等腰三角形专项训练经典习题
等腰三角形与直角三角形练习题
![等腰三角形与直角三角形练习题](https://img.taocdn.com/s3/m/d90a4f8c77eeaeaad1f34693daef5ef7bb0d1207.png)
等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础练习1、已知等腰三角形的一个内角为 70°,则它的另外两个内角的度数分别是()A 55°,55°B 70°,40°C 55°,55°或 70°,40°D 以上都不对解析:当 70°的角为顶角时,底角的度数为:(180° 70°)÷ 2 =55°;当 70°的角为底角时,另一个底角也是 70°,顶角的度数为 180°70°× 2 = 40°。
所以答案选择 C。
2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18解析:当腰长为 3 时,3 + 3 = 6,不能构成三角形;当腰长为 6 时,周长为 6 + 6 + 3 = 15。
所以答案选择 B。
(二)提高练习1、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,点 E 在 AD 上。
求证:△EBC 是等腰三角形。
证明:因为 AB = AC,AD 是∠BAC 的平分线,所以 AD⊥BC,BD = CD。
又因为点 E 在 AD 上,所以 EB = EC,即△EBC 是等腰三角形。
2、已知等腰三角形一腰上的中线将其周长分成 9 和 15 两部分,求这个等腰三角形的腰长和底边长。
设腰长为 2x,底边长为 y,则有两种情况:情况一:\(\begin{cases}2x + x = 9 \\ x + y = 15\end{cases}\),解得\(\begin{cases}x = 3 \\ y = 12\end{cases}\),此时腰长为 6,底边长为 12,因为 6 + 6 = 12,不符合三角形三边关系,舍去。
情况二:\(\begin{cases}2x + x = 15 \\ x + y = 9\end{cases}\),解得\(\begin{cases}x = 5 \\ y = 4\end{cases}\),此时腰长为 10,底边长为 4,符合三角形三边关系。
等腰三角形经典习题(必看)
![等腰三角形经典习题(必看)](https://img.taocdn.com/s3/m/21489cc1710abb68a98271fe910ef12d2af9a9d9.png)
等腰三角形经典习题(必看)等腰三角形经典题(必看)以下是一些经典的等腰三角形题,希望能对你的研究有所帮助。
1. 判断等腰三角形给定一个三角形ABC,其中AB=AC。
你需要判断这个三角形是否为等腰三角形。
解答:如果角B等于角C,则该三角形为等腰三角形。
2. 求等腰三角形的周长已知一个等腰三角形ABC,其中AB=AC,且BC=8cm。
你需要求解这个等腰三角形的周长。
解答:由于AB=AC且BC=8cm,那么周长等于AB+AC+BC=2AB+BC=2(BC/2)+BC=BC+BC=2BC=2*8cm=16cm。
3. 求等腰三角形的面积已知一个等腰三角形ABC,其中AB=AC=10cm,且角BAC等于60度。
你需要求解这个等腰三角形的面积。
解答:由于AB=AC=10cm且角BAC等于60度,我们可以利用正弦定理来计算三角形的高。
设三角形的高为h,那么有sin60度=h/10cm,解得h=10cm*sin60度=10cm*sqrt(3)/2=5sqrt(3)cm。
等腰三角形的面积可以通过底边乘以高再除以2来计算,即面积=10cm*5sqrt(3)cm/2=25sqrt(3)cm²。
4. 求等腰三角形的顶角已知一个等腰三角形ABC,其中AB=AC=5cm,且BC=6cm。
你需要求解这个等腰三角形的顶角。
解答:由于AB=AC=5cm且BC=6cm,我们可以使用余弦定理来计算角BAC的大小。
设角BAC为x度,则有cosx=(5²+5²-6²)/(2*5*5)=19/25。
解得x=arccos(19/25)≈31.8度。
因此,等腰三角形的顶角大约为31.8度。
以上是一些关于等腰三角形的经典习题,希望对你的学习有所帮助。
如果你还有其他问题,请随时向我提问。
等腰三角形与直角三角形练习题
![等腰三角形与直角三角形练习题](https://img.taocdn.com/s3/m/e169ce9c900ef12d2af90242a8956bec0875a51f.png)
等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础巩固1、已知等腰三角形的一个内角为 80°,则它的另外两个内角分别是多少度?解:当 80°的角为顶角时,底角的度数为:(180° 80°)÷ 2 = 50°,所以另外两个内角分别是 50°,50°。
当 80°的角为底角时,顶角的度数为:180° 80°× 2 = 20°,所以另外两个内角分别是 80°,20°。
2、等腰三角形的两边长分别为 6 和 8,则其周长是多少?解:当腰长为 6 时,三边长分别为 6,6,8,因为 6 + 6>8,所以能组成三角形,此时周长为 6 + 6 + 8 = 20。
当腰长为 8 时,三边长分别为 8,8,6,因为 8 + 6>8,所以能组成三角形,此时周长为 8 + 8 + 6 = 22。
综上,其周长为 20 或 22。
3、一个等腰三角形的周长为 20,其中一边长为 8,求另外两边的长。
解:当 8 为腰长时,底边长为 20 8× 2 = 4,因为 8 + 4>8,所以能组成三角形,此时另外两边长分别为 8,4。
当 8 为底边时,腰长为(20 8)÷ 2 = 6,因为 6 + 6>8,所以能组成三角形,此时另外两边长分别为 6,6。
(二)能力提升1、等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角的度数为多少?解:当等腰三角形为锐角三角形时,腰上的高与另一腰的夹角为30°,则顶角为 60°。
当等腰三角形为钝角三角形时,腰上的高与另一腰的夹角为 30°,则顶角的外角为 60°,所以顶角为 120°。
综上,顶角的度数为 60°或 120°。
2、如图,在△ABC 中,AB = AC,D 是 BC 边上的中点,∠B =30°,求∠1 和∠ADC 的度数。
等腰三角形专项训练(经典习题)[1]
![等腰三角形专项训练(经典习题)[1]](https://img.taocdn.com/s3/m/7293c0e14431b90d6d85c77f.png)
等腰三角形专项训练一、选择与填空1、一个等腰三角形的一个角是50° ,它的一腰上的高与底边的夹角是()A. 25°B. 40°C. 25°或 40°D.不确立 .2、.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为()0或 150 00或 120 0003、有一个等腰三角形的周长为25,一边长为 11,那么腰长为 ()A. 11B. 7C.14D. 7 或 114、等边三角形的两条高线订交所成钝角的度数是()A. 105°B. 120°C. 135°D. 150°5 、以下命题正确的个数是()①假如等腰三角形内一点究竟边两头点的距离相等, 那么过这点与极点的直线必垂直于底边 ;②假如把等腰三角形的底边向两个方向延伸相等的线段, 那么延伸线段的两个端点与极点距离相等; ③等腰三角形底边中线上一点到两腰的距离相等; ④等腰三角形高上一点究竟边的两头点距离相等.个个个个6、以下图形中必定有 4 条对称轴的是()A.长方形B.正方形C.等边三角形D.等腰直角三角形7、以下图形 : ①两个点 ; ②线段 ; ③角 ;④长方形 ; ⑤两条订交直线 ; ⑥三角形 ,此中必定是轴对称图形的有()个个个个8、等腰三角形是轴对称图形,它的对称轴有()条条条条或3条9、若点 P 为⊿ ABC 内部一点,且PA=PB=PC,则点 P 是⊿ ABC的()( A)三边中线的交点(B)三内角均分线的交点( C)三条高的交点(D)三边垂直均分线的交点10 若△ ABC两边的垂直均分线的交点在三角形的外面,则△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能11、等腰△ ABC中, AB=AC=10,∠ A=30 °,则腰 AB 上的高等于 ___________.12、在△ ABC中 ,AB=AC,AD⊥ BC 于 D,由以上两个条件可得_________________.( 写出一个结论即可 )13、如图5:在△ ABC 中 , ∠ A=90 ,BD 均分∠ ABC,交 AC 于点 D,已知 AD=㎝ ,则 D 到 BC 边的距离为 __________.14、假如等腰三角形的三边长均为整数且周长为10,则它的三边长分别为 ______________.15、在△ ABC 中,AB=AC,∠ BAC=120°,AB 的垂直均分线交BC于 D,且 BD=10cm,则 DC=____.16、在△ ABC中,∠ A=78°,点 D, E, F 分别在边 BC,AB, AC上, BD=BE,CD=CF,?则∠EDF=_______.17、如图,⊿ MNP 中 ,∠ P=60,MN=NP,MQ ⊥ PN,垂足为 Q,延伸 MN 至 G,取 NG=NQ,若⊿ MNP 的周长为 12, MQ=a,则⊿ MGQ 的周长为()(A) 8+2a( B) 8+a( C) 6+a( D) 6+2a18、如图9-13 所示,△ ABC中, BC 边的垂直均分线DE 交 BC 于 D,交 AC于 E,BE= 5 厘米,△ BCE的周长是 18 厘米,则 BC=厘米二、作图题如图, A、 B 两个乡村在河岸的同一侧,现要在河岸上开设取水口,铺设浇灌管道。
八下北师版等腰三角形和直角三角形练习题
![八下北师版等腰三角形和直角三角形练习题](https://img.taocdn.com/s3/m/ff26926d30126edb6f1aff00bed5b9f3f90f72df.png)
八下北师版等腰三角形和直角三角形练习题在八年级下册的数学学习中,等腰三角形和直角三角形是两个非常重要的几何图形。
为了帮助同学们更好地掌握这部分知识,我们来一起做一些练习题。
一、等腰三角形练习题1、已知等腰三角形的一个内角为 80°,则这个等腰三角形的顶角为()A 80°B 20°C 80°或 20°D 50°分析:当 80°角是顶角时,答案就是 80°;当 80°角是底角时,顶角为 180° 80°× 2 = 20°。
所以答案是 C。
2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18分析:因为三角形的两边之和大于第三边,所以这个等腰三角形的腰长只能是 6,底边长为 3。
周长为 6 + 6 + 3 = 15,答案是 B。
3、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,DE⊥AB 于点 E,DF⊥AC 于点 F。
求证:BE = CF。
证明:因为 AB = AC,AD 是∠BAC 的平分线,所以∠BAD =∠CAD。
又因为 DE⊥AB,DF⊥AC,AD = AD,所以△ADE≌△ADF (AAS)。
所以 AE = AF。
因为 AB = AC,所以 AB AE = AC AF,即 BE = CF。
4、一个等腰三角形的周长为 16,其中一边长为 6,求另外两边的长。
分析:当 6 是腰长时,底边长为 16 6× 2 = 4;当 6 是底边长时,腰长为(16 6)÷ 2 = 5。
所以另外两边的长为 6,4 或 5,5。
二、直角三角形练习题1、在直角三角形中,如果一个锐角为 30°,斜边为 2,则斜边上的高为()A 1B √3C √3 / 2D 1 / 2分析:在直角三角形中,如果一个锐角为 30°,那么它所对的直角边是斜边的一半。
等腰三角形(习题及答案).
![等腰三角形(习题及答案).](https://img.taocdn.com/s3/m/480828f40722192e4536f6f6.png)
4.A- 40。
B・ 50。
C. 60。
已知:如图,CD=AD=BC,在△ABC中,AB=AC. D为4B边上一点,若则ZA二___________ .第4题图如图,在△ABC中, D为4B上一点,E为BC上一点,且AC=CD=BD=BE. ZA=50。
,则ZBDE的度数为_____________ •等腰三角形(习题)已知:如图,在△ABC 中,AB=AC. ZA=80S 则ZC二若等腰三角形的一个角比另一个角大30\则该等腰三角形的顶角的度数为 _________________ .如图,在△4BC 中,AB=AC, ZA=40。
,CD//AB,则ZBCD二2.3.D-5.如图,在△ABC 中,AB=AC.在AB, AC ±分别截取AP,AQ.使AP=AQ.再分别以点P, 2为圆心,以大t PQ 的2长为半径作弧,两弧在ZBAC 内交于点R,作射线AR,交 BC 于点D.若BC 二6,则BD 的长为(A- 2 B ・ 3 C. 4 已知;如图,在△ABC 中,AB=AC. AD 是BC 边上的中线, 点P 在AD 上.求证:PB=PC ・已知:如图,B, D E, C 在同一直线上,AB=AC.6. 7. D ・5AD=AE.求证:BD二CE.如图,在△ABC 中,BC=5 cm, BP, CP 分别是ZABC 和ZACB 的平分线,且PD//AB. PE//AC.则的周•长是E. 若长方形的长AD 为8 cm,宽CD 为4 cm,则△CFD的周长是 _____ cm.如图,在△ABC 中,D, E 是BC 的三等分点,且△>!£)£是等边三角形,则ZBAC= ___________ •如图,在 RtAABC 中,ZACB=90\ ZB=60% CD 是/\ABC的臥且BD=\.则AD 二 __________ ・房梁的一部分如图所示,其中BC±AC. ZA=30。
等腰三角形随堂练习
![等腰三角形随堂练习](https://img.taocdn.com/s3/m/07a683af970590c69ec3d5bbfd0a79563c1ed4cc.png)
等腰三角形练习题一题型研究题型一:等腰三角形的性质+=,则∠B的1.如图,在ABC中,105∠=︒,AD BCBAC⊥,垂足为D,若AB BD CD度数为()A.20︒B.25︒C.45︒D.50︒2.如图,在△ABC中,∠ABC=60°,BC=20,点D在边AB上,CA=CD,BD=8,则AD=()A.2 B.3 C.4 D.63.如图,在ABC中,10==,8AB ACBC=,AD平分BAC∠交BC于点D,点E为AC的△的周长为()中点,连接DE,则CDEA.12 B.13 C.14 D.18题型二:等腰三角形的判定4.点C、D都在线段AB上,且AD=BC,AE=BF,∠A=∠B,CF与DE相交于点G.(1)求证∠E=∠F;(2)若CF=10,DG=4,求EG的长.5.已知:如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .求证:MN =BM +CN .6.【问题提出】在ABC 中,2ACB B ∠=∠,AD 为BAC ∠的角平分线,探究线段AB ,AC ,CD 的数量关系.【问题解决】如图1,当90ACB ∠=︒,过点D 作DE AB ⊥,垂足为E ,易得AB AC CD =+;由此,如图2,当90ACB ∠≠︒时,猜想线段AB ,AC ,CD 有怎样的数量关系?给出证明.【方法迁移】如图3,当90ACB ∠≠︒,AD 为ABC 的外角平分线时,探究线段AB ,AC ,CD 又有怎样的数量关系?直接写出结论,不证明.题型三:等边三角形的性质7.如图,在等腰直角三角形ABC中,∠BAC=90°,等边三角形ADE的顶点D在BC边上,连接CE,已知∠DCE=90°,CD=2,则AB的长为()A.2B.31+C.22D.38.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若BC=5,则五边形DECHF的周长为()A.8 B.10 C.11 D.12AD=,E是高AD上的一个动点,F是边AB 9.如图,在等边三角形ABC中,BC边上的高8的中点,在点E运动的过程中,存在EB EF+的最小值,则这个最小值是()A.5 B.6 C.7 D.8题型四:等边三角形的判定10.已知:如图,在四边形ABCD中,AB∥CD,且AB=CD,点E在AB上,将△BCE沿CE对折得到△FCE,EF恰好过点A,FC边与AD边交于点G,且DC=DG.(1)求证:△ABC≌△CDA;(2)试判断△F AG的形状,并说明理由.11.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)若CD与AE相交于点F,CD与AB相交于点G,求∠AFD的度数.12.在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,BD=CE,BE=CF,(1)求证:∠B=∠DEF;(2)连接DF,当∠A的度数是多少时,△DEF是等边三角形.题型五:等腰和等边三角形的综合问题13.如图,ABC 是等边三角形,点D ,E 分别在边AB ,BC 上,AD BE =,线段AE ,CD 交于点F .作AEH CFE ∠=∠,交CF 于点H .(1)求证:ACD BAE ∠=∠;(2)用等式表示线段AF ,DF ,CH 之间的数量关系,并证明.14.已知在ABC 中,BAC 45∠=︒,AE ,BF 是ABC 的高,分别交BC ,AC 于点E ,F .(1)如图1,若ABC C ∠<∠,且75BDE ∠=︒,求BAE ∠的度数;(2)如图2,若ABC C ∠=∠.①求BAE ∠的度数;②求证:ADF BCF ≌△△.15.在等边△ABC中,D为BA延长线上一点,F为BC上一点,过B作BE∥AC,连接DE,EF,且∠DEF=60°.(1)如图1,若BE=2,BD=5,求BF的长.(2)如图2,若F为CB延长线上一点,试探究BD、BE、BF的关系,并说明理由.(3)如图3,若F为BC延长线上一点,且AD:BE:AC=1:2:3,请直接写出CF:BE的值.二随堂练习一、单选题16.如图,等边△ABC 中,AD 为BC 边上的高,点M 、N 分别在AD 、AC 上,且AM =CN ,连BM 、BN ,当BM +BN 最小时,∠MBN 的度数为( )A .15°B .22.5°C .30°D .47.5°17.如图,已知ABC 是等腰三角形,AB BC =,BD 平分ABC ∠,若6AC =,则AD 的长为( )A .2B .3C .4D .818.如图,在平面直角坐标系xOy 中,点B 的坐标为()2,0,若点A 在第一象限内,且AB OB =,60AOB ∠=︒,则点A 到y 轴的距离为( )A .12B .1C .32D .2 19.如图,30ABC ︒∠=,点D 是它内部一点,BD m =.点E ,F 分别是BA ,BC 上的两个动点,则DEF 周长的最小值为( )A .0.5mB .mC .1.5mD .2m20.如图,把一张长方形纸片ABCD 沿对角线AC 折叠,点D 的对应点为点,F CF 与AB 交于点E ,若长方形ABCD 的周长为16,则CBE △的周长为( )A .8B .16C .32D .421.如图,ABC 中,AB BC =,60C ∠=°,AD 是BC 上的高,DE AC ∥,图中与BD (BD 除外)相等的线段共有( )条.A .1B .2C .3D .422.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN =9,则线段MN 的长( )A .大于9B .等于9C .小于9D .不能确定23.如图,在ABC 中,AB AC =,点D ,E ,F 分别在边BC ,AC ,AB 上,且BD CE =,DC BF =,且60EDF ∠=︒.(1)求证:BDF CED △≌△;(2)判断ABC 的形状,并说明理由.24.△ABC 是等边三角形,点D 、E 分别在边AC 、BC 上,且AD =CE ,连接AE 、BD 交于点F .(1)如图1,求∠BFE 的度数;(2)如图2,连接CF ,当CF ⊥BD 时,求AF BF的值; (3)如图3,点P 在线段AE 上,连接CP ,且CP =AF ,在图中找出与线段 AP 相等的线段,并证明.高分突破一:选择题25.如图,在ACD △中,60CAD ∠=︒,以AC 为底边向外作等腰ABC ,60BAC ADC ∠+∠=︒,在CD 上截取DE AB =,连接BE .若30BEC ∠=︒,则BAC ∠的度数为( )A .10°B .15°C .20°D .30°26.如图,将一个等腰直角三角形△ABC 按如图方式折叠,若DE =a ,DC =b ,下列四个结论:①DC ′平分∠BDE ;②BC 长为2a +b ;③△BDC ′是等腰三角形;④△CED 的周长等于BC 的长.其中,正确的是( )A .①②④B .②③④C .②③D .②④27.如图,过边长为4的等边ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当P A =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .95B .2C .115D .12528.已知:如图在ABC ∆,ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC ∠+∠=︒;④180BAE DAC ∠+∠=︒,其中结论正确的个数是( )(注:等腰三角形的两个底角相等)A .1B .2C .3D .429.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE =BD +CE ;③△ADE 的周长等于AB 与AC 的和;④BF =CF .其中正确的有( )A .①②③B .①②③④C .①②D .①30.如图,∠EAF =18°,AB BC CD ==,则∠ECD 等于( )A .36°B .54°C .72°D .108°31.如图,在△ABC 中,AC =BC ,∠ACB =90°,M 是AB 边上的中点,点D 、E 分别是AC 、BC 边上的动点,DE 与CM 相交于点F 且∠DME =90°.则下列5个结论:(1)图中共有两对全等三角形;(2)△DEM 是等腰三角形;(3)∠CDM =∠CFE ;(4)AD +BE =AC ;(5)四边形CDME 的面积发生改变.其中正确的结论有个( )A .2B .3C .4D .532.如图所示,△ABC 与△ADE 顶点A 重合,点D ,E 分别在边BC ,AC 上,且AB =AC ,AD =DE ,∠B =∠ADE =40°,则∠EDC 的度数为( )A .20°B .30°C .40°D .5033.如图,Rt △ABC 中,∠C =90°,AC =BC ,点D 、E 分别是边AB 、AC 上的点,把△ADE 沿DE 折叠,点A 恰好落在BC 上的点F 处,若点F 为BC 的中点,则CE AC 的值是( ) A .12B .22C .25D .38 二、填空题 34.如图,1230∠=∠=︒,A B ∠=∠,AE BE =,点D 在边AC 上,AE 与BD 相交于点O ,则∠C 的度数为______.35.如图,在ABC 中,AE 是BC 边上的中线,过点C 作CD AE ⊥,交AE 的延长线于点D ,连结BD .若AB BD =,BCD △的面积为10,则ABC 的面积为______.36.如图,在等腰△ABC 中,AB =AC =10,BC =16,AD 是BC 边上的中线且AD =6,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值等于______.37.如图,已知等腰△ABC ,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面结论:①∠ACO=15°;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP ;其中正确的有 ______(填上所有正确结论的序号).38.如图,在R △ABC 中,AB =AC ,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D作DE 的垂线,交AC 于点F .下列结论:①△AED ≌△CFD ;②EF =AD ;③BE +CF =AC ;④S 四边形AEDF =12AD 2,其中正确的结论是 _____(填序号).三、解答题39.如图,在ABC 中,60ACB ∠=︒,点D 在AC 上,BC CD =,以AB 为边向左侧作等边三角形ABE ,连ED .(1)求证:ABC EBD ≌△△;(2)过点B 作BF ED ⊥于点F ,2DF =,求BD 的长.40.如图,ABC 是等边三角形,过点B 作BD //AC ,点D 在直线AB 下方,在射线BD 上截取2BD BC =,连接AE .(1)用无刻度的直尺和圆规按要求作图,并在图中标出相应字母(不写作法,保留作图痕迹)(2)在(1)条件下,求证:AE AB ⊥.41.如图,在ABC 中,90BAC ∠=︒,3AB AC ==,D 为BC 边的中点,点E 、F 分别在AB 、AC 边上运动,且始终保持BE AF =,连接DE 、DF 、EF .(1)求证:ADE ≌CDF ;(2)判断DEF 的形状,并说明理由;(3)求四边形AEDF 的面积;(4)若2BE =,求EF 的长.42.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,AD 是BC 的中线,AE BF =.(1)求证:DE DF =(2)DEF 是什么形状的三角形?请说明理由.43.在△ABC 中,AC =BC ,∠ACB =90°,点D 、E 分别在AB 、BC 上,且AD =BE ,BD =AC ,连接CD 、DE .(1)如图1,求证:DE =CD ;(2)如图2,过E 作EF ⊥AB 于F ,求证:∠FED =∠CED ;(3)如图3,若延长ED 、CA 相交于G ,求证:D 为EG 的中点.44.如图1,在△ABC 中,AB AC =,点E 在线段BC 上,连接AE 并延长到G ,使得EG AE =,过点G 作GD BA ∥分别交BC ,AC 于点F ,D .(1)求证:△≌△ABE GFE ;(2)若3GD =,1CD =,求AB 的长度;(3)如图2,过点D 作DH BC ⊥于H ,P 是直线DH 上的一个动点,连接AF ,AP ,FP ,若45C ∠=︒,2AF =,在(2)条件下,求△AFP 周长的最小值.45.已知△ABC ≌△ADE ,且它们都是等腰直角三角形,∠ABC =∠ADE =90°.(1)如图1,当点D在边AC上时,连接BD并延长交CE于点F,①求证:∠CBD=∠EDF;②求证:点F为线段CE的中点;(2)△ADE绕着点A顺时针旋转,如图2所示,连接BD并延长交CE于点F,点F还是线段CE的中点吗?请说明理由.。
等腰三角形的练习题
![等腰三角形的练习题](https://img.taocdn.com/s3/m/6b1b21b50875f46527d3240c844769eae009a3b9.png)
等腰三角形的练习题一、选择题1. 等腰三角形的两边相等,这个性质称为()A. 对称性B. 等边性C. 等腰性D. 等角性2. 在等腰三角形中,底角相等的原因是()A. 三角形内角和定理B. 等腰三角形的性质C. 相似三角形的判定D. 直角三角形的性质3. 等腰三角形的底边高等于腰上的高,这是因为()A. 直角三角形的斜边中线性质B. 等腰三角形的三线合一性质C. 勾股定理D. 相似三角形的性质4. 已知等腰三角形的顶角为60°,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 如果等腰三角形的底边长为10厘米,腰长为13厘米,那么其面积是()A. 30平方厘米B. 65平方厘米C. 100平方厘米D. 无法计算二、填空题6. 等腰三角形的两个底角相等,其大小为______。
7. 如果等腰三角形的顶角为120°,那么底角的大小为______。
8. 在等腰三角形ABC中,AB=AC,如果AB边上的高为h,那么AC边上的高也是______。
9. 等腰三角形的三线合一性质指的是______、______和______在同一直线上。
10. 如果等腰三角形的腰长为x,底边长为y,且x>y,那么面积公式为S=______。
三、解答题11. 已知等腰三角形的顶角为40°,求其底角的大小。
12. 一个等腰三角形的底边长为8厘米,腰长为10厘米,求其面积。
13. 证明:等腰三角形的底边上的中线、高线和角平分线重合。
14. 如果一个三角形的两边相等,且这两边所夹的角为70°,求这个三角形的另外两个内角的大小。
15. 已知等腰三角形的周长为32厘米,底边长为10厘米,求其腰长。
四、应用题16. 一个等腰三角形的花园,其底边长为20米,腰长为13米。
如果需要在花园的周围铺设一圈围栏,问需要多少米的围栏?17. 在一个等腰三角形ABC中,AB=AC,AB边上的高为h,求证:AC边上的高也是h。
完整版)等腰三角形专项练习题
![完整版)等腰三角形专项练习题](https://img.taocdn.com/s3/m/afecb6e485254b35eefdc8d376eeaeaad0f31649.png)
完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。
1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。
解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。
2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。
解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。
解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。
4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。
解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。
等腰三角形经典练习试题及详细含答案
![等腰三角形经典练习试题及详细含答案](https://img.taocdn.com/s3/m/29c6eb71d4d8d15abf234eb0.png)
等腰三角形练习题一、计算题:A1.如图,△ ABC中,AB=AC,BC=BD,AD=DE=EB求∠ A 的度数DE2. 如图, CA=CB,DF=DB,AE=AD B C F求∠ A 的度数CEA BD3、AB于⊥ AB于 E,DF⊥BC交 AC于点 F,若∠ EDF=70°,求∠ AFD的度数AFEB D C4. 如图,△ ABC 中, AB=AC,BC=BD=ED=EAA求∠ A 的度数EDBC5. 如图,△ ABC 中, AB=AC ,D 在 BC 上,A∠ B AD=30°, 在 AC 上取点 E ,使 AE=AD,求∠ EDC 的度数30°EBDC6. 如图,△ ABC 中,∠ C=90°, D 为 AB 上一点,作 DE ⊥BC 于 E ,若1BE=AC,BD=2,DE+BC=1,求∠ ABC 的度数ADCB7.如图,△ ABC中,AD均分∠ BAC,若AC=AB+BD求∠ B:∠ C的值AB D C二、证明题:8.如图,△ DEF中,∠ EDF=2∠E,FA⊥DE于点A,问:DF、AD、AE间有什么样的大小关系DAE F9.如图,△ ABC中,∠ B=60°,角均分线 AD、CE交于点 O求证: AE+CD=AC BE DA C12. 如图 , △ABC 中,AB=AC,D 为△ ABC 外一点,且∠ ABD=∠ACD =60°A求证: CD=AB-BDBDC13. 已知:如图, AB=AC=BE ,CD 为△ ABC 中 AB 边上的中线1A求证: CD=2CEDBCE14. 如图,△ ABC 中,∠ 1=∠2,∠ EDC=∠BACA求证: BD=ED1 2EBCD15. 如图,△ ABC中, AB=AC,BE=CF,EF交 BC于点 GA求证: EG=FGECBG F16. 如图,△ABC中,∠ABC=2∠C,AD是 BC边上的高, B 到点 E,使 BE=BD 求证: AF=FCAFBDCE17. 如图,△ ABC中, AB=AC,AD和 BE两条高,交于点 H,且 AE=BE求证: AH=2BD AEHB D C18. 如图,△ ABC中, AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30°求证: AD=DCADB C19.如图,等边△ ABC中,分别延伸 BA至点 E,延伸 BC至点 D,使 AE=BD 求证: EC=ED EABC D20.如图,四边形 ABCD中,∠ BAD+∠BCD=180°,AD、BC的延伸线交于点F,DC、 AB的延伸线交于点E,∠ E、∠ F 的均分线交于点H求证: EH⊥FHFDCHABE一、计算题:1. 如图,△ ABC中,AB=AC,BC=BD,AD=DE=EB求∠ A 的度数A设∠ ABD为 x, 则∠ A 为 2x2x由 8x=180°D 得∠ A=2x=45°E 2xx3xx2. 如图, CA=CB,DF=DB,AE=ADB 2x3xC 求∠ A 的度数F设∠ A 为 x, XC由 5x=180°E得∠ A=36°2xxA x2x BD3.如图,△ ABC中,AB=AC,D在BC上,DE⊥AB于E,DF⊥BC交AC于点F,若∠ EDF=70°,求∠ AFD的度数∠A FD=160°AFEB D C4. 如图,△ ABC 中, AB=AC,BC=BD=ED=EAA求∠ A 的度数x设∠ A 为 x180E∠A=72xx2xD3x x3x BC5. 如图,△ ABC 中, AB=AC ,D 在 BC 上,∠ B AD=30°, 在 AC 上取点 E ,使 AE=AD,求∠ EDC 的度数设∠ ADE 为 xA∠EDC=∠AED -∠ C=15°180°-2x30°x -15°x Ex BDCx -15°6. 如图,△ ABC 中,∠ C=90°, D 为 AB 上一点,作 DE ⊥BC 于 E ,若1BE=AC,BD=2,DE+BC=1,求∠ ABC 的度数延伸 DE 到点 F, 使 EF=BC可证得 : △ABC ≌△ BFE所以∠ 1=∠F由∠ 2+∠F=90°,得∠ 1+∠F=90°1ADC E12B在 Rt △DBF 中, BD= 2,DF=1F所以∠ F = ∠1=30°7. 如图,△ ABC 中, AD 均分∠ BAC ,若 AC=AB+BD求∠ B :∠ C 的值在 AC 上取一点 E, 使 AE=AB A可证△ ABD ≌△ ADE所以∠ B=∠AEDEB D C由AC=AB+BD,得 DE=EC,所以∠ AED=2∠C 故∠ B:∠ C=2:1二、证明题:8.如图,△ ABC中,∠ ABC,∠CAB的均分线交于点P,过点 P 作 DE∥AB,分别交 BC、AC于点 D、E求证: DE=BD+AEC证明△ PBD和△ PEA是等腰三角形 D P EB A9.如图,△ DEF中,∠ EDF=2∠E,FA⊥DE于点A,问:DF、AD、AE间有什么样的大小关系DDF+AD=AE A在 AE上取点 B, 使 AB=ADBE F10.如图,△ ABC中,∠ B=60°,角均分线 AD、CE交于点 O求证: AE+CD=AC B在 AC上取点 F, 使 AF=AE易证明△ AOE≌△ AOF, E DO得∠ AOE=∠AOF由∠ B=60°,角均分线 AD、CE,A F C得∠ AOC=120°所以∠ AOE=∠AOF=∠COF=∠COD=60°故△ COD≌△ COF,得 CF=CD所以 AE+CD=AC11. 如图,△ ABC中, AB=AC, ∠A=100°, BD均分∠ ABC,求证: BC=BD+AD延伸 BD到点 E, 使 BE=BC,连接 CE A在 BC上取点 F, 使 BF=BA D E 易证△ ABD≌△ FBD,得 AD=DF再证△ CDE≌△ CDF,得 DE=DF BF CA故 BE=BC=BD+ADD也可 : 在 BC上取点 E, 使 BF=BD,连接 DF在 BF 上取点 E, 使 BF=BA,连接 DEB先证 DE=DC,再由△ ABD≌△ EBD,得 AD=DE,最后证明 DE=DF即可 E FC 12. 如图 , △ABC中,AB=AC,D为△ ABC外一点,且∠ ABD=∠ACD =60°求证: CD=AB-BD AE在 AB上取点 E,使 BE=BD,在 AC上取点 F,使 CF=CDF得△ BDE与△ CDF均为等边三角形,DB只要证△ ADF≌△ AEDC13. 已知:如图, AB=AC=BE ,CD 为△ ABC 中 AB 边上的中线1A求证: CD=2CEE延伸 CD 到点 E, 使 DE=CD 连.结 AED证明△ ACE ≌△ BCEBC14. 如图,△ ABC 中,∠ 1=∠2,∠ EDC=∠BAC E求证: BD=EDA 1 2在 CE 上取点 F, 使 AB=AFEF易证△ ABD ≌△ ADF,得 BD=DF,∠B=∠AFDBCD由∠ B+∠BAC+∠C=∠DEC+∠EDC+∠C=180°所以∠ B=∠DEC所以∠ DEC=∠AFD所以 DE=DF,故 BD=ED15. 如图,△ ABC 中, AB=AC,BE=CF,EF 交 BC 于点 GA求证: EG=FGECBGF16. 如图,△ABC中,∠ABC=2∠C,AD是 BC边上的高, B 到点 E,使 BE=BD 求证: AF=FC AFB17.如图,△ ABC中, AB=AC,AD和 BE两条高,交E于点求证: AH=2BD由△ AHE≌△ BCE,得 BC=AH18. 如图,△ ABC中, AB=AC, ∠BAC=90°,BD=AB,∠ABD=30°求证: AD=DC作AF⊥BD于 F,DE⊥AC于 E可证得∠ DAF=DAE=15°,所以△ ADE≌△ ADF B得AF=AE,由AB=2AF=2AE=AC,DH,且 AE=BEAHB DAEFDCCEC所以 AE=EC,所以 DE是 AC的中垂线 , 所以 AD=DC19. 如图,等边△ ABC 中,分别延伸 BA 至点 E ,延伸 BC 至点 D ,使 AE=BD求证: EC=EDE延伸 BD 到点 F, 使 DF=BC,A可得等边△ BEF,BCD F只要证明△ BCE ≌△ FDE 即可20. 如图,四边形 ABCD 中,∠ BAD+∠BCD=180°,AD 、BC 的延伸线交于点F ,DC 、 AB 的延伸线交于点 E ,∠ E 、∠ F 的均分线交于点 H求证: EH ⊥FHF延伸 EH 交 AF 于点 G由∠ BAD+∠BCD=180° ,∠DCF+∠BCD=180° D得∠ BAD=∠DCF,CG1由外角定理 , 得∠ ∠2 MH1= 2,故△ FGM 是等腰三角形ABE由三线合一 , 得 EH ⊥。
中考数学总复习《等腰三角形》专项提升练习题(附答案)
![中考数学总复习《等腰三角形》专项提升练习题(附答案)](https://img.taocdn.com/s3/m/7b6baab50342a8956bec0975f46527d3240ca6c2.png)
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。
等腰三角形经典练习题(5套)附带详细答案
![等腰三角形经典练习题(5套)附带详细答案](https://img.taocdn.com/s3/m/42c261e7102de2bd97058807.png)
练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( )A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形AQ CPB∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60° ∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
等腰三角形经典习题(必看)
![等腰三角形经典习题(必看)](https://img.taocdn.com/s3/m/3ed6f47082c4bb4cf7ec4afe04a1b0717fd5b3ed.png)
等腰三角形经典习题(必看)题一:求等腰三角形的面积
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该等腰三角形的面积。
解题思路
由于等腰三角形的底和高两边相等,可以利用三角形的面积公式求解。
面积公式为:$S = \frac{1}{2} \times x \times y$。
题二:求等腰三角形的周长
题目描述
给定一个等腰三角形,已知底的长度为x,求该等腰三角形的周长。
解题思路
由于等腰三角形的底和两边相等,可以利用周长公式求解。
周
长公式为:$P = 2 \times x + 2 \times \sqrt{\frac{x^2}{4} + y^2}$。
题三:求等腰三角形的顶角
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该
等腰三角形的顶角。
解题思路
等腰三角形的顶角可以通过三角函数求得。
顶角的弧度可以表
示为:$r = \arctan(\frac{y}{\frac{x}{2}})$,然后将弧度转换为角度:$a = \frac{180 \times r}{\pi}$。
总结
通过以上题,我们可以掌握等腰三角形的面积、周长和顶角的
求解方法,这些基础知识对于进一步研究和应用等腰三角形有重要
意义。
以上为等腰三角形经典习题,希望对您的学习有所帮助。
中考数学总复习《等腰三角形》专项提升练习题(附答案)
![中考数学总复习《等腰三角形》专项提升练习题(附答案)](https://img.taocdn.com/s3/m/7557eb9e77eeaeaad1f34693daef5ef7ba0d12a6.png)
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________1.如图已知ABC △中AB=3,AC=5,BC=7,若过点A 的一条直线将ABC △分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.1条B.2条C.3条D.4条2.如图在ABC △中AB=AC ,D 是BC 边上的中点30B ∠=︒,则DAC ∠等于( )A.30°B.40°C.50°D.60°3.等腰三角形的一个内角是40︒,则它的顶角度数为( )A.100︒B.40︒或100︒C.70︒D.40︒4.如图,a//b,AB=AC,若162∠=︒,则A ∠的度数为( )A.56︒B.59︒C.62︒D.76︒5.已知等腰三角形的周长为19,其中一边长为3,则该等腰三角形的底边是( )A.3B.8C.3或8D.136.如图在ABC △中AC DC DB ==,100ACD ∠=︒则B ∠等于( )A.50°B.40°C.25°D.20°7.如图在Rt ABC △中90ACB ∠=︒,35ABC ∠=︒将ABC △绕点C 顺时针旋转至A B C '''△,使点A '恰好落在AB 上,则旋转角度为( )A.35︒B.55︒C.70︒D.90︒8.如图在ABC △中点D 在AC 上,点E 在AB 上,且AB AC =,BC BD =,AD DE EB ==,则A ∠等于( )A.45°B.30°C.60°D.75°9.如图点A 、B 、C 三点在O 上40OCB ∠=︒,则A ∠=_____________10.已知等腰三角形的一个外角是80︒,则它顶角的度数为________.11.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为__________cm .12.如图52ABC ∠=︒,AD 是线段BC 的垂直平分线,垂足为点D ,ABC ∠的平分线BE 交AD 于点E ,连接EC ,则AEC ∠的度数是__________.13.如图将ABC △绕点A 逆时针旋转140︒得到ADE △,B ,C ,D 三点恰好在同一直线上.(1)判断ACE △的形状;(2)连接CE ,若CE BD ⊥,求BAC ∠的度数.14.如图在ABC △中AC 边的垂直平分线分别交BC 、AC 于点E 、F ,连接AE ,作AD BC ⊥于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C ∠=︒,求BAC ∠的度数.参考答案及解析1.答案:C解析:如图所示,当3AB AF ==,3BA BD ==与BG AG =时,都能得到符合题意的等腰三角形.综上,这样的直线最多可画3条.2.答案:D解析:在ABC △中已知AB AC =,D 是BC 边上的中点AD BC ∴⊥90ADC ∴∠=︒30B C ∠=∠=︒ 60DAC ∴∠=︒ 故选:D.3.答案:B解析:当40︒为等腰三角形的底角时,顶角为1804040100︒-︒-︒=︒;当40︒为等腰三角形的顶角时,则顶角为40︒.所以该等腰三角形的顶角度数为40︒或100︒.4.答案:A解析:AB AC =如图A B ABC C ∴=∠∠如图//a b 如图162ABC ∴∠=∠=︒如图180A ABC ACB ∠+∠+∠=︒如图18026256A ∠=⨯∴︒-︒=︒如图故选:A.5.答案:A解析:当3是腰长时,底边为193213-⨯=此时33613+=<,不能组成三角形;当3是底边时,腰长为()119382-=此时3,8,8三边能够组成三角形. 所以等腰三角形的底边是3.故选:A.6.答案:D解析:AC DC DB == 100ACD ∠=︒180100402CAD -∴︒︒∠==︒ CDB ∠是ACD △的外角10040100140CDB A ACD ︒∴∠=∠+∠=︒=+=︒︒DC DB =180140202B ︒︒-∴∠==︒.7.答案:C 解析:90ACB ∠=︒ 35ABC ∠=︒∴180903555A ∠=︒-︒-︒=︒将ABC △绕点C 顺时针旋转至A B C '''△,即其中一个旋转角为ACA '∠A C AC '∴=∴CAA '△是等腰三角形∴55CA A CAA ''∠=∠=︒∴180555570ACA '∠=︒-︒-︒=︒故选:C.8.答案:A解析:设EBD x ∠=DE EB =EBD EDB x ∴∠=∠=2AED EBD EDB x ∴∠=∠+∠=AD DE =2A AED x ∴∠=∠=3BDC A EBD x ∴∠=∠+∠=BC BD =3BDC C x ∴∠=∠=AB AC =3ABC C x ∴∠=∠=在ABC △中有180A ABC C ∠+∠+∠=︒,则233180x x x ++=︒22.5x ∴=︒245A x ∴∠==︒故选:A.9.答案:50︒解析:OB OC = 40OCB ∠=︒40OBC OCB ∴∠=∠=︒1804040100BOC ∴∠=︒-︒-︒=︒1502A BOC ∴∠=∠=︒.故答案为:50︒.10.答案:100︒.解析:等腰三角形一个外角为80︒,那相邻的内角为100︒如图三角形内角和为180︒,如果这个内角为底角,内角和将超过180︒如图所以100︒︒只可能是顶角.故答案为:100︒.11.答案:6或8. 解析:①6cm 是底边时,腰长()12067cm 2=-=此时三角形的三边分别为7cm 7cm 6cm 、、能组成三角形②6cm 是腰长时,底边20628cm =-⨯=此时三角形的三边分别为6cm 6cm 8cm 、、能组成三角形综上所述,底边长为6或8cm .故答案为:6或8.12.答案:116︒解析:52ABC ∠=︒,ABC ∠的平分线BE 交AD 于点E 11522622EBD ABC ∴∠=∠=⨯︒=︒点E 在BC 的垂直平分线上BE CE ∴= 90EDC ∠=︒26C EBD ∴∠=∠=︒2690116AEC C EDC ∴∠=∠+∠=︒+︒=︒.故答案为:116︒.13.答案:(1)顶角为140︒的等腰三角形(2)90︒解析:(1)ABC △绕点A 逆时针旋转140︒得到ADE △ AC AE ∴= 140CAE ∠=︒ ACE ∴△是以顶角为140︒的等腰三角形;(2)ABC △绕点A 逆时针旋转140︒得到ADE △ 140BAD CAE ∴∠=∠=︒ AB AD = AC AE = ∴在ABD △中180140202ABC ADB ︒-︒∠=∠==︒ 在ACE △中180140202ACE AEC ︒-︒∠=∠==︒ CE BD ⊥90ECB ∴∠=︒902070ACB ECB ACE ∴∠=∠-∠=︒-︒=︒在ABC △中180180207090BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒ BAC ∴∠的度数为90︒.14.答案:(1)见解析(2)84︒解析:(1)D 为BE 的中点BD DE ∴=AD BC ⊥ AB AE ∴=EF 是AC 的垂直平分线AE CE ∴=AB CE ∴=; (2)32C ∠=︒ AE CE =32C EAC ∴∠=∠=︒64AEB C EAC ∴∠=∠+∠=︒AB AE =64B AEB ∴∠=∠=︒180180646452BAE B AEB ∴∠=︒-∠-∠=︒-︒-︒=︒ 523284BAC BAE EAC ∴∠=∠+∠=︒+︒=︒.。
等腰三角形经典练习题(5套)附带详细答案
![等腰三角形经典练习题(5套)附带详细答案](https://img.taocdn.com/s3/m/449df6e1192e45361166f57b.png)
练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50° B.65° C.70° D. 75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线/二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)[9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.一、选择题1.B2.B3.C二、填空题4.底角,等边对等角~5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)|∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各@边中点,则图中共.有正三角形( )A.2个 B.3个C.4个 D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于 ( )A. 2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.—三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.《9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题[AQ CPB1.D 2.B二、填空题 3.2㎝ 4.120° 5.等边 6.6㎝ 三、解答题7.△ABC 是等边三角形.理由是 ∵△ABC 是等边三角形;∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余)》∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
《等腰三角形的判定》练习
![《等腰三角形的判定》练习](https://img.taocdn.com/s3/m/58e64bedbed5b9f3f80f1cec.png)
《等腰三角形的判定》练习篇一:等腰三角形经典练习题[1]等腰三角形练习知识梳理说明:①本定理的证明用的是作底边上的高,还有其他证明方法(如作顶角的平分线)。
②证明一个三角形是等腰三角形的方法有两种:1、利用定义2、利用定理。
知识点4:等腰三角形的推论1. 推论:推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
知识点5:等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
一、知识点回顾等腰三角形的性质:△ABC中,AB=AC.点D在BC边上(1)∵AB=AC,∴∠_____=∠______;(即性质1)(2)∵AB=AC,AD平分∠BAC,∴_______=________;________⊥_________;(即性质2)(3)∵AB=AC,AD是中线,∴∠______=∠______;________⊥________;(即性质2)(4)∵AB=AC,AD⊥BC,∴∠________=∠_______;_______=_______.(即性质2)等腰三角形的判定:△ABC中,∵∠B=∠C∴_____=_____.二、基础题第1题. 已知等腰三角形的一个内角为80°,则它的另两角为________________.第2题. 在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,DE∥BC,则图中等腰三角形的个数是() A.2B.3C.4D.5第3题. 如图1,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()B知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C (3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。
八年级数学上册《第二章 等腰三角形》练习题-含答案(湘教版)
![八年级数学上册《第二章 等腰三角形》练习题-含答案(湘教版)](https://img.taocdn.com/s3/m/e42da71c4a35eefdc8d376eeaeaad1f347931164.png)
八年级数学上册《第二章 等腰三角形》练习题-含答案(湘教版)一、选择题1.等腰三角形的一边长为3 cm ,周长为19 cm ,则该三角形的腰长为( )A.3 cmB.8 cmC.3 cm 或8 cmD.以上答案均不对2.在等腰三角形ABC 中,AB=AC,其周长为20cm,则边AB 的取值范围是( ).A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm3.已知等腰△ABC 的底边BC=8,且|AC-BC|=2,那么腰AC 的长为( )A.10或6B.10C.6D.8或64.若a,b 为等腰△ABC 的两边,且满足520a b --=,则△ABC 的周长为 ( )A.9B.12C.15或12D.9或125.若三角形三个内角的比为1:2:3,则这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形6.在△ABC 中,∠A=70°,∠B=55°,则△ABC 是( )A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .258.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是( )A .1cm <AB <4cm B .5cm <AB <10cmC .4cm <AB <8cmD .4cm <AB <10cm二、填空题9.如果等腰三角形的周长为29,其中一边长为7,则这个等腰三角形的底边长是 .10.已知等腰△ABC 的周长为10,若设腰长为x ,则x 的取值范围是 .11.一个等腰三角形的底边长为5 cm ,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm ,则它的腰长是12.如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=20°,则∠α的度数为________13.一副三角形叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度;14.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.三、解答题15.已知等腰三角形一腰上的中线把这个三角形的周长分成 9cm和 15cm两部分求这个三角形的腰长。
等腰三角形强化练习(打印)题(含答案)
![等腰三角形强化练习(打印)题(含答案)](https://img.taocdn.com/s3/m/3350b672f46527d3240ce0c1.png)
ED C AF1.等腰三角形练习题(第一课时)一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80° B .90° C .100° D .108°ECAFG二、填空题 6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____.10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______.三、解答题11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.AB C DAB C D练习题(第二课时)一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C AE D ABFEDCBH F(1) (2) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( ) A .1个 B .2个 C .3个 D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③ B .①②③④ C .①② D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EF C .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 三、解答题9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .四、探究题11.如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E , 求证:AE=BE .ECABFE D ABF2.等边三角形练习题一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③ B .①②④ C .①③ D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形D ABF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 二、填空题7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•的长度是_______. 三、解答题10.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.D CAB11.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDAH F等腰三角形测试题(1)1、等腰三角形的一边长为2,周长是7,则另外两边的长为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形专项训练
一、选择与填空
1、一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是( )
A.25°B.40°C.25°或40°D.不确定.
2、.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为()
A.600
B.1200
C.600或1500
D.600或1200
3、有一个等腰三角形的周长为25,一边长为11,那么腰长为( )
A.11 B.7 C.14 D.7或11
4、等边三角形的两条高线相交所成钝角的度数是( )
A.105°B.120°C.135°D.150°
5、下列命题正确的个数是( )
①如果等腰三角形内一点到底边两端点的距离相等, 那么过这点与顶点的直线必垂直于底边; ②如果把等腰三角形的底边向两个方向延长相等的线段, 那么延长线段的两个端点与顶点距离相等; ③等腰三角形底边中线上一点到两腰的距离相等; ④等腰三角形高上一点到底边的两端点距离相等.
A.1个
B.2个
C.3个
D.4个
6、下列图形中一定有4条对称轴的是()
A.长方形
B.正方形
C.等边三角形
D.等腰直角三角形
7、下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,
其中一定是轴对称图形的有()
A.5个
B.3个
C.4个
D.6个
8、等腰三角形是轴对称图形,它的对称轴有()
A.1条
B.2条
C.3条
D.1条或3条
9、若点P为⊿ABC内部一点,且PA=PB=PC,则点P是⊿ABC的()
(A)三边中线的交点(B)三内角平分线的交点
(C)三条高的交点(D)三边垂直平分线的交点
10若△ABC两边的垂直平分线的交点在三角形的外部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能
11、等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.
12、在△ABC中,AB=AC,AD⊥BC于D,由以上两个条件可得_________________.(写出一个结论即可)
河岸B A
F C
D
B E
A
13、如图5:在△ABC 中, ∠A=900,BD 平分∠ABC,交AC 于点D,已知AD=4.3㎝,则D 到BC 边的距离为__________.
14、如果等腰三角形的三边长均为整数且周长为10,则它的三边长分别为______________. 15、在△ABC 中,AB=AC ,∠BAC=120°,AB 的垂直平分线交BC 于D ,且BD=10cm ,则DC=____. 16、在△ABC 中,∠A=78°,点D ,E ,F 分别在边BC ,AB ,AC 上,BD=BE ,CD=CF ,•则∠EDF=_______. 17、如图,⊿MNP 中,∠P= 60,MN=NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG=NQ , 若⊿MNP 的周长为12,MQ=a ,则⊿MGQ 的周长为 ( ) (A) 8+2a (B )8+a (C ) 6+a (D )6+2a
18、如图9-13所示,△ABC 中,BC 边的垂直平分线DE 交BC 于D ,交AC 于E ,
BE =5厘米,△BCE 的周长是18厘米,则BC = 厘米
二、作图题
如图,A 、B 两个村庄在河岸的同一侧,现要在河岸上开设取水口,铺设灌溉管道。
为了使管道铺设距离最短,请在图中画出取水口P 的位置。
三、解答题 1、如图:在△ABC 中,AB=AC ,AD ⊥BC , DE ⊥AB 于点E, DF ⊥AC 于点F 。
试说明DE=DF 。
2.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O ,过点O 作EF ∥BC ,交AB 于E ,交AC 于F ,若AB=18,AC=16,求△AEF 的周长?
3、如图11,已知BO 、CO 分别是∠ABC 和∠ACB 的平分线,OE ∥AB ,OF ∥AC ,如果已知BC 的长为a ,你能知道△OEF 的周长吗?算算看.
4、已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.
A
F
B
C
D E
A B C
F E
O 图11
5、等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试说明你的结论.
6、如图,点D,E 在△ABC 的边BC 上,AB=AC ,AD=AE , (1) 试比较BD 与CE 的大小,写出你得到的结论; (2) 对你得到的结论说明理由.
7、如图:在△ABC 中,AB=AC,P 为BC 边上任意一点,PF ⊥AB 于F,PE ⊥AC 于E,若AC 边上的高BD=a.
(1)试说明PE +PF=a;
(2)若点P 在BC 的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a 的关系式,不需要说明理由.
A
C
B
P
Q
A B
C
P
F
E D。