智能天线技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动通信原理
学院:信息工程学院
班级:电子与通信工程
学号: 2111703317
姓名:蒋阿康
智能天线技术
随着移动通信的迅速发展,越来越多的业务将通过无线电波的方式来进行,有限的频谱资源面对着越来越高的容量需求的压力。对于第二代移动通信系统GSM,在我国的一些大城市已经出现了容量供应困难的现象,小区蜂窝的半径已经很小,而目前作为应用研究重点的3G以及它的业务模式无疑将对网络容量有更高的要求。高速的数据业务将作为3G网络服务的一个主要特点,这使得网络数据流量尤其是下行方向上将有明显的提高。因此,为了在3G系统中实现与第二代系统明显的差别服务,充分体现3G系统在业务能力上的优势,网络容量将是网络的运营者必须重点考虑的问题。就目前的情况而言,智能天线技术将是提高网络容量最有效的方法之一,尤其对于3G 中以自干扰为主要干扰形式的通信系统。
天线方向图的增益特性能够根据信号情况实时进行自适应变化的天线称为智能天线。与普通天线以射频部分为主不同,智能天线包括射频部分以及信号处理和控制部分。同时,由于终端在尺寸和成本上的限制,所以目前对于智能天线的研究主要集中在基站。
目前,普遍使用的是全向天线或者扇区天线,这些天线具有固定的天线方向图形式,而智能天线将具有根据信号情况实时变化的方向图特性。
图 1
如图1所示,在使用扇区天线的系统中,对于在同一扇区中的终端,基站使用相同的方向图特性进行通信,这时系统依靠频率、时间和码字的不同来避免相互间的干扰。而在使用智能天线的系统中,系统将能够以更小的刻度区别用户位置的不同,并且形成有针对性的方向图,由此最大化有用信号、最小化干扰信号,在频率、时间和码字的基础上,提高了系统从空间上区别用户的能力。这相当于在频率和时间的基础上扩展了一个新的维度,能够很大程度地提高系统的容量以及与之相关的目录。
1.智能天线技术的概念
智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。
智能天线是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(Direction of Arrival),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干
扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。
2.智能天线的分类及组成
智能天线主要包含两类:开关波束系统和自适应阵列系统。两者中,只有自适应阵列系统能够在为有用信号提供最佳增益的同时,识别、跟踪和最小化干扰信号。
2.1智能天线技术的分类
(1)多波束天线
多波束天线利用多个并行波束覆盖整个用户区,每个波束的指向是固定的,波束宽度也随天线元数目而确定。当用户在小区中移动时,基站在不同的相应波束中进行选择,使接收信号最强。因为用户信号并不一定在波束中心,当用户位于波束边缘及干扰信号位于波束中央时,接收效果最差,所以多波束天线不能实现信号最佳接收,一般只用作接收天线。但是与自适应天线阵列相比,多波束天线具有结构简单、无须判定用户信号到达方向的优点。
(2)自适应阵列天线
自适应天线阵列一般采用4~16天线阵元结构,阵元间距为半个波长。天线阵元分布方式有直线型、圆环型和平面型。自适应天线阵列是智能天线的主要类型,可以完成用户信号接收和发送。自适应天线阵列系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。
智能天线的组成
智能天线包括射频天线阵列部分和信号处理部分,其中信号处理部分根据得到的关于通信情况的信息,实时地控制天线阵列的接收和发送特性。这些信息可能是接收到的无线信号的情况;在使用闭环反馈的形式时,也可能是通信对端关于发送信号接收情况的反馈信息。
由于移动通信中无线信号的复杂性,所以这种根据通信情况实时调整天线特性的工作方式对算法的准确程度、运算量以及能够实时完成运算的硬件设备都有很高的要求。这决定了智能天线的发展是一个分阶段的、逐步完善的过程。
2.2智能天线基本结构
自适应天线阵由多个天线单元组成,每一个天线后接一个加权器(即乘以某一个系数,这个系数通常是复数,既调节幅度又调节相位,而在相控阵雷达中只有相位可调),最后用相加器进行合并,这种结构的智能天线只能完成空域处理;同时具有空域、时域处理能力的智能天线在结构上相对复杂些,每个天线后接的是一个延时抽头加权网(结构上与时域FIR均衡器相同)。自适应或智能的主要含义是指这些加权系数可以恰当改变和自适应调整。上面介绍的是智能天线用作接收天线时的结构,当用它进行发射时结构稍有变化,加权器或加权网络置于天线之前,也没有相加合并器。
3.智能天线技术的基本原理
如图2,智能天线由天线阵列,A/D和D/A转换,自适应算法控制器和波束形成网络组成。其中,波束形成网络是由每个单元空间感应信号加权相加,其权系数是复数,即每路信号的幅度和相位均可以改变。自适应控制网络是智能天线的核心,该单元的功能是根据一定的算法和优化准则来调节各个阵元的加权幅度和相位,动态的产生空间动态定向波束。
智能天线技术主要基于自适应天线阵列原理,天线阵收到信号后,通过由处理器和权值调整算法组成的反馈控制系统,根据一定的算法分析该信号,判断信号及干扰到达的方位角度,将计算分析所得的信号作为天线阵元的激励信号,调整天线阵列单元的辐射方向图、频率响应及其它参数。利用天线阵列的波束合成和指向,产生多个独立的波束,自适应地调整其方向图,跟踪信号变化,对干扰方向调零,减弱甚至抵消干扰,从而提高接收信号的载干比,改善无线网基站覆盖质量,增加系统容量。
在方向图的选择和形成上智能天线的基本原理是在满足窄带传输假设(即某一入射信号在各天线单元的响应输出只有相位差异而没有幅度变化)下,各阵元上入射信号的波程差导致了阵元上接收信号的相位差,若入射信号为平面波,则上述相位差将由载波波长、入射角度、天线位置分布唯一确定。具有相同信号强度、不同入射角度的信号,由于它们在天线阵元间的相位差不同,通过一个矢量加权合并后,各自的阵列输出信号功率也会有所不同,由此可做出这个权矢量对应的方向图。
以入射角为横坐标、输出功率(dB)为纵坐标所作的图称为方向图。智能天线的方向图不同于全向天线的方向图(理想时为一直线),而是接近于方向性(directional)天线的方向图,即有主瓣(main lobe)旁瓣(side lobe)等。
图 2 结构原理图
4.智能天线的实现
智能天线阵系统主要包括天线阵列、自适应处理器和波束形成网络。天线阵列是收发射频信号的辐射单元。自适应处理器把有一定规律的激励信号转换成与各波束相对应的幅度和相位,提供给各辐射单元,用来确定波束形
成网络各部分方向图的增益。波束形成网络利用天线阵元产生的方向图,实现智能天线的各种应用。