浙教版七年级上册数学知识点复习资料 共46页
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、若b<0,则a+b,a,a-b的大小关系为( B ) A、a+b>a>a-b B、a-b>a>a+b C、a>a-b>a+b D、a-b>a+b>a
3、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( D )
A、0个 B、1个 C、2个 D、3个
4、两个有理数的积是负数,和也是负数,那么这两个数( D )
(1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数 < 0
6、互为倒数: 乘积为1的两个数互为倒数。
注意:0没有倒数;若 a≠0,那么的倒数是1/a;倒 数是本身的数是±1;若ab=1 a、b互为倒数;若 ab=-1 a、b互为负倒数。
(1) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值
是它的相反数
(2) 绝对值可表示为:a 0a
(a 0) (a 0)
或
a (a 0)
a (a0) a a (a0)
绝对值的问题经常分类讨论;
a (3) 1a 0
a
a 1a 0
a
5、有理数大小的概念:
2、有理数的减法:减去一个数,等于加上这个数的相反数;
即a-b=a+(-b)
3、有理数的乘法:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个数为零,积为零;各个数都不为零,积的符号由负数的 个数决定
4、有理数的除法:
除以一个数等于乘以这个数的倒数;注意:零不能做除数, 即a/0无意义。
3、相反数:
只有符号不同的两个数叫做互为相反数。 注意! 0的相反数是0 (1)a-b+c的相反数是-a+b-c; (2)a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 a+b=0 a,b互为相反数.
4、绝对值:
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
A. 都是负数 B. 其中绝对值大的数是正数,另一个是负数 C. 互为相反数 D. 其中绝对值大的数是负数,另一个是正数
5、四个互不相等整数的积为9,则和为( C )
A.9
B.6
C.0
D.8
6、从2开始,连续的偶数相加,它们和的情况如下表: 加数的个数n S 1 2 = 1×2 2 2+4 = 6 = 2×3 3 2+4+6 = 12 = 3×4 4 2+4+6+8 = 20 = 4×5 5 2+4+6+8+10 = 30 = 5×6 (1)若n=8时,则 S的值为___7_2_________. (2)根据表中的规律猜想:用n的式子表示S的公式为: S=2+4+6+8+…+2n=__n_(_n_+_1_) _____. (3)根据上题的规律计算2+4+6+8+10+…+2019+2019 的值.
七年级数学上册知识点复习
第一章. 有理数
①
1、有理数的分类:
②
正有理数
正整数 正分数
有理数 零
负有理数
负整数 负分数
有理数
整数
正零整数 负整数
分数
正分数 负分数
2、数轴的定义:
规定了原点、正方向、单位长度的直线叫做数轴。
23
7
(每两个2之间依次多一个1),0.1234, 0.3
分数有( )个,无理数有( )个
9.求x1x2x3的最小值
第二章. 有理数的运算
1、有理数的加法:
(1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.
8、混合运算法则:
先乘方,后乘除,最后加减;如果是同级运算, 则按从左到右的运算顺序计算。如果有括号, 先算小括号,再算中括号,最后算大括号。
练习题
1、对于(-2)4与-24,下列说法正确的是 ( D ) A.它们的意义相同 B.它的结果相等 C.它的意义不同,结果相等 D.它的意义不同,结果不等
A、-5 B、-5°C C、-10
D、-10°C
4、下列说法,正确是(A )
A、零是最小的自然数 C、零是最小的有理数
B、零是最小的正整数 D、零既是负数又是正数
5、火车上的车次号有两个意义,一是数字越小表示车速 越快,1∽98次为特快列车,101∽198次为直快列车, 301∽398次为普快列车,401∽498次为普客列车;二 是单数与双数表示不同的行驶方向,其中单数表示从北京 开出,双数表示开往北京方向.根据以上规定,杭州开往 北京的某一直快列车的车次号可能是( C )
5、有理数的乘方:
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a叫底数,n叫做指数。
(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;
注意:当n为正奇数时: (-a)^n=-a^n或(a -b)^n=-(b-a)^n , 当n为正偶数时: (-a)^n =a^n 或 (a-b)^n=(b-a)^n .
6、科学记数法:
将一个数字表示成a(1≤a<10)与10的幂相乘的形式 。
例如:13500000000000记作:1.35×1013
7、近似数的精确度:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那 一位。
例如:(1) 5.32的近似范围:5.315≤x<5.325 (2)5.32×103精确到__十__位;
A、20 B、119 C、120 D、319
6、计Байду номын сангаас:
111111 11 3 2 4 3 5 4 100 99
49/100
7.如图所示,数轴上A,B两点对应的实数分别是1
和 3 ,若点A关于点B的对称点为点C,则点C
所对应的实数为____
8.实数 - , 2 ,- 3 - 8,3,- 0.121121112...
练习题
1、下列各对数中,互为相反数是( D
A、2和 1 2
B、0.5和 1
2
C、 2 和2
)
D、 1 和 1
2
2
2、一件商品原价100元,先涨价10%,然后降价10%,现在价格是( A )
A、99元 B、100元 C、101元 D、110元 3、如果零上5°C记作+5°C,那么零下5°C记作(B )
3、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( D )
A、0个 B、1个 C、2个 D、3个
4、两个有理数的积是负数,和也是负数,那么这两个数( D )
(1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数 < 0
6、互为倒数: 乘积为1的两个数互为倒数。
注意:0没有倒数;若 a≠0,那么的倒数是1/a;倒 数是本身的数是±1;若ab=1 a、b互为倒数;若 ab=-1 a、b互为负倒数。
(1) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值
是它的相反数
(2) 绝对值可表示为:a 0a
(a 0) (a 0)
或
a (a 0)
a (a0) a a (a0)
绝对值的问题经常分类讨论;
a (3) 1a 0
a
a 1a 0
a
5、有理数大小的概念:
2、有理数的减法:减去一个数,等于加上这个数的相反数;
即a-b=a+(-b)
3、有理数的乘法:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个数为零,积为零;各个数都不为零,积的符号由负数的 个数决定
4、有理数的除法:
除以一个数等于乘以这个数的倒数;注意:零不能做除数, 即a/0无意义。
3、相反数:
只有符号不同的两个数叫做互为相反数。 注意! 0的相反数是0 (1)a-b+c的相反数是-a+b-c; (2)a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 a+b=0 a,b互为相反数.
4、绝对值:
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
A. 都是负数 B. 其中绝对值大的数是正数,另一个是负数 C. 互为相反数 D. 其中绝对值大的数是负数,另一个是正数
5、四个互不相等整数的积为9,则和为( C )
A.9
B.6
C.0
D.8
6、从2开始,连续的偶数相加,它们和的情况如下表: 加数的个数n S 1 2 = 1×2 2 2+4 = 6 = 2×3 3 2+4+6 = 12 = 3×4 4 2+4+6+8 = 20 = 4×5 5 2+4+6+8+10 = 30 = 5×6 (1)若n=8时,则 S的值为___7_2_________. (2)根据表中的规律猜想:用n的式子表示S的公式为: S=2+4+6+8+…+2n=__n_(_n_+_1_) _____. (3)根据上题的规律计算2+4+6+8+10+…+2019+2019 的值.
七年级数学上册知识点复习
第一章. 有理数
①
1、有理数的分类:
②
正有理数
正整数 正分数
有理数 零
负有理数
负整数 负分数
有理数
整数
正零整数 负整数
分数
正分数 负分数
2、数轴的定义:
规定了原点、正方向、单位长度的直线叫做数轴。
23
7
(每两个2之间依次多一个1),0.1234, 0.3
分数有( )个,无理数有( )个
9.求x1x2x3的最小值
第二章. 有理数的运算
1、有理数的加法:
(1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.
8、混合运算法则:
先乘方,后乘除,最后加减;如果是同级运算, 则按从左到右的运算顺序计算。如果有括号, 先算小括号,再算中括号,最后算大括号。
练习题
1、对于(-2)4与-24,下列说法正确的是 ( D ) A.它们的意义相同 B.它的结果相等 C.它的意义不同,结果相等 D.它的意义不同,结果不等
A、-5 B、-5°C C、-10
D、-10°C
4、下列说法,正确是(A )
A、零是最小的自然数 C、零是最小的有理数
B、零是最小的正整数 D、零既是负数又是正数
5、火车上的车次号有两个意义,一是数字越小表示车速 越快,1∽98次为特快列车,101∽198次为直快列车, 301∽398次为普快列车,401∽498次为普客列车;二 是单数与双数表示不同的行驶方向,其中单数表示从北京 开出,双数表示开往北京方向.根据以上规定,杭州开往 北京的某一直快列车的车次号可能是( C )
5、有理数的乘方:
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a叫底数,n叫做指数。
(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;
注意:当n为正奇数时: (-a)^n=-a^n或(a -b)^n=-(b-a)^n , 当n为正偶数时: (-a)^n =a^n 或 (a-b)^n=(b-a)^n .
6、科学记数法:
将一个数字表示成a(1≤a<10)与10的幂相乘的形式 。
例如:13500000000000记作:1.35×1013
7、近似数的精确度:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那 一位。
例如:(1) 5.32的近似范围:5.315≤x<5.325 (2)5.32×103精确到__十__位;
A、20 B、119 C、120 D、319
6、计Байду номын сангаас:
111111 11 3 2 4 3 5 4 100 99
49/100
7.如图所示,数轴上A,B两点对应的实数分别是1
和 3 ,若点A关于点B的对称点为点C,则点C
所对应的实数为____
8.实数 - , 2 ,- 3 - 8,3,- 0.121121112...
练习题
1、下列各对数中,互为相反数是( D
A、2和 1 2
B、0.5和 1
2
C、 2 和2
)
D、 1 和 1
2
2
2、一件商品原价100元,先涨价10%,然后降价10%,现在价格是( A )
A、99元 B、100元 C、101元 D、110元 3、如果零上5°C记作+5°C,那么零下5°C记作(B )