定向、水平井轨迹控制
定向井轨迹影响因素及控制措施
浅谈定向井轨迹影响因素及控制措施[摘要]随着定向井工艺技术的发展,定向井也由简单定向井发展到现在的大位移水平井,加之机械钻进不断提高,建井周期不断缩短,井眼轨迹控制一直是影响钻井速度的重要因素,本文就定向井施工过程中井身轨迹的控制作出分析,探讨如何实现定向井的最优井身轨迹,推动定向井技术的发展。
[关键词]油田定向井轨迹控制存在问题对策中图分类号:te928 文献标识码:a 文章编号:1009-914x(2013)08-240-01前言随着定向井工艺技术的发展,形成一系列成熟的工艺,定向井也由简单定向井发展到现在的大位移水平井,加之机械钻进不断提高,建井周期不断缩短,井眼轨迹控制一直是影响钻井速度的重要因素,而定向井轨迹控制则是定向井施工最基本、最核心、最重要的内容。
定向井井身轨迹的选择对于钻井施工的安全、高效、低成本起着重要的作用。
它的优劣程度将会直接关系到钻井的效率和成本,只有控制好井身轨迹,才能使油田开采得到更有效的保障,本文将会对常规定向井的轨迹控制技术进行探讨。
1定向井的轨迹控制重要性若井身轨迹确定不了,工程设计就无法进行和施工就无从开展,但如果选择了一条不理想的井身轨迹,又会给施工带来许多困难甚至使施工走向失败。
定向井的轨迹已成为定向钻井技术中亟待解决的重要问题之一。
它的选择对于钻井施工的安全程度、施工效率和成本有重要的作用。
作为钻井施工的第一部重要工序,定向井的轨迹控制是后续施工的基础,同时也是保证钻井施工质量的关键。
整个钻井施工的质量往往就是定向井的轨迹控制的质量来决定的,特别是我国作为一个地形复杂多样的国家,工程所在地的地址情况往往会随着地域条件的不同而存在着较大的差异,这就对施工带来了严峻的挑战,同时对定向井井身轨迹质量也就提出了更高的要求。
只有将井身轨迹控制合理,才能使我国油井开采更合理、安全、高效地发展。
2井身轨迹影响因素2.1使用新的绕障三维定向井轨迹设计目前很多定向井设计要进行三维设计,特别是在油田开采中后期的加密井、一些特殊的地质条件以及海上平台等特殊作业,就需要绕开障碍物(盐丘、断层、异常高压区等等),进行精确的三维轨迹设计。
水平定向钻井轨迹设计
2. 以煤层气钻井工程为例,进行水平定向钻井轨迹设计或者欠平衡钻井工艺技术设计。
本文选择以煤层气钻井工程为例,进行水平定向钻井轨迹设计。
煤层气,又称煤层甲烷,俗称瓦斯,人们对它爱恨交加。
爱的是它是一种清洁能源,有很大的利用价值;恨的是它是矿难的原因之一。
因此,安全有效地采集煤层气可谓是一举两得的好事。
近些年,部分国家开始用定向钻井技术开采煤层气,取得了良好效果。
定向钻井,简单说就是让向地下竖着打的井拐个弯,再顺着煤层的方向横着打井。
定向钻井采集煤层气的原理同传统方法一样,即通过抽水减压,逼出煤层气,再进行采集。
但两者的区别在于,传统方法只用竖井穿到煤层采集,而横向井顺着煤层的走势大大增加了采气的面积,因而提高了效率。
定向钻井通常在石油和天然气开发中使用较多,但近些年煤炭行业也越来越多地将这项技术用于矿山开采前的瓦斯抽放、排水、矿井探查等方面。
在煤炭领域使用这一技术的主要有美国、澳大利亚、欧洲、南非等国家和地区,而利用这一技术采集、利用煤层气的国家以美国和澳大利亚等国为主。
澳大利亚目前有17个煤矿用定向钻井技术排放井内瓦斯,以确保安全生产。
而悉尼的一家公司在2000年成功地利用这一技术在地下600米深处开出了一口商业用煤层气井。
美国的一些煤矿企业为了矿井安全和开采煤层气也热衷采用定向钻井技术。
在2000年,美国10%的煤层气井都采用了这项技术。
由于这项技术的逐步开发,部分美国和澳大利亚企业的煤层气产量都得到了提高。
资料显示,定向钻井的纵向深度一般在600~1200米,横向煤层钻井长度可达到400米。
据美国某钻探公司的个例统计,采用横井采气比传统的单一竖井采气的初期产量可高出10倍,气井的生产寿命也会增加。
根据对某些项目的估算,运用定向钻井法商业采集煤层气的内部回报率为15~18%,明显高于传统竖井采集法约3%的内部回报率。
1 定向水平井的井身类型井身结构设计原则有许多条,其中最重要的一条是满足保护储层实现近平衡压力钻井的需要,因为我国大部分油气田均属于多压力层系地层,特别是韩城地区,构造复杂,经过大范围地层沉降,上覆地层压力较大,只有将储层上部的不同孔隙压力或破裂压力地层用套管封隔,才有可能采用近平衡压力钻进储层。
水平井井眼轨迹控制技术探讨
1 井身轨迹控制常规的水平井都由直井段、增斜段和水平段3部分组成。
由直井段末端的造斜段(kop)到钻至靶窗的增斜井段,这一控制过程为着陆控制;在靶体内钻水平段这一控制过程称为水平控制。
水平井的垂直段与常规直井及定向井的直井段控制没有根本区别。
水平井井眼轨道控制的突出特点集中体现在着陆控制和水平控制,设计到一些新的概念指标和特殊的控制方法。
1.1 水平井井眼轨道控制技术的特点水平井钻井技术是定向井技术的延伸和发展。
水平井的井眼轨道控制技术与定向井相比有类似之处,但也有显著差异,体现了水平井轨道控制的突出技术特征。
1.1.1中靶要求高定向井的靶区为目的层上的一个圆形,通称靶圆,靶圆中心称为靶心。
靶心是井身设计轨道中靶的理论位置,而靶圆是考虑到因误差而造成的实钻轨道中靶的允差范围。
一般来说,定向井的目的层越深,其靶圆半径也越大。
例如一口井垂深为1800-2100m的定向井,其靶圆半径通为30-45m,如上所述,水平井的靶体是一个以矩形靶窗为前端面的呈水平或近似水平放置的长方体或与之接近的几何体(拟柱体,棱台等)。
靶窗的高度与油层状况有关,宽度一般是高度的5倍,水平井长度则和水平井的增斜段曲率半径类型有关。
例如,对厚油层,其靶窗高度可达20m,但对薄油层,该高度可小到4m甚至更小。
按我国对石油水平井的规定,水平段井斜角应在86°以上,长、中、短半径3类水平井的水平段长度一般分别不得小于500m,300m,60m 。
很显然,水平井的目标(靶体)比定向井的目标(靶圆)要求苛刻,前者是立体(三维),后者是平面(二维),因此中靶要求更高。
对于水平井来说,井眼轨道进入目标窗口(靶窗)还不够,还要防止在钻水平段的过程中钻头穿出靶体造成脱靶,而对定向井来说,只要保证钻入靶圆即为成功。
1.1.2控制难度大由于上述定向井和水平井的目标性质与要求对比可知,水平井轨道控制难度大于定向井。
而且,由于常规定向井的最大井斜角一般在60°以内,不存在因目的层的地质误差造成脱靶的问题。
定向及水平井简介
对钻井设备和技术的要求较高 ,需要专业的定向井工程师团
队。
在某些情况下,可能存在井眼 轨迹控制难度大、油层污染等
问题。
水平井的优缺点
优点 可以实现长水平段穿越油层,提高油藏的开采效率。
对于薄油层和复杂油藏的开采具有重要意义。
水平井的优缺点
• 可以有效利用地层自然裂缝,提高油藏的开采效 率。
水平井的优缺点
01
缺点
02
钻井过程中需要控制好水平段的稳定性, 避免出现卡钻等事故。
03
对钻井设备和技术的要求较高,需要专业 的水平井工程师团队。
04
在某些情况下,可能存在水平段稳定性差 、油层污染等问题。
定向井与水平井的适用范围及选择依据
适用范围
定向井适用于需要大范围水平位移的油藏开采,如海上油田、复杂断块 油田等。
岩屑携带
定向钻井过程中,岩屑容易堆积在井 底,影响钻进效率。可以采用高压喷 射钻头、空气钻头等新型钻头,提高 岩屑携带能力。
地层适应性
不同地层对钻头、钻具和工艺有不同 的要求,需要根据地层特点选择合适 的钻头、钻具和工艺。
03
水平井钻井技术
水平井钻井设备及工具
01
02
03
04
钻机
用于钻进水平井的钻机,通常 采用顶部驱动钻井系统。
岩屑携带
水平井钻进过程中,岩屑容易堆积在井底,影响钻进效率 。可以采用高压喷射钻井技术来解决这一问题。
井壁稳定
水平井钻进过程中,容易发生井壁失稳现象,可以采用合 理的钻井液体系和稳定剂来解决这一问题。
完井作业
水平井完井作业过程中,需要采用特殊的完井技术,以确 保水平段的密封性和稳定性。可以采用先进的完井技术和 工具来解决这一问题。
定向井钻井轨迹设计与控制技术
定向井钻井轨迹设计与控制技术近年来,中国发展迅速,石油在经济快速发展中的重要作用已经显现。
石油不仅可以提炼汽油和柴油,维持汽车和机器的运转,还可以将天然气作为人们生活和工业的重要燃料。
因此,石油勘探开发逐渐增多,石油钻井技术也得到很大发展。
19世纪中后期,石油钻井中定向井钻井技术的首次正式应用。
在工程建设过程中,井眼轨迹控制技术可视为定向井钻井的关键技术。
直井、斜井和稳定斜井段的井眼轨迹控制技术也不同。
总的来说,随着井眼轨迹控制技术的不断改进和完善,定向井轨迹控制水平有了很大的提高。
定向井;轨迹;控制技术引言在油气开采中,定向钻井技术是一种应用广泛的技术,其开采效率和施工质量直接影响油气开采的整体质量。
它在提高天然气和石油开采效率方面发挥着重要作用。
由于使用的地形复杂多变,决定了定向井建设项目对轨道设计和控制的要求更加严格。
影响整个施工过程的最重要因素是轨迹控制的准确性,轨迹设计和轨迹控制对钻井的整体质量起着至关重要的作用。
在石油钻井工程中,在整个定向井施工过程中,轨迹控制技术对整个工程的整体质量具有重要的现实意义。
1 定向井轨迹设计1.1 设计原则第一,实现地质目标是建设的原则。
定向钻井时,钻井的主要目的是使钻井穿过地层中的多个油层,防止井下复杂,地层易坍塌、易漏,或提取井间难以到达的死油气,或钻应急救援井,或在平台上钻定向井,节省占用空间,达到后期管理的目的。
无论哪种定向井,井眼轨迹设计都要首先考虑地质设计。
对于地质设计,如果不能满足设计要求,就无法设计出完美的钻孔轨迹。
第二,是达到安全、优质、高效钻井的目的。
在定向井轨道的设计中,地质目标有望实现。
因此,要实现这一地质目标,需要各种轨道形式。
选择最有利于现场施工难度、最小摩擦力矩和井眼轨迹控制的轨道形式,才能实现安全、优质、高效的定向钻进。
因此,在设计定向井轨迹和确定偏移点时,需要选择地层稳定、易偏移的层位。
第三,满足后期生产的要求。
第三个原则对于满足后期采油的要求至关重要,尽管这两个原则在定向井轨道设计中更为重要。
定向井轨迹控制技术
定向井轨迹控制技术定向井的井眼轨迹控制技术是定向井钻井成套技术中的关键环节。
文章介绍了轨迹剖面优化设计,对直井段、增斜段、稳斜段轨迹控制技术进行了详细的阐述,同时对轨迹预测方法和轨迹修正设计技术进行了论述,对现场施工具有一定的指导作用。
标签:轨迹控制;轨迹预测;剖面设计;定向井定向井的井眼轨迹控制技术是定向井钻井成套技术中的关键环节。
定向井施工成败的关键是能否控制井眼轨迹的变化。
1 轨迹剖面优化设计定向井井身剖面的选择对于钻井施工的安全、高效、降低成本起着至关重要,四段制轨迹剖面易形成键槽,岩屑床,起下钻和钻井过程中摩阻扭矩大,易卡钻,给井下安全带来极大隐患。
经过理论计算分析,并结合大庆地质情况,三段制或者五段制井眼轨迹剖面成为大庆定向井施工的首选对象,这两种轨迹剖面具有轨迹短、投资少、效益高、利于井眼轨迹控制等特点。
2 井眼轨迹控制技术2.1 直井段轨迹控制定向井直井段的井眼轨迹控制原则是防斜打直。
有人认为常规定向井(指单口定向井)直井段钻不直影响不大,通过后续的调整最终也可中靶,这种想法是不对的。
因为当钻至造斜点,如果直井段不直,造斜点处不仅因为有一定的井斜角而影响定向造斜的顺利完成,还会因为这个井斜角形成一定的水平位移而影响下一步钻进的井眼轨迹控制。
所以在直井段施工中,采用塔式钻具组合或钟摆钻具组合,配以合理的钻进参数,每钻进100-120米测斜一次,及时监测井斜的变化趋势,如发现井斜有增大趋势,及时调整钻井参数,加密测斜,必要情况下进行螺杆钻具纠斜。
造斜点前100m采取轻压吊打,严格控制钻进参数,保证造斜点处的井斜不超过0.5°。
2.2 造斜段轨迹控制造斜就是从造斜点开始强制钻头偏离垂直方向增斜钻进的过程。
由于大位移水平井直井段多数存在井斜方位,且方位与新设计方位不一致,所以必须利用定向井计算软件计算出直井段各点轨迹参数,同时根据最后几个测点趋势,预测出井底的井斜角和方位角,计算出井底水平位移、垂深、闭合方位、视位移、视垂距等参数。
定向水平井轨迹控制.课件
–钻头:特殊结构,侧切特性,各向异性 –地层:岩性,可钻性,各向异性,几何产状 –钻头作用力:钻压,侧向力,钻头转角,扭矩 –高压射流作用:清洗碎屑,辅助轴向破岩
2、钻柱及其底部钻具组合(BHA)分析
– 确定钻头对地层的机械作用力:井斜力和方位力 – 确定钻头指向:转角 – 确定钻压及钻头扭矩 – 确定钻柱或BHA任一点内力和挠度
井下动力滑动钻进目前存在的缺点:
✓ 钻柱滑动,受到较大的轴向阻力,不利于施 加钻压及大位移延伸
✓ 受井下马达排量限制,洗井效果不佳 ✓ 没有钻柱旋转,不利于修整井壁 ✓ 在有些情况下,机械钻速较慢
井下马达性能的不断改进 井下动力滑动钻进系统的改进
智能钻井系统的概念
(英国)Inglis T A. :定向钻井,石油工业出版社,1995
Ir1<Ir2<1 (Ddip<Dstr<Dn) Ir1=Ir2<1 (Ddip=Dstr<Dn) Ir1=Ir2>1 (Ddip=Dstr>Dn) Ir1>Ir2>1 (Ddip>Dstr>Dn) Ir2<Ir1<1 (Dstr<Ddip<Dn) Ir1<1<Ir2 (Ddip<Dn<Dstr) Ir1<Ir2=1 (Ddip<Dstr=Dn) Ir2>Ir1>1 (Dstr>Ddip>Dn) Ir2<1<Ir1 (Dstr<Dn<Ddip) Ir1>Ir2=1 (Ddip>Dstr=Dn) Ir1=1>Ir2 (Ddip=Dn>Dstr) Ir1=1<Ir2 (Ddip=Dn<Dstr)
定向井、水平井井身轨迹控制
第三章定向井、水平井井身轨迹控制技术第一节定向井、水平井井眼轨迹控制理论无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。
但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。
我们在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
我们可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。
水平井水平段轨迹控制课件
应用范围扩大
随着技术的进步和应用的不断扩 大,水平井的应用范围越来越广 泛,已经成为石油、天然气和矿 产开发中的重要技术手段之一。
02 水平井轨迹控制技术
CHAPTER
水平井轨迹控制的基本原理
01
水平井轨迹控制的基本原理是通 过钻具组合的设计和钻进参数的 优化,实现对井眼轨迹的精确控 制。
产数据等。
控制优化
03
根据预测模型,优化控制参数如水平段位置、钻井液排量等,
实现水平段轨迹的精确控制。
基于优化算法的智能控制策略
优化算法控制策略
利用遗传算法、粒子群算法等优 化算法,寻找最优的控制参数组
合。
遗传算法
通过模拟生物进化过程,寻找最优 解。在水平井轨迹控制中,可应用 于寻找最优的钻井液排量、水平段 位置等参数组合。
基于人工智能的自适应控制的水平井轨迹控制实例
基于人工智能的自适应控制是一种新兴的控制方法,通过机器学习等技术对系统进行学习和 自适应。在水平井轨迹控制中,可以使用人工智能技术对地下井眼模型进行学习和自适应, 并制定相应的控制策略。
基于人工智能的自适应控制的优势在于能够自适应地处理复杂的非线性系统,并具有较好的 泛化性能。此外,人工智能技术可以处理大量的数据,并通过数据挖掘等技术提取出有用的 信息。
要点三
测量与导向系统
测量与导向系统是实现水平井轨迹控 制的关键技术之一。目前,该领域仍 存在一些技术瓶颈,如测量精度不高 、导向稳定性不足等。这些问题的解 决需要进一步研究和改进测量与导向 系统技术。
06 结论与展望
CHAPTER
主要结论
水平井水平段轨迹控制技术的发 展趋势是高效、精准、智能化。
• 水平井轨迹控制需要解决防斜打直问题,确保井眼 轨迹的垂直性和稳定性。
定向钻井轨迹控制一般方法
未来定向钻井技术的发展将更加注重智能化、自动化、高效化,进一 步提高钻井精度和效率,降低成本和风险。
02 定向钻井轨迹控制的重要 性
提高钻井效率
减少钻井时间和成本
通过精确控制钻头方向和深度,可以减少不必要的钻井时间和成 本,提高钻井效率。
避免钻井事故
准确的轨迹控制可以避免钻头偏离目标,减少卡钻、井斜等事故的 发生,提高钻井安全性。
05 结论
定向钻井轨迹控制技术的发展趋势
智能化
高精度
随着人工智能和机器学习技术的快速发展 ,定向钻井轨迹控制技术将更加智能化, 能够实现自动化决策和实时优化。
为了提高钻井效率和降低成本,定向钻井 轨迹控制技术将向高精度方向发展,实现 更精确的钻孔定位和轨迹控制。
多学科交叉
环保与安全
定向钻井轨迹控制技术将涉及多个学科领 域,如地质学、地球物理学、计算机科学 等,实现多学科交叉和融合。
THANKS FOR WATCHING
感谢您的观看
提高油气勘探开发效率
定向钻井技术的应用可以大幅度提高油气勘探开发的效率,缩短勘 探周期,降低开发成本。
降低钻井成本
01
02
03
优化钻井方案
通过精确的轨迹控制,可 以减少钻井过程中的复杂 情况,降低钻井难度和成 本。
提高钻井成功率
准确的轨迹控制可以保证 钻井成功率和一次成功率, 从而降低二次钻井和修井 的费用。
基于人工智能的轨迹控制方法
总结词
基于人工智能的轨迹控制方法是利用人工智能和机器学习技术,对大量历史钻井数据进行学习,自动识别地下地 质特征,预测钻头前方地层走向,并自动调整钻头方向和钻井轨迹。
详细描述
这种方法需要大量的历史钻井数据作为训练样本,通过机器学习和深度学习技术,训练出能够自动识别地质特征 和预测钻头前方地层走向的模型。基于人工智能的轨迹控制方法具有较高的自动化程度和预测精度,是未来定向 钻井技术发展的重要方向。
定向井的井身轨迹控制
O 引 言
随着 定 向井 工 艺技 术 的发 展 , 成 一 系列 成 熟 形 的工 艺 , 向井也 由简 单 定 向井 发 展 到 现 在 的大 位 定
步 造斜 及下 一 口井 施 工 的安 全 , 直井 段 防斜 打 直
是关 键 , 必须 重视 。为 了少起 下钻 、 碰 。一 般 二开 防
的控 制作 简要 分 析 。
以后 就开 始使 用 四合 一组 合 钻具 , P C钻头 +单 即 D 弯螺 杆 +短 钻 铤 ( 3~5 m)+扶 正 器 ( 1 2 0~2 3 1
m m)+ 磁 。 无
13 造斜 段 .
造斜 段 注意事 项 : ①造 斜 时要选 择 好钻 具组 合 ,
第 1期
吕贵 州 定 向井的井身轨迹控制
8 5
定 向井 的 井 身 轨 迹 控 制
吕贵州
( 陕西省煤 田地质 局一三九队 , 陕西 渭南 740 ) 100
摘
要 : 绍定 向 井施 工 中不 同层段 地层 钻 进 井 身轨 迹控 制 方 法 、 向 井施 工注 意事 项和 复合 钻进 介 定
性 能 , 障钻井 安全 , 保 增加 钻 头 、 的使用 寿命 ; 螺杆 ⑥
注 意地层 , 掌握 施工 地 区的方 位 , 井斜 变化规 律 。注 意稳 定器 的外 径 , 磁钻 铤 的外 径 , 无 短钻 铤 的 长度 。
常摆 不到位 , 难控 制 , 早一些 控制好 井斜 、 应 方位 ; ② 无论使 用哪一 种定 向方法 、 设备 、 仪器都 应该 以节 约 成本 , 少钻 井 施 工 难 度 , 减 降低 风 险 为 目标 。 一般 200m以下 的井 可采 用手工 操作 的单 点照 像 , 0 电子
水平井
93.1
1755.69
646.83
0.5331
5 1/2″套管开窗侧钻水平井
2600
2408
96.5
2042
265.9
0.60
109
2005
中原油田
15
濮1-侧平193
5 1/2″套管开窗侧钻水平井
2788
2401
91.3
2137
500
0.60
158.11
2)测深:测点的井深,是以测量装置(Angle Unit)的中点所在井深为准。
3)井斜角:该测点处的井眼方向线与重力线之间的夹角(见图1.1)。井斜角常以希腊字母α表示,单位为度。
4)井斜方位角:是指以正北方位线为始边,顺时针旋转至井斜方位线所转过的角度(见图1.2)。井斜方位角常以希腊字母Φ表示,单位为度。实际应用过程中常常简称为方位角。
多种无线随钻测斜系统投入工业使用和发展了电子测量系统和陀螺测量系统
定向井钻井水平
精度要求不高
中深定向井
可打准确度较高的定向救援井和大组丛式井
钻成大量水平井,从大半径水平井到小半径水平井、多底泄油井
我国定向钻井技术发展情况
内容年代
60年代
80年代
90年代
剖面设计及轨迹计算方法
设计采用查表法、图解法等精度不高的方法
95.2
5399.99
337.81
1.4
276.7
2004
塔河油田
3
丰收3-平1
8 1/2″井眼常规水平井
2448.28
2120.7
96.2
1690
669.1
0.38
333.48
2004
定向及水平井简介
定 向
定向工具的选择
1、同一弯度的螺杆,因螺杆弯点位置的不同,螺杆扶正器尺寸不同, 同一弯度的螺杆,因螺杆弯点位置的不同,螺杆扶正器尺寸不同, 弯点位置是否加厚,进尺快慢不同,地层倾角的不同, 弯点位置是否加厚,进尺快慢不同,地层倾角的不同,定向造斜率 是不一样的。 是不一样的。 2、某一度数的螺杆,在起步定向时的造斜率要低于这一螺杆的平均造 某一度数的螺杆, 。(Φ172mm1.5º螺杆,起步定向时的造斜率17 23º/100m, 17斜率。(Φ172mm1.5º螺杆,起步定向时的造斜率17-23º/100m,平均造
建议:造斜点到目的层的轨迹有无数条,只 造斜点到目的层的轨迹有无数条,
要增斜井段狗腿度满足设计要求,实钻轨迹 要增斜井段狗腿度满足设计要求, 满足地质避水等要求, 满足地质避水等要求,是否可以不必太要求 轨迹复合率。太要求轨迹复合率, 轨迹复合率。太要求轨迹复合率,增加了轨 迹调整次数,增加施工周期。 迹调整次数,增加施工周期。 尤其是在定向井和长稳斜井段。 尤其是在定向井和长稳斜井段。
定向井与直井对比 定向井与直井对比: 对比:
1、定向井有定向滑动钻进作业; 定向井有定向滑动钻进作业; 2、经常测井斜、方位; 经常测井斜、方位; 3、钻压失真、扭矩大; 钻压失真、扭矩大; 失真 4、起下钻频繁; 起下钻频繁; 5、泥浆性能要求严(携屑、润滑、 泥浆性能要求严(携屑、润滑、 井壁稳定)。 井壁稳定)。 6、定向井钻具事故多(粘附、键 定向井钻具事故多(粘附、 槽、疲劳)。 疲劳)。
定向井的基本概念
定向井的基本要素
测深— 井口至测点处的井眼实长, 测深— 井口至测点处的井眼实长,米。 井斜角— 测点处井眼方向线(切线,指前)与重力线间的夹角, 井斜角— 测点处井眼方向线(切线,指前)与重力线间的夹角,度。 方位角— 测点处正北方向至井眼方向线在水平面投影线间夹角, 方位角— 测点处正北方向至井眼方向线在水平面投影线间夹角,度。 井斜变化率 — 井斜角对井深的变化率,度/30米、度/100米。 井斜角对井深的变化率, /30米 /100米 方位变化率 — 方位角对井深的变化率,度/30米、度/100米。 方位角对井深的变化率, /30米 /100米 垂深 — 测点的垂直深度,米。 测点的垂直深度, 水平位移— 测点至井口所在的铅垂线的距离, 水平位移— 测点至井口所在的铅垂线的距离,米 。 闭 合 距— 井底的水平位移,米。 井底的水平位移, 闭合方位角— 闭合方位角— 在水平投影图上测点处正北方向与闭合方位线间的夹 角,度 。 投影位移(视位移) 测点水平位移在设计方位线上的投影, 投影位移(视位移)— 测点水平位移在设计方位线上的投影,米。
定向井水平井
自19世纪末旋转钻井诞生以来,初期都是打直井,人们预想的井眼轨道乃是一条铅垂直线。
并且认为旋转钻的实钻井眼轨迹也和顿钻一样,是一条铅垂直线。
直到大约本世纪20年代末,人们意外地发现一口新钻井把旁边一口老井的套管钻穿了,还发现相邻两口井的井深不同却钻到了同一油层。
于是认识到井是会斜的,需要采取有效措施控制井眼轨迹,才能减小井斜。
于是出现了“直井防斜技术”。
本世纪30年代初,在海边向海里打定向井开采海上油田的尝试成功之后,定向井得到了广泛的应用,其应用领域大体有以下三种情况。
1.地面环境条件的限制:当地面上是高山,湖泊,沼泽,河流,沟壑,海洋,农田或重要的建筑物等,难以安装钻机,进行钻井作业时,或者安装钻机和钻井作业费用很高时,为了勘探和开发它们下面的油田,最好是钻定向井。
2.地下地质条件的要求:对于断层遮挡油藏,定向井比直井可发现和钻穿更多的油层;对于薄油层,定向井和水平井比直井的油层裸露面积要大得多。
另外,侧钻井,多底井,分支井,大位移井,侧钻水平井,径向水平井,等等定向井的新种类,显著地扩大了勘探效果,增加了原油产量,提高了油藏的采收率。
3.处理井下事故的特殊手段:当井下落物或断钻事故最终无法捞出时,可从上部井段侧钻打定向井;特别是遇到井喷着火常规方法难以处理时,在事故井附近打定向井(•称作救援井),与事故井贯通,进行引流或压井,从而可处理井喷着火事故。
目前,定向钻井已成为油田勘探开发的极为重要的手段,井眼轨道设计和井眼轨迹控制乃是定向钻井技术的基本内容。
事实上,直井可以看作是定向井的特例,其设计的轨道为一条铅垂线。
直井防斜和定向井井眼轨迹控制,在技术原理上是一致的,只是应用方向不同而已。
井眼轨迹控制技术经历了从经验到科学,从定性到定量的发展过程。
现在正处在向井眼轨迹自动控制阶段发展。
三.定向井轨迹控制的基本方法二维定向井的设计轨迹一般是由四种井段组成:垂直井段,增斜井段,稳斜井段和降斜井段。
定向井钻井轨迹设计与控制技术研究
定向井钻井轨迹设计与控制技术研究摘要:在定向井钻井过程中,井眼轨迹的设计和控制至关重要,它可以决定定向井施工的成败。
因此,有必要进一步探索定向井井眼轨迹的设计和控制技术,以实现安全、优质、高效的定向井施工。
定向井轨迹的选择对钻井施工的安全、高效、低成本起着重要作用。
关键词:定向井;钻井轨迹;设计;轨迹控制前言近年来,随着钻井工程技术和钻井设备的不断改进,钻井技术得到了快速发展。
定向钻井作为一种非常重要和实用的钻井方法,受到了人们的极大关注。
井眼轨迹设计技术是一整套钻井技术中的第一个关键环节。
定向井是指根据预先设计的井斜方向和井筒轴线形状钻探的井。
换句话说,任何设计目标偏离井口所在垂直线的井都属于定向井。
定向井是相对于垂直井而言的,根据设计的井筒轴线分为二维定向井和三维定向井。
由于油气资源短缺以及当前油气生产中遇到的问题,为定向井轨迹设计提供了广阔的发展前景和空间。
定向井轨迹的设计方法和实际钻井偏移测量理论将是研究的重要趋势。
现在,进入计算机快速发展时期,将现有和更成熟的工程模型计算机化,以提高现场施工人员的工作效率;另一方面,准确及时地将现场数据输入计算机,为未来的数据统计和科研分析提供第一手现场真实数据。
因此,利用定向井轨迹设计的软件实现和强大的计算机编程功能,实现了定向井轨迹优化设计软件的研究。
通过不断的实验和改进,设计的轨迹不仅满足了施工现场条件的限制,而且是满足各种设计条件的理想轨迹。
1.定向井轨迹概念井眼轨迹可分为两类:设计轨迹和实际钻井轨迹。
其中,设计轨迹可分为钻孔前设计的轨迹和钻孔过程中钻孔时修改或调整的轨迹。
设计轨迹通常由一些分段的特殊曲线组成,具有很强的规律性。
设计轨迹和实际钻井轨迹都是连续光滑的空间曲线,只有一条线,在三维空间中随机变化,没有任何规则可循。
为了表达这样的曲线,可以使用图形来显示井轨迹的形状,或者使用几何参数来描述井轨迹的形式。
这两种方法相互补充,并且通常以一种既考虑到图形方法的视觉和直观特性,又考虑到精确和灵活的分析参数的优势的方式应用。
水平井轨迹设计与控制技术在定向井中的应用研究
2 1 井 身 剖 面 设 计 的 应 用 .
周期 缩短 , 井 机 械钻 速 有 较 大提 高 。通 过 对东 单
部部 分 油 田进 行 调研 , 为江 苏 油 田定 向井 在井 认
身剖 面设 计 和轨迹 控制方 面仍有 扩 展 的空 间 。
自 19 9 6年 引进 水 平井 钻井技 术 以来 , 累 了 积 井 身剖面 优化 设计 、 迹 控制 和安 全钻井 的经 验 , 轨 其配 套 技 术 也 得 到 发 展 和 完 善 , 测 录井 、 井 如 完 等 。水平井 钻 井技 术 的应 用极 大地促 进 了定 向井
( ) 计 造 斜 率 大 于 1 。 10 较 高 造 斜率 2设 0 / 0 m,
连续 造斜 井段 大 于 2 0 0 m;
中 , 也将 水平 井轨迹 控制 理论 和 方法 在 定 向井 虽 中推 广应 用 , 常规 定 向井 在 井 身 剖 面 设 计 和施 但 工上 因受 多种 因素 制约 , 还未取 得 实质性 进 展 。 如 何减少 定 向井 斜 井 段控 制 长 度 , 现斜 井 实
制 的技术 难 题 , 几 年 完成 的套 管 开 窗侧 钻 井 井 近 身 剖面设 计 造斜 率在 1 。 10 左右 。 8/0 m
较高造 斜率成 功 解决 了长 造斜 段井 身 轨迹 连续控
表 1 江苏 油 田 定 向 井 设 计 造 斜 率 统 计
常规定 向井 设 计 在 剖 面类 型 选 择 、 计 方 法 设 软件 和设计 造斜 率 方 面都 得 到 了发 展 , 身 剖 面 井
维普资讯
小 型 油 气 藏 S l Hy rc ro s ror mal do ab n Reevis
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
井下动力钻具组合
转盘钻具组合(BHA)
BHA参数:
•稳定器的安放位置; •稳定器与井眼的间隙; •钻铤的抗弯刚度; •钻铤的每米有效重量; •钻铤的刚柔组合; •钻头的各向异性特性;
•特殊接头等。
转盘旋转钻进与滑动钻进特性
旋转钻进方式:主要有如下两种
–转盘旋转钻进方式(如:ERD偏爱此种)
特殊工艺钻井概念
高边(High side)
定向井的井底是个呈倾斜状态的圆平面,称为 井底圆。井底圆上的最高点称为高边。从井底 圆心指向高边连线的方向称为高边方向。高边 连线在水平面的投影线所指的方向线为井底方 位线。
工具面角(Tool face angle)
它是表示造斜工具下到井底后,工具面角所在 位置的参数。工具面角有两种表示方法:1.重 力工具面角(高边工具面角) 2.磁性工具面角
井眼轨迹预测与定向控制方法
井眼轨迹的主要影响因素分析:
–钻头、BHA结构及操作参数的影响(可控制因素) –地层因素的影响(不可改变的客观因素) –井眼几何参数的影响,以及动态因素的影响
井眼轨迹预测方法:
–有效钻力与“平衡曲率法”结合,进行定量预测
定向控制方法:
–底部钻具组合(BHA)和钻头的优选方法 –随钻井眼轨迹监视与操作参数控制方法 –利用地层自然造斜规律进行控制
磁偏角(Declination)
在某一地区内,其磁北极方向线与地理北 极方向线的夹角。计算方法是以地理北极方向 线为始边,磁北极方向线为终边。顺时针为正 ,逆为负。
定向、水平井的主要用途
在地面上难以建立或不允许建立井场的地区,要勘 探开发地下的石油等资源,唯一的办法是从该地区 附近打定向井; 在海洋或湖泊等水域上勘探开发石油时,最好是建 立固定平台或从岸边打定向井和丛式定向井; 可使用定向井饶过所钻遇的地下复杂地层或障碍物 等; 打定向水平井和复杂结构井,可扩大勘探效果及提 高开发效益和采收率; 在发生卡钻、断钻及井喷着火等恶性钻井事故的情 况下,用侧钻井、救援井来处理这类事故最有效。
定向、水平井眼轨迹控制技术
钻井欠平衡井控技术服务公司
目
录
–特殊工艺钻井概念 –井眼轨迹控制原理 –底部钻具组合及其特性 –井下动力钻具造斜率的预测方法 –转盘钻具组合的力学分析方法 –参数研究——影响因素分析 –高效防斜理论 –测量与计算方法
特殊工艺钻井概念
预置轨道,是指按勘探或开发目标要求设计出的井眼轨 道,其基本类型包括直井,定向井或水平井,等等。 沿预定轨道偏离垂直方向而钻达地下目标层位的井,称 为定向井;将定向井的井斜增大到86度以上(90度左右 )并在油藏内部钻进一定长度的井,称为水平井。 定向井和水平井可通称为斜井,其井眼形状不同于传统 的直井,最明显的特点是斜井从井口到井底有一个“大 斜度水平位移”。在一个井场或海洋平台上钻出多口井 ,这些井组合起来称为丛式井。 在石油勘探开发过程中,由于经常遇到种种客观条件的 限制,或出于经济和社会效益等方面的考虑,打直井难 以实现预期目标,而打斜井及丛式井则可扬长避短、兴 利除弊,获得理想的效果。
特殊工艺钻井概念
水平位移(displacement or closere distance) 井眼轨迹上的任意一点与井口铅锤的距离称为 该点的“水平位移”。也称该点的闭合距 视平移(vertical section)
水平位移在设计方位线上的投影长度,称为视 平移。如下图所示。OQ为设计方位线,OT曲线 为实钻井眼轴线在水平面上的投影,其上任一点 P的水平位移为OP,以Ap来表示。P点的 视平移 为OK。当OK与OQ同向时为正值,反向时为负 值。视平移是绘制垂直投影图时重要的参数,单 位为m。
角度可调的弯曲结构及其特点
角度可调的弯曲结构包括:弯接头\弯外壳等 。其中,目前实现了井下角度可调的弯曲结 构,只有弯接头一种。角度可调的弯曲结构 的主要优点:
与径向尺寸可调的非弯曲结构相比,弯曲结构的 定向控制性能可调范围大,适应性强; 便于同其它井下工具进行组合,灵活,可靠; 既可用于定向控制,也可用于高效防斜及稳斜控 制;既可用于井下动力滑动钻进,也可用于转盘 旋转钻进。
–井下动力滑动钻进方式(如:CTD最典型)
转盘旋转钻进方式的优缺点
–转盘旋转钻进的优点:
轴向阻力小,便于施加钻压及大位移延伸 排量大,钻柱涡动,洗井效果较好 便于修整井壁,井眼光滑,质量较好 一般情况下机械钻速较大
转盘旋转钻进方式
转盘旋转钻进的缺点:
–钻柱旋转与振动,损失大量机械能量 –扭矩损失巨大,要求钻柱抗扭强度高 –井下工具(包括钻头等)的使用寿命降低 –管柱摩擦磨损严重,特别是套管磨损 –定向控制精度较低,特别不利于方位控制 –钻柱刮拉和撞击井壁,不利于井壁稳定控制 –要求钻机旋转驱动功率较大 –要求无线随钻测量 –钻进间断较多,等等
– Formation A: – Formation B: – Formation C: – Formation D: – Formation E: Ir1<Ir2<1 (Ddip<Dstr<Dn) Ir1=Ir2<1 (Ddip=Dstr<Dn) Ir1=Ir2>1 (Ddip=Dstr>Dn) Ir1>Ir2>1 (Ddip>Dstr>Dn) Ir2<Ir1<1 (Dstr<Ddip<Dn)
Selection of Well Profiles
复杂结构井示意图
1、井眼轨迹控制原理
1、钻头与地层相互作用因素:
–钻头:特殊结构,侧切特性,各向异性 –地层:岩性,可钻性,各向异性,几何产状 –钻头作用力:钻压,侧向力,钻头转角,扭矩 –高压射流作用:清洗碎屑,辅助轴向破岩
2、钻柱及其底部钻具组合(BHA)分析
2、底部钻具组合及其特性
1. 底部钻具组合(BHA)系统:
–钻头,钢钻铤,无磁钻铤,螺旋钻铤,加重钻杆等 –稳定器,减振器,震击器,扩大器等 –井下动力马达,弯接头,弯外壳,可变径稳定器等 –测量系统
2. BHA荷载及约束:
–地层对钻头的反作用力,动力载荷 –横向和轴向分布载荷,扭矩,摩擦阻力,液力 –井眼约束:井径,井斜,曲率和挠率,井壁支撑 –荷载及井眼约束条件随钻变化
3、井下动力钻具造斜率的预测方法
井下动力钻具造斜率预测
S1=DH-DS1: distance clearance of first stabilizer , in S2= DH-DS2: diametrical clearance of second stabilizer, in B1=angle adjustment for under-gauge of 1st stabilizer, deg B2=angle adjust adjustment for under-gauge of 2nd stabilizer, deg B=Equivalent angle for single bend, deg θ=effective motor angle, deg
–确定钻头对地层的机械作用力:井斜力和方位力 –确定钻头指向:转角 –确定钻压及钻头扭矩 –确定钻柱或BHA任一点内力和挠度
3、钻头与地层相互作用模型——三维钻速方程
石油钻井中使用的牙轮 钻头
塔里木钻井使用的钻头
改 进 后 的 171/2FS2663 在 迪 那 2 井 1325-3129m井段共计4次入井,累计进尺 1723.48m , 累 计 纯 钻 711.9h , 平 均 钻 速 2.42m/h,171/2PDC钻头在塔里木油田首 次取得突破 针对山前构造地层变化频繁,夹层研 磨性强的特点,选用了DS66GJNSW钻头, 在 柯 深 101 井 81/2井 段 应 用 , 累 计 进 尺 1098.27m,平均钻速1.15m/h,与柯深1 井同井段相比节约周期165天,节约成本 1160万
为了保证造斜钻具和套管安全、顺利下井, 必须对设计剖面的井眼曲率进行校核,应该使井 身剖面的最大井眼曲率小于井下马达组合和下井 套管抗弯曲强度允许的最大井眼曲率值。
井下马达定向造斜及扭方位的井段井眼曲 率Km应满足下式:
式中: Km-井眼曲率,°/100m; Db-钻头直径,mm; DT-井下马达外径,mm; LT-井下马达长度,m。
Ir2<1<Ir1
Ir1>Ir2=1 Ir1=1>Ir2
(Dstr<Dn<Ddip)
(Ddip>Dstr=Dn) (Ddip=Dn>Dstr)
– Formation L:
Ir1=1<Ir2
(Ddip=Dn<Dstr)
钻头与地层相互作用矢量
o 井眼轴线
ef er et e
钻头 ed
pd I b (e f pu I b (e f p s I b (e f
ed ) (1 I b )( e f ea )( ea ed ) eu ) (1 I b )( e f ea )( ea eu ) e s ) (1 I b )( e f ea )( ea e s )
– Formation F:
– Formation G: – Formation H:
Ir1<1<Ir2 (Ddip<Dn<Dstr)
Ir1<Ir2=1 Ir2>Ir1>1 (Ddip<Dstr=Dn) (Dstr>Ddip>Dn)
– Formation I:
– Formation J: – Formation K:
井下动力滑动钻进方式
井下动力滑动钻进方式的优缺点