伍德里奇计量经济学讲义
合集下载
最新伍德里奇计量经济学讲义2教学文案
2
Functional Form (continued)
First, use economic theory to guide you Think about the interpretation Does it make more sense for x to affect y in percentage (use logs) or absolute terms? Does it make more sense for the derivative of x1 to vary with x1 (quadratic) or with x2 (interactions) or to be fixed?
3
Functional Form (continued)
We already know how to test joint exclusion restrictions to see if higher order terms or interactions belong in the model It can be tedious to add and test extra terms, plus may find a square term matters when really using logs would be even better A test of functional form is Ramsey’s regression specification error test (RESET)
8
Proxy Variables (continued)
What do we need for for this solution to
give us consistent estimates of b1 and b2?
Functional Form (continued)
First, use economic theory to guide you Think about the interpretation Does it make more sense for x to affect y in percentage (use logs) or absolute terms? Does it make more sense for the derivative of x1 to vary with x1 (quadratic) or with x2 (interactions) or to be fixed?
3
Functional Form (continued)
We already know how to test joint exclusion restrictions to see if higher order terms or interactions belong in the model It can be tedious to add and test extra terms, plus may find a square term matters when really using logs would be even better A test of functional form is Ramsey’s regression specification error test (RESET)
8
Proxy Variables (continued)
What do we need for for this solution to
give us consistent estimates of b1 and b2?
伍德里奇计量经济学课件 (19)
n1 xi1 x1 2 does not converge to zero,
plimbˆ1
b1
n 1 n 1
xi1 x1 ui xi1 x1 2
b1.
由于当n趋于无穷时分子趋于零而分母不
趋于零,故bˆ1的概率极限即b1。
证明OLS的一致性
n 多元回归中OLS估计量的一致性的证明可 以通过矩阵运算得到。
Wn 便是 的一个一致估计量。 当Wn 具有一致性时,我们也称 为 Wn 的概率极限,写
作是 p lim(Wn ) .
一致性与无偏性
n 一个估计量是否有可能在有限样本中是有偏的但 又具有一致性?
n 假设Z的真值为0,一个随机变量X以(n-1)/n的概 率取值为Z,而以1/n的概率取值为n。
1/ n. Therefore, only when we scale bˆ j up by n
can we discuss the asymptotic distribution.
当n 时,V (bˆ j )以1/n的速度减小到零。因此,
我们只有按 n的比例增大bˆ j,才能讨论渐近分布。
渐近正态(续)
n 定理5.1: 在假设MLR.1到MLR.4下,OLS截距估 计量和斜率估计量都是一致的估计量。
n 对简单回归而言,证明估计量的一致性和证明无 偏性的方法是类似的。
证明一致性
The OLS estimated slope parameter from simple regression is
简单回归中的斜率估计量即
a
~ Normal 0,1
在定理5.2中什么是我们的假定而什么不是
n 去掉了正态性假定MLR.6 n 仍然假定:
伍德里奇计量经济学课件 (1)
n
18
计量经济学
n
若贝尔经济学奖获奖名单
2004 Finn Kydland , Edward Prescott 2003 Robert F. Engle, Clive W. J. Granger 2002 Daniel Kahneman, Vernon L. Smith 2001 George A. Akerlof, A. Michael Spence, Joseph E. Stiglitz 2000 James J Heckman, Daniel L McFadden 1999 Robert A. Mundell 1998 Amartya Sen 1997 Robert C. Merton, Myron S. Scholes 1996 James A. Mirrlees, William Vickrey
INTERMEDIATE ECONOMETRICS
计量经济学导论
Fall, 2012
1
Outline
有关信息 n 什么是计量经济学 n 计量经济学的作用 n 数据: 输入数据 n 经验分析的步骤 n 本课程涵盖的内容
n
2
信息:课程——计量经济学
金融计量学 课号:01663 学分:4 课程性质:教育部规定核心课程
△诺贝尔经济学奖与计量经济学
77位获奖者中10位直接因为对计量经济学发展的贡献而获奖 1969 R. Frish J. Tinbergen 1973 W. Leotief 1980 L. R. Klein 1984 R. Stone 1989 T. Haavelmo 2000 J. J. Heckman D. L. McFadden 2003 R. F. Engle C. W. J. Granger
18
计量经济学
n
若贝尔经济学奖获奖名单
2004 Finn Kydland , Edward Prescott 2003 Robert F. Engle, Clive W. J. Granger 2002 Daniel Kahneman, Vernon L. Smith 2001 George A. Akerlof, A. Michael Spence, Joseph E. Stiglitz 2000 James J Heckman, Daniel L McFadden 1999 Robert A. Mundell 1998 Amartya Sen 1997 Robert C. Merton, Myron S. Scholes 1996 James A. Mirrlees, William Vickrey
INTERMEDIATE ECONOMETRICS
计量经济学导论
Fall, 2012
1
Outline
有关信息 n 什么是计量经济学 n 计量经济学的作用 n 数据: 输入数据 n 经验分析的步骤 n 本课程涵盖的内容
n
2
信息:课程——计量经济学
金融计量学 课号:01663 学分:4 课程性质:教育部规定核心课程
△诺贝尔经济学奖与计量经济学
77位获奖者中10位直接因为对计量经济学发展的贡献而获奖 1969 R. Frish J. Tinbergen 1973 W. Leotief 1980 L. R. Klein 1984 R. Stone 1989 T. Haavelmo 2000 J. J. Heckman D. L. McFadden 2003 R. F. Engle C. W. J. Granger
伍德里奇计量经济学课件 (21)
为了进行检验,我们首先要构造bˆj的t统计量:
tbˆj bˆ j se bˆ j
然后利用t统计量和拒绝条件来决定是否接受零假设,H0
The t Test (cont)
n t准统离计差量。tbˆ j 度量了估计值 bˆ j 相对0偏离了多少个估计的标
n 它的符号与 bˆ j 相同 bˆ j
n 假xk独设立M,LR且.6u(服正从态均性值)为:0,假方设差u与为x12,的x2正,…,
态分布。
经典线性模型假设
n 假设MLR.1-MLR.被称为经典线性模型假设 n 我们将满足这六个假设的模型称为经典线性模型 n 在经典线性模型假设下,OLS不仅是BLUE,而
且是最小方差无偏估计量,即在所有线性和非线
n 刻画样本分布的两种方式:“准确”方式 和“近似”方式
样本分布:复习
n “准确”方式需要对任何n的取值都得到样 本分布的精确表达式。
n 这样的分布被称为小样本(有限样本)的
准确 分布
n 例如,如果y服从正态分布,且y1, y2, …, yn 独立同分布,则其均值恰好服从正态分布
样本分布:复习
n “近似”方式对样本分布进行大样本下的近 似。
单边替代假设
yi = b0 + b1xi1 + … + bkxik + ui
H0: bj = 0
H1: bj > 0
Fail to reject
1 a 0
reject
a
c
t分布与正态分布
n 注意:当t分布的自由度增大时,t分布趋 近于标准正态分布。
例子:学生表现与学校规模(meap93.raw)
n 如果我们愿意在5%的概率上错误地拒绝实际上 为真的零假设,则说我们的显著水平为5%
tbˆj bˆ j se bˆ j
然后利用t统计量和拒绝条件来决定是否接受零假设,H0
The t Test (cont)
n t准统离计差量。tbˆ j 度量了估计值 bˆ j 相对0偏离了多少个估计的标
n 它的符号与 bˆ j 相同 bˆ j
n 假xk独设立M,LR且.6u(服正从态均性值)为:0,假方设差u与为x12,的x2正,…,
态分布。
经典线性模型假设
n 假设MLR.1-MLR.被称为经典线性模型假设 n 我们将满足这六个假设的模型称为经典线性模型 n 在经典线性模型假设下,OLS不仅是BLUE,而
且是最小方差无偏估计量,即在所有线性和非线
n 刻画样本分布的两种方式:“准确”方式 和“近似”方式
样本分布:复习
n “准确”方式需要对任何n的取值都得到样 本分布的精确表达式。
n 这样的分布被称为小样本(有限样本)的
准确 分布
n 例如,如果y服从正态分布,且y1, y2, …, yn 独立同分布,则其均值恰好服从正态分布
样本分布:复习
n “近似”方式对样本分布进行大样本下的近 似。
单边替代假设
yi = b0 + b1xi1 + … + bkxik + ui
H0: bj = 0
H1: bj > 0
Fail to reject
1 a 0
reject
a
c
t分布与正态分布
n 注意:当t分布的自由度增大时,t分布趋 近于标准正态分布。
例子:学生表现与学校规模(meap93.raw)
n 如果我们愿意在5%的概率上错误地拒绝实际上 为真的零假设,则说我们的显著水平为5%
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要:I.计量经济学的性质与经济数据A.计量经济学的定义B.经济数据的特点和来源II.简单回归模型A.回归模型的基本概念B.线性回归模型的建立与估计C.线性回归模型的检验III.多元回归分析A.多元回归模型的基本概念B.多元回归模型的建立与估计C.多元回归模型的检验IV.回归模型的应用与拓展A.回归模型在经济学研究中的应用B.回归模型的拓展与修正正文:伍德里奇在《计量经济学导论》一书中,对计量经济学的基本概念、方法和应用进行了系统性的介绍。
首先,他明确了计量经济学的定义,即在一定的经济理论基础之上,采用数学与统计学的工具,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。
为了更好地进行计量分析,书中详细阐述了经济数据的特点和来源,以及如何有效地利用这些数据。
在简单回归模型部分,伍德里奇介绍了回归模型的基本概念,以及如何建立和估计线性回归模型。
他详细地说明了最小二乘法(Least Squares Method)在回归模型估计中的运用,并通过实例展示了线性回归模型的检验方法。
在多元回归分析部分,伍德里奇进一步阐述了多元回归模型的基本概念,以及如何建立和估计多元回归模型。
他详细地介绍了矩阵代数在多元回归模型估计中的应用,并通过实例展示了多元回归模型的检验方法。
此外,他还介绍了如何通过回归模型对经济变量之间的关系进行解释和预测。
在回归模型的应用与拓展部分,伍德里奇通过实例展示了回归模型在经济学研究中的具体应用,包括对产出、消费、投资等经济变量的分析。
他还介绍了如何对回归模型进行拓展和修正,以更好地反映现实经济中的复杂关系。
伍德里奇计量经济学讲义7
• We can summarize the population assumptions of CLM as follows
• y|x ~ Normal(b0 + b1x1 +…+ bkxk, s2)
• While for now we just assume normality, clear that sometimes not the case
To perform our test we first need to form
"the"t statistic for bˆj :tbˆ j bˆ j se bˆ j
We will then use our t statistic along with a rejection rule to determine whether to accept the null hypothesis, H0
t Test: One-Sided Alternatives
• Besides our null, H0, we need an alternative hypothesis, H1, and a significance level
• H1 may be one-sided, or two-sided
One-Sided Alternatives (cont)
yi = b0 + b1xi1 + … + bkxik + ui
• Large samples will let us drop normality
The homoskedastic normal distribution with a single explanatory variable
• y|x ~ Normal(b0 + b1x1 +…+ bkxk, s2)
• While for now we just assume normality, clear that sometimes not the case
To perform our test we first need to form
"the"t statistic for bˆj :tbˆ j bˆ j se bˆ j
We will then use our t statistic along with a rejection rule to determine whether to accept the null hypothesis, H0
t Test: One-Sided Alternatives
• Besides our null, H0, we need an alternative hypothesis, H1, and a significance level
• H1 may be one-sided, or two-sided
One-Sided Alternatives (cont)
yi = b0 + b1xi1 + … + bkxik + ui
• Large samples will let us drop normality
The homoskedastic normal distribution with a single explanatory variable
伍德里奇计量经济学导论ppt课件
l 确定性总体回归函数
E(Y|Xi) = 0 + 1 Xi,
ppt课件.
21
Ø 随机误差项u的意义:
l 反映被忽略掉的因素对被解释变量的影响。 或者理论不够完善,或者数据缺失;或者影响轻微。
l 模型设定误差 l 度量误差 l 人类行为内在的随机性
ppt课件.
22
Ø 随机误差项主要包括下列因素:
在解释变量中被忽略的因素的影响; 变量观测值的观测误差的影响; 残缺数据; 模型关系的设定误差的影响; 其他随机因素的影响。
l 对于某一个家庭,如何描述可支配收入和消费支出的关系?
Yi=E(Y|Xi) + ui =0 + 1 Xi + ui
某个家庭的消费支出分为两部分:一是E(Y|Xi)=0 + 1 Xi ,称为系统成
分或确定性成分;二是ui,称为非系统或随机性成分。
ppt课件.
20
l 随机性总体回归函数
Yi=0 + 1 Xi + ui
260
— 152
— — 180 185 — 3 517
ppt课件.
26
样本回归线
样本均值连线
ppt课件.
27
Ø 总体回归模型和样本回归模型的比较
ppt课件.
28
注意:分清几个关系式和表示符号
E(Y|Xi) = 0 + 1 Xi (1)总体(真实的)回归直线: Yi
E(Y|Xi)01Xi
Y2
Y1
或: Yi ˆ0ˆ1Xi ei
其中: Yˆi 为Yi的估计值(拟合值); ˆ0 , ˆ1 为 0 , 1 的估计值;
110 115 120 130 135 140
- 6 750
E(Y|Xi) = 0 + 1 Xi,
ppt课件.
21
Ø 随机误差项u的意义:
l 反映被忽略掉的因素对被解释变量的影响。 或者理论不够完善,或者数据缺失;或者影响轻微。
l 模型设定误差 l 度量误差 l 人类行为内在的随机性
ppt课件.
22
Ø 随机误差项主要包括下列因素:
在解释变量中被忽略的因素的影响; 变量观测值的观测误差的影响; 残缺数据; 模型关系的设定误差的影响; 其他随机因素的影响。
l 对于某一个家庭,如何描述可支配收入和消费支出的关系?
Yi=E(Y|Xi) + ui =0 + 1 Xi + ui
某个家庭的消费支出分为两部分:一是E(Y|Xi)=0 + 1 Xi ,称为系统成
分或确定性成分;二是ui,称为非系统或随机性成分。
ppt课件.
20
l 随机性总体回归函数
Yi=0 + 1 Xi + ui
260
— 152
— — 180 185 — 3 517
ppt课件.
26
样本回归线
样本均值连线
ppt课件.
27
Ø 总体回归模型和样本回归模型的比较
ppt课件.
28
注意:分清几个关系式和表示符号
E(Y|Xi) = 0 + 1 Xi (1)总体(真实的)回归直线: Yi
E(Y|Xi)01Xi
Y2
Y1
或: Yi ˆ0ˆ1Xi ei
其中: Yˆi 为Yi的估计值(拟合值); ˆ0 , ˆ1 为 0 , 1 的估计值;
110 115 120 130 135 140
- 6 750
伍德里奇计量经济学讲义9
Basic idea of regression is to estimate the population parameters from a sample Let {(xi,yi): i=1, …,n} denote a random sample of size n from the population For each observation in this sample, it will be the case that yi = b0 + b1xi + ui
11
More Derivation of OLS
We want to choose values of the parameters that will ensure that the sample versions of our moment restrictions are true The sample versions are as follows:
n
2
providedthat xi x 0
2
15
Summary of OLS slope estimate
The slope estimate is the sample covariance between x and y divided by the sample variance of x If x and y are positively correlated, the slope will be positive If x and y are negatively correlated, the slope will be negative Only need x to vary in our sample
11
More Derivation of OLS
We want to choose values of the parameters that will ensure that the sample versions of our moment restrictions are true The sample versions are as follows:
n
2
providedthat xi x 0
2
15
Summary of OLS slope estimate
The slope estimate is the sample covariance between x and y divided by the sample variance of x If x and y are positively correlated, the slope will be positive If x and y are negatively correlated, the slope will be negative Only need x to vary in our sample
伍德里奇计量经济学讲义-文档资料
ted Alternatives (cont)
More difficult if one model uses y and the other uses ln(y) Can follow same basic logic and transform predicted ln(y) to get ŷ for the second step In any case, Davidson-MacKinnon test may reject neither or both models rather than clearly preferring one specification
2
Functional Form (continued)
First, use economic theory to guide you Think about the interpretation Does it make more sense for x to affect y in percentage (use logs) or absolute terms? Does it make more sense for the derivative of x1 to vary with x1 (quadratic) or with x2 (interactions) or to be fixed?
7
Proxy Variables
What if model is misspecified because no data is available on an important x variable? It may be possible to avoid omitted variable bias by using a proxy variable A proxy variable must be related to the unobservable variable – for example: x3* = d0 + d3x3 + v3, where * implies unobserved Now suppose we just substitute x3 for x3*
More difficult if one model uses y and the other uses ln(y) Can follow same basic logic and transform predicted ln(y) to get ŷ for the second step In any case, Davidson-MacKinnon test may reject neither or both models rather than clearly preferring one specification
2
Functional Form (continued)
First, use economic theory to guide you Think about the interpretation Does it make more sense for x to affect y in percentage (use logs) or absolute terms? Does it make more sense for the derivative of x1 to vary with x1 (quadratic) or with x2 (interactions) or to be fixed?
7
Proxy Variables
What if model is misspecified because no data is available on an important x variable? It may be possible to avoid omitted variable bias by using a proxy variable A proxy variable must be related to the unobservable variable – for example: x3* = d0 + d3x3 + v3, where * implies unobserved Now suppose we just substitute x3 for x3*
伍德里奇计量经济学讲义8PPT课件
• What happens if we include variables in our specification that don’t belong? • There is no effect on our parameter estimate, and OLS remains unbiased • What if we exclude a variable from our specification that does belong? • OLS will usually be biased
18
第18页/共28页
Variance of the at the sampling distribution of our estimate is centered around the true parameter
Want to think about how spread out this distribution is
第12页/共28页
Omitted Variable Bias (cont)
Recall thetruemodel,so that
yi b0 b1xi1 b2 xi2 ui , so t he
n um erat o rbeco m es
xi1 x1 b0 b1xi1 b2xi2 ui b1 xi1 x1 2 b2 xi1 x1 xi2 xi1 x1 ui
1
第1页/共28页
Interpreting Multiple Regression
yˆ bˆ0 bˆ1x1 bˆ2x2 ... bˆk xk , so yˆ bˆ1x1 bˆ2 x2 ... bˆk xk ,
so holdingx2,...,xk fixedimpliesthat
18
第18页/共28页
Variance of the at the sampling distribution of our estimate is centered around the true parameter
Want to think about how spread out this distribution is
第12页/共28页
Omitted Variable Bias (cont)
Recall thetruemodel,so that
yi b0 b1xi1 b2 xi2 ui , so t he
n um erat o rbeco m es
xi1 x1 b0 b1xi1 b2xi2 ui b1 xi1 x1 2 b2 xi1 x1 xi2 xi1 x1 ui
1
第1页/共28页
Interpreting Multiple Regression
yˆ bˆ0 bˆ1x1 bˆ2x2 ... bˆk xk , so yˆ bˆ1x1 bˆ2 x2 ... bˆk xk ,
so holdingx2,...,xk fixedimpliesthat
伍德里奇计量经济学课件 (1)
Ragnar Frisch Norway
Jan Tinbergen the Etherlands
The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 1973 "for the development of the input-output method and for its application to important economic problems"
n n
近20位担任过世界计量经济学会会长 30余位左右在获奖成果中应用了计量经济学
17
计量经济学
若贝尔经济学奖获奖名单 2010彼得·戴蒙德和戴尔·莫滕森 、克里斯托 弗·皮萨里季斯 失业 2009奥利弗·威廉森、艾利诺-奥斯特罗姆 公 共资源管理 2008 保罗-克鲁格曼 国际贸易模式 2007赫维奇 马斯金 迈尔森 机制设计 2006埃德蒙·费尔普斯 通货膨胀与失业 2005罗伯特·奥曼和托马斯·谢林 博弈论
n
8
计算机及软件
Eviews n Stata n S-plus n SAS n ☆R
n
9
教材及参考书
★Introductory Econometrics》(4E),Jeffrey M. Woodldridge, 2009(英文改编版《计量经济学导 论》,已经由中国人民大学出版社2010年6月出版 《Basic Econometrics》(fourth edition),Damodar N. Gujarrati,2003 《金融计量经济学》, Chris Brooks,西南财经大学 出版社,2005 《经济计量分析》,William H.Greene,中国人民大 学出版社 2007年 《计量经济学(第3版)》,李子奈、潘文卿,高等 教育出版社,2010年
伍德里奇《计量经济学导论--现代观点》
X
22
3
1.
15
p
0.2 0.1 0.1 0.1 0.1 0.3 0.1
( X ,Y ) (1,1) (1,0) (1,1) (2,1) (2,1) (3,0) (3,1)
( X Y )2 4 1 0 9 1 9 4
得 E[(X Y )2] 4 0.3 1 0.2 0 0.1 9 0.4 5.
( X ,Y ) (1,1) (1,0) (1,1) (2,1) (2,1) (3,0) (3,1) Y X 1 0 1 1 2 1 2 0 1 3
于是
E Y 1 0.2 0 0.1 1 0.1 1 0.1 1 0.1 0 0.3 1 0.1
(2) 级数的绝对收敛性保证了级数的和不 随级数各项次序的改变而改变 , 之所以这样要 求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
(3) 随机变量的数学期望与一般变量的算 术平均值不同.
例1 谁的技术比较好? 甲,乙两个射手,他们的射击技术分别为
甲射手
击中环数 8 9 10 概率 0.3 0.1 0.6
第四章
随机变量的数字特征
第一节 数学期望
一、随机变量的数学期望 二、随机变量函数的数学期望 三、数学期望的性质 四、小结
一、随机变量的数学期望
1. 离散型随机变量的数学期望
定义4.1设离散型随机变量 X 的分布律为
P{ X xk } pk , k 1,2,.
若级数
xk pk 绝对收敛,则称级数
故甲射手的技术比较好.
例2 如何确定投资决策方向?
某人有10万元现金, 想投资
伍德里奇计量经济学讲义3
12
Alternate form of the White test
Consider that the fitted values from OLS, ŷ, are a function of all the x’s Thus, ŷ2 will be a function of the squares and crossproducts and ŷ and ŷ2 can proxy for all of the xj, xj2, and xjxh, so Regress the residuals squared on ŷ and ŷ2 and use the R2 to form an F or LM statistic Note only testing for 2 restrictions now
7
Robust Standard Errors (cont)
Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct In Stata, robust standard errors are easily obtained using the robust option of reg
13
Weighted Least Squares
While it’s always possible to estimate robust standard errors for OLS estimates, if we know something about the specific form of the heteroskedasticity, we can obtain more efficient estimates than OLS The basic idea is going to be to transform the model into one that has homoskedastic errors – called weighted least squares
Alternate form of the White test
Consider that the fitted values from OLS, ŷ, are a function of all the x’s Thus, ŷ2 will be a function of the squares and crossproducts and ŷ and ŷ2 can proxy for all of the xj, xj2, and xjxh, so Regress the residuals squared on ŷ and ŷ2 and use the R2 to form an F or LM statistic Note only testing for 2 restrictions now
7
Robust Standard Errors (cont)
Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct In Stata, robust standard errors are easily obtained using the robust option of reg
13
Weighted Least Squares
While it’s always possible to estimate robust standard errors for OLS estimates, if we know something about the specific form of the heteroskedasticity, we can obtain more efficient estimates than OLS The basic idea is going to be to transform the model into one that has homoskedastic errors – called weighted least squares
1伍德里奇计量经济学绪论
△ 模型 △ 数学模型 △ 经济数学模型 △ 计量经济学模型
• 模型:是对现实的描述和模拟。
对现实的各种不同的描述和模拟方法,就构成 了各种不同的模型,例如,物理模型、几何模 型、数学模型和计算机模拟模型等。
• 经济数学模型是用数学方法描述经济活动,根 据所采用的数学方法不同,对经济活动揭示的 程度不同,构成各类不同的经济数学模型。
• 近20位担任过世界计量经济学会会长 • 30余位左右在获奖成果中应用了计量经济学
创立
Frisch
经 典
建立第1个应用模型
Tinbergen
计
建立概率论基础
Haavelmo
量
经
发展数据基础
Stone
济
学
发展应模型
Klein
建立投入产出模型
Leontief
The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
△ 在经济学科中占据极重要的地位
克莱因(R.Klein):“计量经济学已经在经 济学科中居于最重要的地位”,“在大多数大 学和学院中,计量经济学的讲授已经成为经济 学课程表中最有权威的一部分”。
萨缪尔森(P.Samuelson) :“第二次大战后 的经济学是计量经济学的时代”。
二、计量经济学模型
本,L表示劳动。
• 计量经济模型揭示经济活动中各个因素之间的 定量关系,用随机性的数学方程加以描述。上
述生产活动中因素之间的关系,用随机数学方 程描述为
•
QAKL
• 其中μ为随机误差项。这就是计量经济学模型 的理论形式。
三、计量经济学的内容体系
△ 广义计量经济学和狭义计量经济学 △ 初、中、高级计量经济学 △ 理论计量经济学和应用计量经济学 △ 经典计量经济学和非经典计量经济学 △ 微观计量经济学和宏观计量经济学
• 模型:是对现实的描述和模拟。
对现实的各种不同的描述和模拟方法,就构成 了各种不同的模型,例如,物理模型、几何模 型、数学模型和计算机模拟模型等。
• 经济数学模型是用数学方法描述经济活动,根 据所采用的数学方法不同,对经济活动揭示的 程度不同,构成各类不同的经济数学模型。
• 近20位担任过世界计量经济学会会长 • 30余位左右在获奖成果中应用了计量经济学
创立
Frisch
经 典
建立第1个应用模型
Tinbergen
计
建立概率论基础
Haavelmo
量
经
发展数据基础
Stone
济
学
发展应模型
Klein
建立投入产出模型
Leontief
The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
△ 在经济学科中占据极重要的地位
克莱因(R.Klein):“计量经济学已经在经 济学科中居于最重要的地位”,“在大多数大 学和学院中,计量经济学的讲授已经成为经济 学课程表中最有权威的一部分”。
萨缪尔森(P.Samuelson) :“第二次大战后 的经济学是计量经济学的时代”。
二、计量经济学模型
本,L表示劳动。
• 计量经济模型揭示经济活动中各个因素之间的 定量关系,用随机性的数学方程加以描述。上
述生产活动中因素之间的关系,用随机数学方 程描述为
•
QAKL
• 其中μ为随机误差项。这就是计量经济学模型 的理论形式。
三、计量经济学的内容体系
△ 广义计量经济学和狭义计量经济学 △ 初、中、高级计量经济学 △ 理论计量经济学和应用计量经济学 △ 经典计量经济学和非经典计量经济学 △ 微观计量经济学和宏观计量经济学
伍德里奇计量经济学讲义10复习课程
Theory may be ambiguous as to the effect of some policy change – can use econometrics to evaluate the program
2
Types of Data – Cross Sectional
Cross-sectional data is a random sample
Earni0 ng1esduc auti
7
Example: (continued)
The estimate of 1, is the return to
education, but can it be considered causal? While the error term, u, includes other factors affecting earnings, want to control for as much as possible Some things are still unobserved, which can be problematic
4
Types of Data – Time Series
Time series data has a separate observation for each time period – e.g. stock prices
Since not a random sample, different problems to consider
3
Types of Data – Panel
Can pool random cross sections and treat similar to a normal cross section. Will just need to account for time differences.
2
Types of Data – Cross Sectional
Cross-sectional data is a random sample
Earni0 ng1esduc auti
7
Example: (continued)
The estimate of 1, is the return to
education, but can it be considered causal? While the error term, u, includes other factors affecting earnings, want to control for as much as possible Some things are still unobserved, which can be problematic
4
Types of Data – Time Series
Time series data has a separate observation for each time period – e.g. stock prices
Since not a random sample, different problems to consider
3
Types of Data – Panel
Can pool random cross sections and treat similar to a normal cross section. Will just need to account for time differences.
伍德里奇计量经济学课件 (17)
male | .0344839 .0107014 3.22 0.001 .0134881 .0554797
white | .0463804 .0150704 3.08 0.002 .0168127 .0759482
cigs | -.0052704 .001026 -5.14 0.000 -.0072834 -.0032573
n 无论Var(u|x) = Var(y|x)是否依赖于x, 它们都可以一致地估计总体R平方。
Introductory Econometrics
10 of 75
为何关心异方差?
n 如果存在异方差,那么估计值的标准误差 是有偏的。
n 如果标准误差有偏,我们就不能应用通常 的t统计量或F统计量来进行统计推断。
motheduc | -.0008691 .0024551 -0.35 0.723 -.0056859 .0039478
lfaminc | .0131714 .0083708 1.57 0.116 -.0032519 .0295947
_cons | 4.659946 .0377218 123.53 0.000 4.585937 4.733955
异方差存在时的方差
n V ar(bˆ j) 开平方被称为
n 异方差稳健的标准误差,或 n White标准误差,或 n Huber标准误差,或 n Eicker 标准误差
Introductory Econometrics
16 of 75
稳健标准误差
n 稳健标准误差可以用来进行推断。 n 有时可以将估计的方差乘以n/(n – k – 1)来
V ar(bˆ j )
(
rˆi2juˆi2 SSR j )2
,
伍德里奇计量经济学讲义4
5
Multiple Categories (cont)
Any categorical variable can be turned into a set of dummy variables Because the base group is represented by the intercept, if there are n categories there should be n – 1 dummy variables If there are a lot of categories, it may make sense to group some together Example: top 10 ranking, 11 – 25, etc.
16
Self-selection Problems
If we can control for everything that is correlated with both participation and the outcome of interest then it’s not a problem Often, though, there are unobservables that are correlated with participation In this case, the estimate of the program effect is biased, and we don’t want to set policy based on it!
9
Example of d0 > 0 and d1 < 0 y
y = b0 + b1= 0 dx d=1 y = (b0 + d0) + (b1 + d1) x x
Multiple Categories (cont)
Any categorical variable can be turned into a set of dummy variables Because the base group is represented by the intercept, if there are n categories there should be n – 1 dummy variables If there are a lot of categories, it may make sense to group some together Example: top 10 ranking, 11 – 25, etc.
16
Self-selection Problems
If we can control for everything that is correlated with both participation and the outcome of interest then it’s not a problem Often, though, there are unobservables that are correlated with participation In this case, the estimate of the program effect is biased, and we don’t want to set policy based on it!
9
Example of d0 > 0 and d1 < 0 y
y = b0 + b1= 0 dx d=1 y = (b0 + d0) + (b1 + d1) x x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y y is the totalsum of squares (SST ) ˆ y is theexplainedsum of squares (SSE) y ˆ is theresidual sum of squares (SSR) u
2 2 i i 2 i
T henSST SSE SSR
The Simple Regression Model
y = b0 + b1x + u
1
Some Terminology
In the simple linear regression model, where y = b0 + b1x + u, we typically refer to y as the
n n
1
y
n i 1 n i 1
i
ˆ b ˆ x 0 b 0 1 i
1
ˆ b ˆ x 0 x y b i i 0 1 i
12
More Derivation of OLS
Given the definition of a sample mean, and properties of summation, we can rewrite the first condition as follows
10
Deriving OLS using M.O.M.
The method of moments approach to estimation implies imposing the population moment restrictions on the sample moments
What does this mean? Recall that for E(X), the mean of a population distribution, a sample estimator of E(X) is simply the arithmetic mean of the sample
5
E(y|x) as a linear function of x, where for any x the distribution of y is centered about E(y|x)
y
f(y)
.
x1 x2
. E(y|x) = b + b x
0 1
6
Ordinary Least Squares
ˆ ˆ ˆ ui yi b0 b1xi
2 i 1 i 1
n
n
2
19
Alternate approach, continued
If one uses calculus to solve the minimization problem for the two parameters you obtain the following first order conditions, which are the same as we obtained before, multiplied by n
To derive the OLS estimates we need to realize that our main assumption of E(u|x) = E(u) = 0 also implies that
Cov(x,u) = E(xu) = 0 Why? Remember from basic probability that Cov(X,Y) = E(XY) – E(X)E(Y)
16
More OLS
Intuitively, OLS is fitting a line through the sample points such that the sum of squared residuals is as small as possible, hence the term least squares The residual, û , is an estimate of the error term, u, and is the difference between the fitted line (sample regression function) and the sample point
i 1 n i 1 2 ˆ xi x yi y b1 xi x i 1 i 1
14
n
n
So the OLS estimated slope is
ˆ b 1
x x y y
i 1 i i
n
x x
i 1 i n i 1
11
More Derivation of OLS
We want to choose values of the parameters that will ensure that the sample versions of our moment restrictions are true The sample versions are as follows:
Independent Variable, or Right-Hand Side Variable, or Explanatory Variable, or Regressor, or Covariate, or Control Variables
3
A Simple Assumption
17
Sample regression line, sample data points and the associated estimated error terms
y y4
û 4{
.
ˆ b ˆx ˆb y 0 1
y3 y2
û } . 1 x1
. û { 2
.} û3
y1
x2
x3
x4
x
18
n
2
providedthat xi x 0
2
15
Summary of OLS slope estimate
The slope estimate is the sample covariance between x and y divided by the sample variance of x If x and y are positively correlated, the slope will be positive If x and y are negatively correlated, the slope will be negative Only need x to vary in our sample
ˆ b ˆ x, yb 0 1 or ˆ yb ˆx b 0 1
13
More Derivation of OLS
ˆ x b ˆ x 0 x y y b i i 1 1 i
i 1 n n
ˆ x y y b i i 1 xi xi x
7
Population regression line, sample data points and the associated error terms
y y4 E(y|x) = b0 + b1x . u4 {
y3 y2
u2 {.
.} u3
y1
.
} u1
x1
x2
x3
x4
x
8
Deriving OLS Estimates
ˆ y b
n i 1 n i
ˆ x 0 b 0 1 i
ˆ b ˆ x 0 x y b i i 0 1i
i 1
20
Algebraic Properties of OLS
The sum of the OLS residuals is zero Thus, the sample average of the OLS residuals is zero as well The sample covariance between the regressors and the OLS residuals is zero The OLS regression line always goes through the mean of the sample
Dependent Variable, or Left-Hand Side Variable, or Explained Variable, or Regressand
2
Some Terminology, cont.
In the simple linear regression of y on x, we typically refer to x as the
23
Proof that SST = SSE + SSR
ˆ y ˆ y y y y y ˆ y ˆ y u ˆ 2 u ˆ y ˆ y y ˆ y u ˆ y ˆ y SSE SSR 2 u ˆ y ˆ y 0 and we know that u
Alternate approach to derivation
Given the intuitive idea of fitting a line, we can set up a formal minimization problem That is, we want to choose our parameters such that we minimize the following:
4