数学建模 污水处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水处理问题
摘要
随着经济的快速发展,环保问题已经成为一个不容忽视的问题,而水资源更是关系着每个居民的日常生活,因此对于污水处理这一特殊的问题我们在解决时就应该本着高效的原则去实施,在这个污水处理问题中,我们先建立了一般情况下的模型,然后将该模型应用到实际问题中从而解决了实际问题。在模型的建立中我们要考虑工厂的净化能力,江水的自净能力,在保证江水经这一系列的处理后在到达下一个居民点后要达到国家标准,还要花费最少,对该问题进行全面的分析后可知这是一个运筹学方面关于线性规划的最优解问题,在该模型的建立中我们针对江水污水浓度在每个居民点之前小于国家标准这一条件对其建立线性约束条件,然后综合考虑费用最小,在结合三个处理厂各自的情况后关于费用抽象数模型的目标函数,然后应用LINDO软件求解该问题得到当三个处理厂排出的污水浓度分别为40 mg/l,20 mg/l,50 mg/l时,此时我们得到使江面上所有地段的水污染达到国家标准,最少需要花费费用为500万元。当从三个处理厂出来的污水浓度分别为62.222225mg/l,60mg/l,50mg/l,时,此时如果只要求三个居民点上游的水污染达到国家标准最少需要花费费用为188.8889万元。
问题的提出
设上游江水流量为,污水浓度为0.8 mg/l,3个工厂的污水流量均为,污水浓度(从上游到下游排列)分别为100,60,50(mg/l),处理系数均为1万元( (mg/l)),3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9和0.6.国家标准规定水的污染浓度不能超过1mg/l.
(1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用?
(2)如果只要求三个居民点上游的水污染达到国家标准最少需要花费多少费用?
问题的分析
通过对该污水处理所花费用最少问题的分析,我们可知在此问题中有多个污水浓度,江水的原始污水浓度,工厂排出的污水浓度,处理厂排出的污水浓度,以及当处理厂排出污水与江水混合后再经江水自净后的浓度,在这几个浓度中只有经处理厂排出的污水的浓度是未知的,其关系着整个问题,要使总费用最少,江中每段的污水浓度都达到国家标准,江水中污水浓度在到达下一居民点之前须达到国家标准1(mg/l),那么问题的重点就在于对污水浓度的认识。在问题中有三个工厂以及对应的三个污水处理厂,那么这三个污水处理厂各向江中投放的污水浓度就要有一个界值,又因当处理厂将污水排到江中之后污水会随着江水不断向下游移动,因此下游污水的浓度与上游污水的浓度是紧密相关的,即江面中每段污水的浓度都是有联系的,在模型的建立过程中我们就要考虑应用递推的方法进行相邻两端之间污水浓度的联系,在问题的求解中因所花费用都是用来对污水的处理,因此对个处理厂排出的污水浓度的确定就显得至关重要,只有确定了这三个未知数即这三个界值后,我们才能建立目标函数从而进一步得到最小花费。基于对江水浓度的限定与对花费最少两方面的考虑,我们建立了线性规划模型。
具体问题分析如下:
对于第一个问题
(1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用的
解也就是说对于工厂1所排出的污水经过污水处理厂处理后的污水与江水混合后的污水浓度就得达到国家标准。同时工厂2,3排出的经过处理的污水与江水经过自净的水混合后也要达到国家标准。这样在求解具体问题的时候每个限制条件在江水与工厂排出的水混合时进行设定。
对于第二个问题
(2)如果只要求三个居民点上游的水污染达到国家标准最少需要花费多少费用,对居民点1来说其上游的江水污水浓度为0.8(mg/l),低于国家的标准污水浓度,无需考虑。也就是说在第二,三个居民点之前,污水浓度必须达到国家标准,这时处理问题的限制条件发生在第二三个居民点处。这时工厂1排出的污水经过污水厂的处理之后与江水混合再经过江水自净到达居民点2 之前须达到国家标准,居民点3同理。
模型假设
假设与符号:
假设在两个江面之间的江水流量和污水浓度在一小段范围内变化不大,即将一段江面看做一个点,我们对该点进行处理。
Qi 表示第i 段江水的流量
Si 表示各工厂排出污水的流量.
Ci 表示第i 段江水中污水的浓度
Ai 表示第i个污水厂的污水浓度。
Xi 表示第i个处理厂的污水浓度。
Di 表示江水与处理厂的污水混合后的污水浓度。
Ri 表示第i个处理厂的处理系数
ti 表示第i段江面的自净系数。
M 表示所花费用。
C0 表示国家规定的污水浓度
其中C0=1mg/l
对上述符号假设完,我们可以对上述问题进行模型的抽象,对此下建立一个一般情况下的模型。如下所示:
设有n个工厂,n个处理厂与n个居民点,模型中部分相关参数在途中已进行表示如下所示
工厂i+1
污水浓度Ai+1
流量Si+1
工厂i
污水浓度Ai
流量Si
处理厂1
污水浓度X1
流量S1
处理厂i
污水浓度Xi
流量Si
处理厂i+1
污水浓度Xi+1
流量Si+1
江水流量为Qi,江水上游污水浓度为C1,各水段自净系数为ti
工厂1
污水浓度A1
流量S1
居民点1
居民点i
居民点i+1
1 当处理厂江污水处理完排放到江中之后,居民点1即要取水,此时所要满足的条件是(为了解决问题方便不妨假设S1=S2=Si=S0)
(Qi*C1+S1*X1)/(Qi+S0)<=C0
同理对居民点i其所满足的为Ci<=C0,其中
Ci=(Ci-1)*ti+Xi*((Qi+(i-1)*S0)*Ci-1+S0*Xi)/((Qi+(i-1)*S0)+S0)
假设花费为M则有
目标函数:
M=∑Ri*S0*(Ai-Xi)(i=1……n)
模型的建立
对问题进行一般化处理后我们建立一般化的模型如下:
目标函数:
min M=∑Ri*S0*(Ai-Xi) (i=1……n)
线性约束条件:
Di=(Qi*Ci+S0*Xi)/(Qi+S0)
Ci+1=ti*Di
s.t Di<=C0
Xi<=Ai
模型的简化与求解
在上面的一般模型中我们比较仔细的考虑了江水流量与处理厂的流量问题,但在现实生活中因污水处理厂的处理能力有限,因此其流量相对于江水流量而言较小,我们对其进行理想化