE,证△ ADE≌△ BGE得 BE=AE=2a,再分别求出 S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠ BGE=∠ ADE,∠ BGE=∠ CGF,∴∠ ADE=∠CGF,∵AC⊥BD、BF⊥ CD,∴∠ ADE+∠DAE=∠CGF+∠GCF,∴∠ DAE=∠GCF,∴AD=CD;(2)设 DE=a,则 AE=2DE=2a,EG=DE=a,∴ S△ADE= AE?DE= ?2a?a=a2,∵BH是△ABE的中线,∴ AH=HE=a,∵AD=CD、 AC⊥BD,∴ CE=AE=2a,则 S△ADC= AC?DE= ?( 2a+2a)?a=2a2=2S△ADE;在△ ADE和△ BGE中,∵,∴△ ADE≌△ BGE(ASA),∴BE=AE=2a,∴S△ABE= AE?BE= ?(2a) ?2a=2a2,S△ACE=CE?BE= ?( 2a)?2a=2a2,S△BHG=HG?BE= ?(a+a)?2a=2a2,综上,面积等于△ ADE面积的 2 倍的三角形有△ ACD、△ ABE、△ BCE、△ BHG.【谈论】此题主要观察全等三角形的判断与性质,解题的要点是掌握等腰三角形的判断与性质及全等三角形的判断与性质.25.( 10.00 分)春平中学要为学校科技活动小组供给实验器械,计划购买 A 型、B 型两种型号的放大镜.若购买8 个 A 型放大镜和 5 个 B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1)求每个 A 型放大镜和每个 B 型放大镜各多少元;(2)春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总开销不超出 1180元,那么最多可以购买多少个 A 型放大镜?【解析】(1)设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;( 2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个 A 型放大镜和每个 B 型放大镜分别为x元,y 元,可得:,解得:,答:每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2)设购买 A 型放大镜 m 个,依据题意可得: 20a+12×( 75﹣a)≤ 1180,解得: x≤35,答:最多可以购买 35 个 A 型放大镜.【谈论】此题观察二元一次方程组的应用、一元一次不等式的应用等知识,解题的要点是理解题意,列出方程组和不等式解答.26.( 10.00 分)已知:⊙ O 是正方形 ABCD的外接圆,点 E 在上,连接BE、DE,点 F 在上连接 BF、DF,BF与 DE、DA 分别交于点 G、点 H,且 DA 均分∠EDF.(1)如图 1,求证:∠ CBE=∠ DHG;(2)如图 2,在线段 AH 上取一点 N(点 N 不与点 A、点 H 重合),连接 BN 交DE于点 L,过点 H 作 HK∥BN 交 DE 于点 K,过点 E 作 EP⊥BN,垂足为点 P,当BP=HF时,求证: BE=HK;( 3)如图 3,在( 2)的条件下,当 3HF=2DF时,延长 EP 交⊙ O 于点 R,连接BR,若△ BER的面积与△ DHK的面积的差为,求线段 BR的长.【解析】(1)由正方形的四个角都为直角,获得两个角为直角,再利用同弧所对的圆周角相等及角均分线定义,等量代换即可得证;(2)如图 2,过 H 作 HM⊥KD,垂足为点 M,依据题意确立出△ BEP≌△ HKM,利用全等三角形对应边相等即可得证;(3)依据 3HF=2DF,设出 HF=2a,DF=3a,由角均分线定义获得一对角相等,从而获得正切值相等,表示出 DM=3a,利用正方形的性质获得△ BED≌△ DFB,获得 BE=DF=3a,过 H 作 HS⊥BD,垂足为 S,依据△ BER的面积与△ DHK的面积的差为,求出 a 的值,即可确立出 BR的长.【解答】(1)证明:如图 1,∵四边形 ABCD是正方形,∴∠ A=∠ ABC=90°,∵∠ F=∠A=90°,∴∠ F=∠ABC,∵DA均分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ ABE=∠ADF,∵∠ CBE=∠ABC+∠ABE,∠ DHG=∠F+∠ADF,∴∠ CBE=∠DHG;( 2)如图 2,过 H 作 HM⊥KD,垂足为点 M,∵∠ F=90°,∵DA均分∠EDF,∴ HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠ DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠ BPE=∠EPL=90°,∴∠ LEP+∠ ELP=90°,∴∠ BEP=∠ELP=∠ DKH,∵HM⊥KD,∴∠ KMH=∠ BPE=90°,∴△ BEP≌△ HKM,∴BE=HK;(3)解:如图 3,连接 BD,∵ 3HF=2DF, BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由( 2)得: HM=BP,∠HMD=90°,∵∠ F=∠A=90°,∴ tan∠ HDM=tan∠FDH,∴==,∴DM=3a,∵四边形 ABCD为正方形,∴∠ ABD=∠ADB=45°,∵∠ ABF=∠ADF=∠ADE,∠ DBF=45°﹣∠ ABF,∠ BDE=45°﹣∠ ADE,∴∠ DBF=∠BDE,∵∠ BED=∠F,BD=BD,∴△ BED≌△ DFB,∴BE=FD=3a,过 H 作 HS⊥BD,垂足为 S,∵ tan∠ ABH=tan∠ ADE= = ,∴设 AB=3 m,AH=2 m,∴BD= AB=6m, DH=AD﹣ AH= m,∵ sin∠ADB= = ,∴HS=m,∴ DS==m,∴BS=BD﹣DS=5m,∴tan∠ BDE=tan∠ DBF= = ,∵∠ BDE=∠BRE,∴ tanBRE= =,∵BP=FH=2a,∴ RP=10a,在 ER上截取 ET=DK,连接 BT,由( 2)得:∠ BEP=∠HKD,∴△ BET≌△ HKD,∴∠ BTE=∠KDH,∴ tan∠ BTE=tan∠KDH,∴ = ,即 PT=3a,∴TR=RP﹣PT=7a,∵S△ BER﹣S△ DHK= ,∴ BP?ER﹣ HM?DK= ,∴BP?(ER﹣ DK)= BP?( ER﹣ET) = ,∴×2a× 7a= ,解得: a=(负值舍去),∴BP=1, PR=5,则BR==.【谈论】此题属于圆综合题,涉及的知识有:正方形的性质,角均分线性质,全等三角形的判断与性质,三角形的面积,锐角三角函数定义,娴熟掌握各自的性质是解此题的要点.27.( 10.00 分)已知:在平面直角坐标系中,点 O 为坐标原点,点 A 在负半轴上,直线 y=﹣ x+ 与 x 轴、 y 轴分别交于 B、C 两点,四边形x 轴的ABCD为菱形.(1)如图 1,求点 A 的坐标;(2)如图 2,连接 AC,点 P 为△ ACD内一点,连接 AP、BP,BP 与 AC 交于点 G,且∠ APB=60°,点 E 在线段 AP上,点 F 在线段 BP上,且 BF=AE,连接 AF、EF,22若∠ AFE=30°,求 AF +EF 的值;( 3)如图 3,在( 2)的条件下,当 PE=AE时,求点 P 的坐标.【解析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图 2 中,连接 CE、CF.想方法证明△ CEF是等边三角形, AF⊥CF即可解决问题;(3)如图 3 中,延长 CE交 FA的延长线于 H,作 PQ⊥ AB 于 Q,PK⊥OC于 K,在 BP 设截取 BT=PA,连接 AT、CT、CF、PC.想方法证明△ APF 是等边三角形,AT⊥PB 即可解决问题;【解答】解:(1)如图 1 中,∵ y=﹣x+,∴B(,0),C(0,),∴BO= ,OC=,在 Rt△OBC中, BC==7,∵四边形 ABCD是菱形,∴AB=BC=7,∴OA=AB﹣ OB=7﹣ = ,∴A(﹣,0).( 2)如图 2 中,连接 CE、 CF.∵OA=OB, CO⊥AB,∴ AC=BC=7,∴ AB=BC=AC,∴△ABC是等边三角形,∴∠ ACB=60°,∵∠ AOB=60°,∴∠ APB=∠ACB,∵∠ PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠ PAG=∠CBG,∵ AE=BF,∴△ ACR≌△ BCF,∴ CE=CF,∠ ACE=∠ BCF,∴∠ ECF=∠ ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△ CEF是等边三角形,∴∠ CFE=60°, EF=FC,∵∠ AFE=30°,∴∠ AFC=∠AFE+∠CFE=90°,222,在 Rt△ACF中, AF +CF=AC=4922∴ AF +EF.=49(3)如图 3 中,延长 CE交 FA的延长线于 H,作 PQ⊥ AB 于 Q,PK⊥OC于 K,在 BP 设截取 BT=PA,连接 AT、CT、 CF、PC.∵△ CEF是等边三角形,∴∠ CEF=60°, EC=CF,∵∠ AFE=30°,∠ CEF=∠H+∠ EFH,∴∠ H=∠ CEF﹣∠ EFH=30°,∴∠ H=∠ EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠ PEC=∠ AEH,∴△ CPE≌△ HAE,∴∠ PCE=∠H,∴PC∥FH,∵∠ CAP=∠CBT,AC=BC,∴△ ACP≌△ BCT,∴CP=CT,∠ ACP=∠ BCT,∴∠ PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠ CPT=∠CTP=60°,∵ CP∥FH,∴∠ HFP=∠CPT=60°,∵∠ APB=60°,∴△ APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠ TCF=∠ CTP﹣∠ TFC=30°,∴∠ TCF=∠ TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则 AE=PE=m,∴PF=AP=2m, TF=TP=m,TB=2m,BP=3m,在 Rt△APT中, AT== m,在 Rt△ABT中,∵ AT2+TB2=AB2,∴( m)2+(2m)2=72,解得 m= 或﹣(舍弃),∴ BF= , AT= ,BP=3 , sin∠ ABT= =,∵ OK=PQ=BP?sin∠PBQ=3 ×=3 ,BQ==6,∴OQ=BQ﹣BO=6﹣ = ,∴P(﹣,3 )【谈论】此题观察一次函数综合题、等边三角形的判断和性质、全等三角形的判断和性质、勾股定理、菱形的性质等知识,解题的要点是学会增添常用辅助线,构造全等三角形解决问题,学会成立方程解决问题,属于中考压轴题.。

2022年黑龙江省哈尔滨市中考数学真题(解析版)

2022年黑龙江省哈尔滨市中考数学真题(解析版)
20.如图,菱形 的对角线 相交于点O,点E在 上,连接 ,点F为 的中点,连接 ,若 , , ,则线段 的长为___________.
【答案】
【解析】
【分析】先根据菱形的性质找到Rt△AOE和Rt△AOB,然后利用勾股定理计算出菱形的边长BC的长,再根据中位线性质,求出OF的长.
【详解】已知菱形ABCD,对角线互相垂直平分,
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.
【答案】(1)80(2)作图见解析
(3)480
【解析】
【分析】(1)利用操舞类的人数以及操舞类学生所占调查人数的比例,可求出抽取的总人数.
(2)根据总人数以及其他类学生的人数可计算出武术类学生人数,进而将统计图补充完整即可.
19.一个扇形的面积为 ,半径为 ,则此扇形的圆心角是___________度.
【答案】70
【解析】
【分析】设扇形的圆心角是 ,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.
【详解】解:设扇形的圆心角是 ,根据扇形的面积公式得:
解得n=70.
故答案 : .
【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.
【答案】A
【解析】
【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.
【详解】解:A、根据积的乘方运算、幂的乘方运算法则可知 ,该选项符合题意;
B、根据合并同类项运算可知 ,该选项不符合题意;
C、根据幂的乘方运算可知 ,该选项不符合题意;
D、根据同底数幂的乘法运算可知 ,该选项不符合题意;

黑龙江省哈尔滨市2015年中考数学试题含答案

黑龙江省哈尔滨市2015年中考数学试题含答案

1、下列运算正确的是A、3a+2b=5abB、5a² - 2b² = 3C、(a-1)² = a² - 1D、(3a+2)(3a-2) = 9a² - 4(答案:D)解析:A选项尝试将3a和2b相加,但这两项不是同类项,不能合并,所以A错误;B选项尝试从5a²中减去2b²,但这两项也不是同类项,不能合并,所以B错误;C选项展开(a-1)²应得到a²- 2a + 1,与给定的a²- 1不符,所以C错误;D选项利用平方差公式(a+b)(a-b) = a² - b²,正确展开为9a² - 4,所以D正确。

2、下列图形中,是轴对称图形但不是中心对称图形的是A、等边三角形B、平行四边形C、正六边形D、圆(答案:A)解析:等边三角形有三条对称轴,但不是中心对称图形,因为不能找到一个点使得图形关于该点旋转180度后与原图重合;平行四边形不是轴对称图形,但它是中心对称图形;正六边形既是轴对称图形也是中心对称图形;圆同样是既是轴对称图形也是中心对称图形。

3、若关于x的一元二次方程kx² - 6x + 9 = 0有两个不相等的实数根,则k的取值范围为A、k < 1B、k < 1且k ≠ 0C、k ≤ 1D、k ≤ 1且k ≠ 0(答案:B)解析:一元二次方程有两个不相等的实数根,需要满足判别式Δ = b² - 4ac > 0。

将方程的系数代入,得Δ = (-6)² - 4k9 = 36 - 36k > 0,解得k < 1。

又因为k作为二次项系数不能为0,所以k ≠ 0。

4、下列说法中正确的是A、无限小数是无理数B、无理数是无限不循环小数C、有理数包括正有理数,0,负有理数D、有理数是有限小数(答案:B、C)解析:A选项错误,因为无限小数中还包括了无限循环小数,而无限循环小数是有理数;B 选项正确,无理数的定义就是无限不循环小数;C选项正确,有理数确实包括正有理数、0和负有理数;D选项错误,有理数包括有限小数,但也包括无限循环小数。

2022年黑龙江省哈尔滨市中考数学试卷(解析版)

2022年黑龙江省哈尔滨市中考数学试卷(解析版)

2022年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)的相反数是()A.B.C.6D.﹣6【分析】根据相反数的意义求解即可.【解答】解:的相反数是﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)下列运算一定正确的是()A.(a2b3)2=a4b6B.3b2+b2=4b4C.(a4)2=a6D.a3•a3=a9【分析】分别根据幂的乘方与积的乘方运算法则,同底数幂的乘法法则,合并同类项运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、(a2b3)2=a4b6,原计算正确,故此选项符合题意;B、3b2+b2=4b2,原计算错误,故此选项不符合题意;C、(a4)2=a8,原计算错误,故此选项不符合题意;D、a3•a3=a6,原计算错误,故此选项不符合题意.故选:A.【点评】本题主要考查了幂的乘方与积的乘方,同底数幂的乘法,合并同类项,熟记幂的运算法则是解答本题的关键.3.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既是中心对称图形,也是轴对称图形,故此选项符合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.(3分)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】根据左视图的方法直接得出结论即可.【解答】解:由题意知,题中几何体的左视图为:故选:D.【点评】本题主要考查三视图的知识,熟练掌握三视图的方法是解题的关键.5.(3分)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)【分析】由抛物线解析式可得抛物线顶点坐标.【解答】解:∵y=2(x+9)2﹣3,∴抛物线顶点坐标为(﹣9,﹣3),故选:B.【点评】本题考查二次函数的性质,解题关键是掌握二次函数的顶点式.6.(3分)方程=的解为()A.x=3B.x=﹣9C.x=9D.x=﹣3【分析】按照解分式方程的步骤,进行计算即可解答.【解答】解:=,2x=3(x﹣3),解得:x=9,检验:当x=9时,x(x﹣3)≠0,∴x=9是原方程的根,故选:C.【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.7.(3分)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65°B.60°C.50°D.25°【分析】根据切线的性质得出∠OAP=90°,进而得出∠BOD的度数,再利用等腰三角形的性质得出∠ADB的度数即可.【解答】解:∵PA与⊙O相切于点A,∠P=40°,∴∠OAP=90°,∴∠BOD=∠AOP=90°﹣∠P=50°,∵OB=OD,∴∠ADB=∠OBD=(180°﹣∠BOD)÷2=(180°﹣50°)÷2=65°,故选:A.【点评】本题主要考查切线的性质,熟练掌握切线的性质及等腰三角形的性质是解题的关键.8.(3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1﹣x2)=96B.150(1﹣x)=96C.150(1﹣x)2=96D.150(1﹣2x)=96【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=96,把相应数值代入即可求解.【解答】解:第一次降价后的价格为150×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为150×(1﹣x)×(1﹣x),则列出的方程是150(1﹣x)2=96.故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为()A.B.4C.D.6【分析】利用平行线分线段成比例定理求解.【解答】解:∵AB∥CD,∴△ABE∽△CDE,∴=,即=,∴BE=1.5,∴BD=BE+DE=4.5.故选:C.【点评】本题考查三角形相似判定和性质,利用这些知识是解题的关键.10.(3分)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km【分析】由图象可知,汽车行驶10km耗油1L,据此解答即可.【解答】解:当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km),故选:A.【点评】本题考查了函数的图象,由题意得出汽车行驶10km耗油1L是解答本题的关键.二、填空题(每小题3分,共计30分)11.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为 2.53×105兆瓦.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字253000用科学记数法可表示为2.53×105.故答案为:2.53×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)在函数y=中,自变量x的取值范围是x≠﹣.【分析】根据分母不能为0,可得5x+3≠0,然后进行计算即可解答.【解答】解:由题意得:5x+3≠0,∴x≠﹣,故答案为:x≠﹣.【点评】本题考查了函数自变量的取值范围,熟练掌握分母不能为0是解题的关键.13.(3分)计算+3的结果是2.【分析】先化简各二次根式,再根据混合运算的顺序依次计算可得答案.【解答】解:原式=+3×==2.故答案为:2.【点评】此题考查的是二次根式的运算,掌握其运算法则是解决此题的关键.14.(3分)把多项式xy2﹣9x分解因式的结果是x(y+3)(y﹣3).【分析】先提公因式,再利用平方差公式进行因式分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y+3)(y﹣3),故答案为:x(y+3)(y﹣3).【点评】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.15.(3分)不等式组的解集是x>.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≥0,得:x≥﹣,解不等式4﹣2x<﹣1,得:x>,则不等式组的解集为x>,故答案为:x>.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(3分)已知反比例函数y=﹣的图象经过点(4,a),则a的值为﹣.【分析】将点(4,a)代入反比例函数y=﹣即可求出a的值.【解答】解:点(4,a)代入反比例函数y=﹣得,a=﹣=﹣,故答案为:﹣.【点评】考查反比例函数图象上点的坐标特征,将点的坐标代入函数关系式是常用的方法.17.(3分)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是80或40度.【分析】分两种情况:△ABC为锐角三角形或钝角三角形,然后利用三角形内角和定理即可作答.【解答】解:当△ABC为锐角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.【点评】本题主要考查三角形内角和定理,注意到分类讨论是解题关键.18.(3分)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是.【分析】画树状图,共有4种等可能的结果,其中一枚硬币正面向上、一枚硬币反面向上的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有4种等可能的结果,其中一枚硬币正面向上、一枚硬币反面向上的结果有2种,∴一枚硬币正面向上、一枚硬币反面向上的概率为=,故答案为:.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(3分)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是70度.【分析】设扇形的圆心角为n°,利用扇形面积公式列方程,即可求出n.【解答】解:设扇形的圆心角为n°,则,∴n=70°,故答案为:70.【点评】本题考查扇形面积公式,解题关键是掌握扇形面积公式.20.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为2.【分析】由菱形的性质可得AC⊥BD,AO=CO=4,BO=DO,由勾股定理可求AE的长,BC的长,由三角形中位线定理可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,BO=DO,∴AE===5,∴BE=AE=5,∴BO=8,∴BC===4,∵点F为CD的中点,BO=DO,∴OF=BC=2,故答案为:2.【点评】本题考查了菱形的性质,直角三角形的性质,三角形中位线定理,勾股定理,掌握菱形的性质是解题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.【分析】先算括号内的式子,然后计算括号外的除法即可化简题目中的式子,然后将x 的值代入化简后的式子计算即可.【解答】解:(﹣)÷===,当x=2cos45°+1=2×+1=+1时,原式==.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式混合运算的运算法则和运算顺序.22.(7分)如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4,连接DH,请直接写出线段DH的长.【分析】(1)根据轴对称的性质可得△ADC;(2)利用平行四边形的性质即可画出图形,利用勾股定理可得DH的长.【解答】解:(1)如图,△ADC即为所求;(2)如图,▱EFGH即为所求;由勾股定理得,DH==5.【点评】本题主要考查了作图﹣轴对称变换,平行四边形的性质,勾股定理等知识,准确画出图形是解题的关键.23.(8分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.【分析】(1)根据最喜欢操舞类的学生人数占所调查人数的25%即可得出答案;(2)先求出武术类的人数,再补全统计图;(3)利用样本估计总体即可.【解答】解:(1)20÷25%=80(名),答:一共抽取了80名学生;(2)80﹣16﹣24﹣20=20(名),补全条形统计图如下:(3)1600×=480(名),答:估计该中学最喜欢球类的学生共有480名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(8分)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.(1)如图1,求证:△BEO≌△CEO;(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.【分析】(1)根据矩形的性质可得OB=OC=OA=OD,再利用SSS可证△BEO≌△CEO,即可解答;(2)根据矩形的性质可得∠BAD=∠CDA=90°AB∥CD,AB=DC,从而可证Rt△BAE ≌Rt△CDE,进而可得∠AEB=∠DEC,AE=DE,再利用等腰三角形的性质可得∠OEA =∠OED=90°,从而可得AB∥OE∥CD,进而可得△AEO的面积=△BEO的面积,△DEO的面积=△COE的面积,然后利用等式的性质可得△AEF的面积=△BFO的面积,△DHE的面积=△CHO的面积,再证明△AEF≌△DEH,从而可得△AEF的面积=△DHE的面积=△CHO的面积,最后利用线段中点和平行线证明8字模型全等三角形△AEF≌△DEG,即可解答.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC=OA=OD,∵BE=CE,OE=OE,∴△BEO≌△CEO(SSS);(2)解:△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等,理由:∵四边形ABCD是矩形,∴∠BAD=∠CDA=90°AB∥CD,AB=DC,∵BE=CE,∴Rt△BAE≌Rt△CDE(HL),∴∠AEB=∠DEC,AE=DE,∵OA=OD,∴∠OEA=∠OED=90°,∴∠BAD=∠OED=90°,∠ADC=∠AEO=90°,∴AB∥OE,DC∥OE,∴△AEO的面积=△BEO的面积,△DEO的面积=△COE的面积,∴△AEO的面积﹣△EFO的面积=△BEO的面积﹣△EFO的面积,△DEO的面积﹣△EHO的面积=△COE的面积﹣△EHO的面积,∴△AEF的面积=△BFO的面积,△DHE的面积=△CHO的面积,∵OA=OD,∴∠DAO=∠ADO,∴△AEF≌△DEH(ASA),∴△AEF的面积=△DHE的面积=△CHO的面积,∵DG∥AC,∴∠G=∠AFE,∠GDE=∠FAE,∴△AEF≌△DEG(AAS),∴△AEF的面积=△DEG的面积,∴△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等.【点评】本题考查了矩形的性质,全等三角形的判定与性质,熟练掌握矩形的性质,以及全等三角形的判定与性质是解题的关键.25.(10分)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B 种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?【分析】(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,根据“购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;购买2盒A种型号的颜料和1盒B 种型号的颜料需用64元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,利用总价=单价×数量,结合总价不超过3920元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,依题意得:,解得:.答:每盒A种型号的颜料24元,每盒B种型号的颜料16元.(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,依题意得:24m+16(200﹣m)≤3920,解得:m≤90.答:该中学最多可以购买90盒A种型号的颜料.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.26.(10分)已知CH是⊙O的直轻,点A、点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.(1)如图1,求证:∠ODC=∠OEC;(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;(3)如图3,在(2)的条件下,点G是一点,连接AG,BG,HG,OF,若AG:BG =5:3,HG=2,求OF的长.【分析】(1)欲证明∠ODC=∠OEC,只要证明△ODC≌△OEC(SAS)即可;(2)证明∠H=∠OCE=30°,根据等角对等边可得结论;(3)如图3,作辅助线,构建全等三角形,证明△MHG是等边三角形,设AG=5x,BG =3x,再证明△HAM≌△HBG(SAS),根据AG=AM+MG列方程可得x的值,最后再证明BH=3OF,可得结论.【解答】(1)证明:如图1,∵点D,点E分别是半径OA,OB的中点,∴OD=OA,OE=OB,∵OA=OB,∴OE=OD,∵∠AOC=2∠CHB,∠BOC=2∠CHB,∴∠AOC=∠BOC,∵OC=OC,∴△OCD≌△OCE(SAS),∴∠ODC=∠OEC;(2)证明:∵CD⊥OA,∴∠CDO=90°,由(1)知:∠ODC=∠OEC=90°,∴sin∠OCE==,∴∠OCE=30°,∴∠COE=60°,∵∠H=∠COE=30°,∴∠H=∠OCE,∴FC=FH;(3)解:∵CO=OH,FC=FH,∴FO⊥CH,∴∠FOH=90°,如图,连接AH,∵∠AOC=∠BOC=60°,∴∠AOH=∠BOH=120°,∴AH=BH,∠AGH=60°,∵AG:BG=5:3,∴设AG=5x,BG=3x,在AG上取点M,使得AM=BG,连接MH,过点H作HN⊥CM于N,∵∠HAM=∠HBG,∴△HAM≌△HBG(SAS),∴MH=GH,∴△MHG是等边三角形,∴MG=HG=2,∵AG=AM+MG,∴5x=3x+2,∴x=1,∴AG=5,BG=AM=3,∴MN=GM=×2=1,HN=,∴AN=MN+AM=4,∴HB=HA===,∵∠FOH=90°,∠OHF=30°,∴∠OFH=60°,∵OB=OH,∴∠BHO=∠OBH=30°,∴∠FOB=∠OBF=30°,∴OF=BF,在Rt△OFH中,∠OHF=30°,∴HF=2OF,∴HB=BF+HF=3OF=,∴OF=.【点评】本题是圆的综合题,考查全等三角形的判定和性质,圆周角定理,含30°角的直角三角形的性质,等边三角形的性质和判定,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.(1)求a,b的值;(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P 所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.【分析】(1)运用待定系数法即可求得答案;(2)根据“点D在该抛物线上,点D的横坐标为﹣2”,可得D(﹣2,),DE=2,PE=﹣t,再利用三角形面积公式即可求得答案;(3)如图2,过点C作CK⊥CN,交NR的延长线于点K,过点K作KT⊥y轴于点T,先证明△FGH≌△DGE(AAS),可得:FH=DE=2,HG=EG=HE,再运用待定系数法求得直线OA的解析式为y=x,得出F(2,),可得GE=HE=,再由3CP =5GE,可得出P(0,﹣1),N(,﹣1),运用待定系数法可得直线BP的解析式为y=x﹣1,进而推出=,证得△PMN∽△DPE,进而得出∠PMN+∠PDE=90°,由∠PMN+∠PDE=2∠CNR,可得∠CNR=45°,再证明△CKT≌△NCP(AAS),求得K(,2),再运用待定系数法即可求得答案.【解答】解:(1)∵抛物线y=ax2+b经过点A(,),点B(,﹣),∴,解得:,故a=,b=;(2)如图1,由(1)得:a=,b=,∴抛物线的解析式为y=x2﹣,∵点D在该抛物线上,点D的横坐标为﹣2,∴y=×(﹣2)2﹣=,∴D(﹣2,),∵DE⊥y轴,∴DE=2,∴E(0,),∵点P为y轴负半轴上的一个动点,且点P的纵坐标为t,∴P(0,t),∴PE=﹣t,∴S=PE•DE=×(﹣t)×2=﹣t+,故S关于t的函数解析式为S=﹣t+;(3)如图2,过点C作CK⊥CN,交NR的延长线于点K,过点K作KT⊥y轴于点T,由(2)知:抛物线的解析式为y=x2﹣,当x=0时,y=﹣,∴C(0,﹣),∴OC=,∵FH⊥y轴,DE⊥y轴,∴∠FHG=∠DEG=90°,∵点G为DF的中点,∴DG=FG,∵∠HGF=∠EGD,∴△FGH≌△DGE(AAS),∴FH=DE=2,HG=EG=HE,设直线OA的解析式为y=kx,∵A(,),∴k=,解得:k=,∴直线OA的解析式为y=x,当x=2时,y=×2=,∴F(2,),∴H(0,),∴HE=﹣=,∴GE=HE=×=,∵3CP=5GE,∴CP=GE=×=,∴P(0,﹣1),∵AN∥y轴,PN∥x轴,∴N(,﹣1),∴PN=,∵E(0,),∴EP=﹣(﹣1)=,设直线BP的解析式为y=mx+n,则,解得:,∴直线BP的解析式为y=x﹣1,当x=时,y=×﹣1=,∴M(,),∴MN=﹣(﹣1)=,∵==,==,∴=,又∵∠PNM=∠DEP=90°,∴△PMN∽△DPE,∴∠PMN=∠DPE,∵∠DPE+∠PDE=90°,∴∠PMN+∠PDE=90°,∵∠PMN+∠PDE=2∠CNR,∴∠CNR=45°,∵CK⊥CN,∴∠NCK=90°,∴△CNK是等腰直角三角形,∴CK=CN,∵∠CTK=∠NPC=90°,∴∠KCT+∠CKT=90°,∵∠NCP+∠KCT=90°,∴∠CKT=∠NCP,∴△CKT≌△NCP(AAS),∴CT=PN=,KT=CP=,∴OT=CT﹣OC=﹣=2,∴K(,2),设直线RN的解析式为y=ex+f,把K(,2),N(,﹣1)代入,得:,解得:,∴直线RN的解析式为y=﹣x+.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,三角形面积,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的判定和性质,解题的关键是学会添加辅助线构造相似三角形或全等三角形解决问题,学会利用参数,用方程的思想思考问题,属于中考压轴题.。

黑龙江省哈尔滨市2020年中考数学测试试卷(含解析)

黑龙江省哈尔滨市2020年中考数学测试试卷(含解析)

2020年黑龙江省哈尔滨市中考数学测试试卷一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S△BCF=20,求DE的长.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P 的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠P AC=30°,∠PBC=60°,在Rt△ACP中,tan∠P AC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,F A=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠F AC=∠CAB,∴∠F AC=∠FCA,∴F A=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是2.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9.【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144.【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G 为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB =AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S△BCF=20,求DE的长.【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB =∠CDB=2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F 作FH⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F 作FH⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P 的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN =PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ (ASA),求得RZ=FM根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。

2020年哈尔滨市中考数学试题(解析版)

2020年哈尔滨市中考数学试题(解析版)
(3)根据题意列出算式,计算即可得到结果.
【详解】解:(1)15÷30%=50(名),
答:本次调查共抽取了50名学生;
(2)50﹣15﹣20﹣5=10(名),
补全条形统计图如图所示:
(3)800× =320(名),
(2)如图所示,△CDG即为所求,由勾股定理,得EG= .
【点睛】本题考查作图-应用与设计、等腰三角形的性质、勾股定理、正方形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.
23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢的哪一类?的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的 ,请你根据图中提供的信息回答下列问题:
6.将抛物线 向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为()
A B. C. D.
【答案】D
【解析】
【分析】
用顶点式表达式,按照抛物线平移的公式即可求解.
【详解】解:将抛物线 先向上平移3个单位长度,再向右平移5个单位长度后,函数的表达式为: .
故选:D.
【点睛】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.
【详解】解:∵ ,
∴△AEF∽△ACD,
∴ ,故选项A错误;
∴ ,
∵ ,
∴△CEG∽△CAB,
∴ ,
∴ ,故选项B错误; ,故选项D错误;
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,故选项正确C.

2019年黑龙江省哈尔滨市中考数学试卷及答案

2019年黑龙江省哈尔滨市中考数学试卷及答案

2019年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣9的相反数是()A.﹣9B.﹣C.9D.2.下列运算一定正确的是()A.2a+2a=2a2 B.a2•a3=a6 C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b23.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A.60°B.75°C.70°D.65°6.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣37.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%8.方程=的解为()A.x=B.x=C.x=D.x=9.点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)10.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.将数6260000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.把多项式a3﹣6a2b+9ab2分解因式的结果是.14.不等式组的解集是.15.二次函数y=﹣(x﹣6)2+8的最大值是.16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为.20.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分)21.(7分)先化简再求值:(﹣)÷,其中x=4tan45°+2cos30°.22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD 的面积为8.23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.24.(8分)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?26.(10分)已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB ⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN 交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为﹣,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.2019年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣9的相反数是()A.﹣9B.﹣C.9D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣9的相反数是9,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算一定正确的是()A.2a+2a=2a2B.a2•a3=a6C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b2【分析】利用同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式解题即可;【解答】解:2a+2a=4a,A错误;a2•a3=a5,B错误;(2a2)3=8a6,C错误;故选:D.【点评】本题考查整式的运算;熟练掌握同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式是解题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称及中心对称图形的定义对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解答此题的关键.4.七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.5.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A.60°B.75°C.70°D.65°【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【解答】解:连接OA、OB,∵P A、PB分别与⊙O相切于A、B两点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣50°=130°,∴∠ACB=∠AOB=×130°=65°.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.6.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%【分析】设降价得百分率为x,根据降低率的公式a(1﹣x)2=b建立方程,求解即可.【解答】解:设降价的百分率为x根据题意可列方程为25(1﹣x)2=16解方程得,(舍)∴每次降价得百分率为20%故选:A.【点评】本题考查了一元二次方程实际应用问题关于增长率的类型问题,按照公式a(1﹣x)2=b对照参数位置代入值即可,公式的记忆与运用是本题的解题关键.8.方程=的解为()A.x=B.x=C.x=D.x=【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x=;故选:C.【点评】本题考查解分式方程;熟练掌握分式方程的解法及验根是解题的关键.9.点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)【分析】将点(﹣1,4)代入y=,求出函数解析式即可解题;【解答】解:将点(﹣1,4)代入y=,∴k=﹣4,∴y=,∴点(4,﹣1)在函数图象上,故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握待定系数法求函数解析式的方法是解题的关键.10.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.=B.=C.=D.=【分析】根据平行四边形的性质以及相似三角形的性质.【解答】解:∵在▱ABCD中,EM∥AD∴易证四边形AMEN为平行四边形∴易证△BEM∽△BAD∽△END∴==,A项错误=,B项错误==,C项错误==,D项正确故选:D.【点评】此题主要考查相似三角形的性质及平行四边形的性质,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.二、填空题(每小题3分,共计30分)11.将数6260000用科学记数法表示为 6.26×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6260000用科学记数法可表示为6.26×106,故答案为:6.26×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠.【分析】函数中分母不为零是函数y=有意义的条件,因此2x﹣3≠0即可;【解答】解:函数y=中分母2x﹣3≠0,∴x≠;故答案为x≠;【点评】本题考查函数自变量的取值范围;熟练掌握函数中自变量的取值范围的求法是解题的关键.13.把多项式a3﹣6a2b+9ab2分解因式的结果是a(a﹣3b)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:a3﹣6a2b+9ab2=a(a2﹣6ab+9b2)=a(a﹣3b)2.故答案为:a(a﹣3b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.二次函数y=﹣(x﹣6)2+8的最大值是8.【分析】利用二次函数的性质解决问题.【解答】解:∵a=﹣1<0,∴y有最大值,当x=6时,y有最大值8.故答案为8.【点评】本题主要考查二次函数的最值,熟练掌握二次函数的图象和性质是解题的关键.16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.【分析】由旋转的性质可得AC=A'C=3,∠ACB=∠ACA'=45°,可得∠A'CB=90°,由勾股定理可求解.【解答】解:∵将△ABC绕点C逆时针旋转得到△A′B′C,∴AC=A'C=3,∠ACB=∠ACA'=45°∴∠A'CB=90°∴A'B==故答案为【点评】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是本题的关键.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是110度.【分析】直接利用弧长公式l=即可求出n的值,计算即可.【解答】解:根据l===11π,解得:n=110,故答案为:110.【点评】本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为60°或10度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;【点评】本题考查了三角形的内角和定理和三角形外角的性质,分情况讨论是本题的关键.19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两枚骰子点数相同的情况,再利用概率公式即可求得答案.【解答】解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有36种情况,两枚骰子点数相同的有6种,所以两枚骰子点数相同的概率为=,故答案为:.【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分)21.(7分)先化简再求值:(﹣)÷,其中x=4tan45°+2cos30°.【分析】先根据分式的混合运算顺序和运算法则化简原式,再依据特殊锐角三角函数值求得x的值,代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=,当x=4tan45°+2cos30°=4×1+2×=4+时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD 的面积为8.【分析】(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;(2)以C为圆心,AC为半径作圆,格点即为点D;【解答】解;(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;(2)以C为圆心,AC为半径作圆,格点即为点D;【点评】本题考查尺规作图,等腰三角形的性质;熟练掌握等腰三角形和直角三角形的尺规作图方法是解题的关键.23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.【分析】(1)由最想读教育类书籍的学生数除以占的百分比求出总人数即可;(2)确定出最想读国防类书籍的学生数,补全条形统计图即可;(2)求出最想读科技类书籍的学生占的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意得:18÷30%=60(名),答:在这次调查中,一共抽取了60名学生;(2)60﹣(18+9+12+6)=15(名),则本次调查中,选取国防类书籍的学生有15名,补全条形统计图,如图所示:(3)根据题意得:1500×=225(名),答:该校最想读科技类书籍的学生有225名.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(8分)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG=BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠DF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD 面积的.理由如下:∵AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点评】本题考查了矩形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质,证明三角形全等是解题的关键.25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.26.(10分)已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB ⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN 交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.【分析】(1)利用“四边形内角和为360°”、“同弧所对的圆周角是圆心角的一半”即可;(2)根据同圆中,相等的圆心角所对的弦相等,先证AB=MB,再根据“等角对等边”,证明MP=ME;(3)由全等三角形性质和垂径定理可将HK:ME=2:3转化为OQ:MQ=4:3;可设Rt△OMQ两直角边为:OQ=4k,MQ=3k,再构造直角三角形利用BC=,求出k的值;求得OP=OR=OG,得△PGR为直角三角形,应用勾股定理求RG.【解答】解:(1)如图1,∵AB⊥OE于点D,CH⊥MN于点K∴∠ODB=∠OKC=90°∵∠ODB+∠DFK+∠OKC+∠EON=360°∴∠DFK+∠EON=180°∵∠DFK+∠HFB=180°∴∠HFB=∠EON∵∠EON=2∠EHN∴∠HFB=2∠EHN(2)如图2,连接OB,∵OA⊥ME,∴∠AOM=∠AOE∵AB⊥OE∴∠AOE=∠BOE∴∠AOM+∠AOE=∠AOE+∠BOE,即:∠MOE=∠AOB∴ME=AB∵∠EON=4∠CHN,∠EON=2∠EHN∴∠EHN=2∠CHN∴∠EHC=∠CHN∵CH⊥MN∴∠HPN=∠HNM∵∠HPN=∠EPM,∠HNM=HEM∴∠EPM=∠HEM∴MP=ME∴MP=AB(3)如图3,连接BC,过点A作AF⊥BC于F,过点A作AL⊥MN于L,连接AM,AC,由(2)知:∠EHC=∠CHN,∠AOM=∠AOE∴∠EOC=∠CON∵∠EOC+∠CON+∠AOM+∠AOE=180°∴∠AOE+∠EOC=90°,∠AOM+∠CON=90°∵OA⊥ME,CH⊥MN∴∠OQM=∠OKC=90°,CK=HK,ME=2MQ,∴∠AOM+∠OMQ=90°∴∠CON=∠OMQ∵OC=OA∴△OCK≌△MOQ(AAS)∴CK=OQ=HK∵HK:ME=2:3,即:OQ:2MQ=2:3∴OQ:MQ=4:3∴设OQ=4k,MQ=3k,则OM===5k,AB=ME=6k在Rt△OAC中,AC===5k∵四边形ABCH内接于⊙O,∠AHC=∠AOC=×90°=45°,∴∠ABC=180°﹣∠AHC=180°﹣45°=135°,∴∠ABF=180°﹣∠ABC=180°﹣135°=45°∴AF=BF=AB•cos∠ABF=6k•cos45°=3k在Rt△ACF中,AF2+CF2=AC2即:,解得:k1=1,(不符合题意,舍去)∴OQ=HK=4,MQ=OK=3,OM=ON=5∴KN=KP=2,OP=ON﹣KN﹣KP=5﹣2﹣2=1,在△HKR中,∠HKR=90°,∠RHK=45°,∴=tan∠RHK=tan45°=1∴RK=HK=4∴OR=RN﹣ON=4+2﹣5=1∵∠CON=∠OMQ∴OC∥ME∴∠PGO=∠HEM∵∠EPM=∠HEM∴∠PGO=∠EPM∴OG=OP=OR=1∴∠PGR=90°在Rt△HPK中,PH===2∵∠POG=∠PHN,∠OPG=∠HPN∴△POG∽△PHN∴,即,PG=∴RG===.【点评】本题是有关圆的几何综合题,难度较大,综合性很强;主要考查了垂径定理,圆周角与圆心角,同圆中圆心角、弧、弦的关系,圆内接四边形性质,全等三角形性质,勾股定理及解直角三角形等.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为﹣,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.【分析】(1)由y=x+4,求出A(﹣3,0)B(0,4),所以C(3,0),设直线BC的解析式为y=kx+b,将B(0,4),C(3,0)代入,解得k=,b=4,所以直线BC的解析式;(2)过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.由sin∠ACD=,即,求出AD=,设P(t,t+4),由cos∠BPG=cos∠BAO,即,求出,由sin∠ABC=,求得PN==,BQ=5+,所以S=,即S=;(3)如图,延长BE至T使ET=EP,连接AT、PT、AM、PT交OA于点S,易证AT ∥BC,所以∠TAE=∠FQB,△ATF≌△QBF,于是AF=QF,TF=BF,再证明△MBF ≌△PTF,所以MF=PF,BM=PT,于是四边形AMPQ为平行四边形,由sin∠ABC=sin∠MQR=,设QR=25a,HR=24a,则QH=7a,tan∠QMR=,所以MH =23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,过点R作RK⊥x轴于点K.求得M(0,),设直线PM的解析式为y=mx+n,解得,因此直线PM的解析式为y=.【解答】解:(1)∵y=x+4,∴A(﹣3,0)B(0,4),∵点C与点A关于y轴对称,∴C(3,0),设直线BC的解析式为y=kx+b,将B(0,4),C(3,0)代入,,解得k=,b=4,∴直线BC的解析式;(2)如图1,过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.∵OA=OC=3,OB=4,∴AC=6,AB=BC=5,∴sin∠ACD=,即,∴AD=,∵点P为直线y=x+4上,∴设P(t,t+4),∴PG=﹣t,cos∠BPG=cos∠BAO,即,∴,∵sin∠ABC=,∴PN==,∵AP=BQ,∴BQ=5+,∴S=,即S=;(3)如图,延长BE至T使ET=EP,连接AT、PT、AM、PT交OA于点S.∵∠APE=∠EBC,∠BAC=∠BCA,∴180°﹣∠APE﹣∠BAC=180°﹣∠EBC﹣∠ACB,∴∠PEA=∠BEC=∠AET,∴PT⊥AE,PS=ST,∴AP=AT,∠TAE=∠P AE=∠ACB,AT∥BC,∴∠TAE=∠FQB,∵∠AFT=∠BFQ,AT=AP=BQ,∴△ATF≌△QBF,∴AF=QF,TF=BF,∵∠PSA=∠BOA=90°,∴PT∥BM,∴∠TBM=∠PTB,∵∠BFM=∠PFT,∴△MBF≌△PTF,∴MF=PF,BM=PT,∴四边形AMPQ为平行四边形,∴AP∥MQ,MQ=AP=BQ,∴∠MQR=∠ABC,过点R作RH⊥MQ于点H,∵sin∠ABC=sin∠MQR=,设QR=25a,HR=24a,则QH=7a,∵tan∠QMR=,∴MH=23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,过点R作RK⊥x轴于点K.∵点R的纵坐标为﹣,∴RK=,∵sin∠BCO=,∴CR=,BR=,∴,a=,∴BQ=30a=3,∴5+=3,t=,∴P(),∴,∵BM=PT=2PS=,BO=4,∴OM=,∴M(0,),设直线PM的解析式为y=mx+n,∴,解得,∴直线PM的解析式为y=.【点评】本题考查了一次函数,熟练运用待定系数法、三角形全等以及三角函数是解题的关键.。

2021年黑龙江省哈尔滨市中考数学(word版有解析)

2021年黑龙江省哈尔滨市中考数学(word版有解析)

黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣【解析】乘积是1的两个数互为倒数,﹣7的倒数是﹣,故选:D.2.下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【解析】A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【解析】y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【解析】去分母,2(x﹣1)=x+3,去括号,2x﹣2=x+3,移项,合并同类项,x=5,令x=5代入(x+3)(x﹣1)≠0,故选C.7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【解析】∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【解析】(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选C.10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【解析】A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为 5.67×107.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.57600000=5.67×107,故答案为:5.67×107.12.函数y=中,自变量x的取值范围是x≠2.【解析】由x﹣2≠0得,x≠2,故答案为x≠2.13.把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【解析】原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)14.计算﹣6的结果是.【解析】原式=33﹣6×33=33﹣23=3故答案为:315.已知反比例函数y=的图象经过点(1,2),则k的值为1.【解析】∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.16.不等式组的解集是2≤x<3.【解析】,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【解析】∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为90°.【解析】设扇形的圆心角为n°,则=4π,解得,n=90,故答案为:90°.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC 上,若OE=3,则CE的长为43或23.【解析】∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==33,∴AC=2OA=63,∵点E在AC上,OE=3,∴CE=OC+3或CE=OC﹣3,∴CE=43或CE=23;故答案为:43或23.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【解析】∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解】÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解】(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==26.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解】(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,答:估计最喜欢太阳岛风景区的学生有540名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;2-1-c-n-j-y(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t 之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC =S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I 交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan ∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解】(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,=S△AMC+S△AMB,∵S△ABC∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤17.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.计算2﹣的结果是.14.把多项式ax2+2a2x+a3分解因式的结果是.15.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.二次函数y=2(x﹣3)2﹣4的最小值为.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B (0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【考点】由实际问题抽象出一元一次方程.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【考点】勾股定理的应用;方向角.【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】一次函数的应用.【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范围是x≠.【考点】函数自变量的取值范围.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.计算2﹣的结果是﹣2.【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【考点】菱形的性质.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【考点】作图-轴对称变换.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=B A,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【考点】圆的综合题.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O 于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B (0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H的纵坐标相等,则PH与x轴平行,根据平行线截线段成比例定理可得G也是PQ的中点,由此表示出点G的坐标并列式,求出t的值并取舍,计算出点F的坐标.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。

相关文档
最新文档