最新生物化学简答题及答案资料

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.说明动物体内氨的来源、转运和去路。

答:(一)体内氨的来源

1.氨基酸脱氨氨基酸脱氨基作用产生的氨是体内氨的主要来源。

2.肠道吸收的氨一是肠道细菌通过腐败作用分解蛋白质和氨基酸产生氨,二是血中尿素扩散入肠道后经细菌尿素酶作用下水解产生氨。

3.肾小管上皮细胞分泌氨在肾小管上皮细胞内,谷氨酰胺酶催化谷氨酰胺水解生成谷氨酸和氨。肠道和原尿中的pH对氨的来源有一定的影响,NH3易吸收入血,NH+4不易透过生物膜,在碱性环境中,NH+4易转变为NH3,所以肠道pH 偏碱时,氨的吸收增加。

(二)氨的转运

1.丙氨酸一葡萄糖循环肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝。在肝中,丙氨酸通过联合脱氨基作用,释放出氨,用于合成尿素。转氨基后生成的丙酮酸可经糖异生途径生成葡萄糖,葡萄糖由血液输送到肌组织,沿糖分解途径转变成丙酮酸,后者再接受氨基而生成丙氨酸。这一途径称为丙氨酸一葡萄糖循环。通过这个循环,即使肌肉中的氨以无毒的丙氨酸形式运输到肝。

2.谷氨酰胺的生成作用在脑、心脏及肌肉等组织中,谷氨酸与氨由谷氨酰胺合成酶催化生成谷氨酰胺。谷氨酰胺生成后可及时经血液运向肾、小肠及肝等组织,以便利用。在肾由谷氨酰胺酶水解为谷氨酸与氨,氨被释放到肾小管腔中和肾小管腔的H’以增进机体排泄多余的酸。所以,谷氨酰胺是氨的解毒产物,也是氨的储存及运输的形式。

(三)氨的去路

1.尿素合成这是氨的主要代谢去路。肝是合成尿素最主要的器官,通过鸟氨酸循环过程完成的。首先NH3和CO2在ATP、Mg2+及N\|乙酰谷氨酸存在时,合成氨基甲酰磷酸,氨基甲酰磷酸在线粒体中与鸟氨酸氨在鸟氨酸氨基甲酰基转移酶催化下,生成瓜氨酸,然后瓜氨酸与另一分子的氨结合生成精氨酸,最后在精氨酸酶的作用下,水解生成尿素和鸟氨酸。鸟氨酸再重复上述反应。

尿素合成是一个耗能过程,每生成一分子尿素需要4个高能键,尿素中的两个氮原子,一个来自氨基酸脱氨基生成的氨,另一个则来自天冬氨酸。精氨酸代琥珀酸合成酶是尿素合成的限速酶。

2.合成谷氨酰胺在脑和肌肉等组织中,氨与谷氨酸合成谷氨酰胺,后者经血液循环运到肝和肾进一步处理。合成谷氨酰胺是体内储氨、运氨以及解毒的一种重要方式。

3.参与非必须氨基酸及嘌呤、嘧啶的合成。

2.试说明氨基酸脱氨基后生成的α-酮酸的代谢去向。

答:氨基酸脱氨基后生成的α酮酸主要代谢途径有三:

(1)通过转氨基作用合成非必需氨基酸。

(2)转变成糖、脂类。体内能转变成糖的氨基酸称生糖氨基酸;能转变成酮体的称生酮氨基酸;二者兼备的称生糖兼生酮氨基酸。大多数氨基酸为生糖氨基酸。

(3)氧化供能。

3.动物体内可生成游离氨的氨基酸脱氨方式有哪些?各有何特点?

答:①氧化脱氨基作用:人体内只有L—谷氨酸脱氢酶催化反应,其他D—氨基酸氧化酶,L—氨基酸氧化酶不起作用。

②联合脱氨基作用:转氨基作用和L—谷氨酸氧化脱氨基同时作用,是肝脏等器官的主要作用方式。

③嘌呤核苷酸循环:骨骼肌和心肌作用方式,原因是肌肉缺乏L—谷氨酸脱氢酶,而腺苷酸脱氨酶活性高,催化氨基酸脱氨基反应。

4.写出鸟氨酸循环过程,说明尿素分子中C、N原子的来源?

答:鸟氨酸循环又称“尿素循环”,是机体对氨的一种解毒方式。肝脏是鸟氨酸循环的重要器官。

①NH3、CO2、ATP缩合生成氨基甲酰磷酸

②瓜氨酸的合成

③精氨酸的合成

④精氨酸水解生成尿素

总反应式:

NH3+CO2+3A TP+Asp+2H2O→尿素+2ADP+2Pi+AMP+PPi+延胡索酸

该循环要点:

①尿素分子中的氮,一个来自氨甲酰磷酸(或游离的NH3),另一个来自

天冬氨酸(Asp);尿素分子中的碳来源于二氧化碳。

②每合成1分子尿素需消耗4个高能磷酸键。

③循环中消耗的Asp可通过延胡索酸转变为草酰乙酸,再通过转氨基作用,

从其他a-氨基酸获得氨基而再生。

④在鸟氨酸循环中,精氨酸代琥珀酸合成酶活性相对较小,所以该酶被认

为是鸟氨酸循环的限速酶。

5.说明糖、脂类、氨基酸和核苷酸代谢的相互联系和相互影响?

答:(一)糖代谢与脂肪代谢的相互关系

1、糖可以在生物体内变成脂肪。

2、脂肪不能大量转变为糖,除了油料作物种子。

(二)糖代谢与蛋白质代谢的关系

1、糖可以转变为非必需氨基酸。

2、蛋白质可以转变为糖。

(三)脂肪代谢与蛋白质代谢的相互关系

1、由脂肪合成蛋白质的可能性是有限的,实际上仅限于谷氨酸。

2、蛋白质间接地转变为脂肪。

(四)核酸与其他物质代谢的相互关系

1、蛋白质代谢为嘌呤和嘧啶的合成提供许多原料;

2、糖类产生二羧基氨基酸的酮酸前身,又是戊糖的来源。

3、核酸是细胞内的重要遗传物质,可通过控制蛋白质的合成影响细胞的组成成分和代谢类型。

(五)核酸与糖、脂类、蛋白质代谢的联系

1、核酸是细胞内重要的遗传物质,控制着蛋白质的合成,影响细胞的成分和代谢类型。

2、核酸生物合成需要糖和蛋白质的代谢中间产物参加,而且需要酶和多种蛋白质因子。

3、各类物质代谢都离不开具备高能磷酸键的各种核苷酸,如ATP是能量的“通货”,此外UTP参与多糖的合成,CTP参与磷脂合成,GTP参与蛋白质合成与糖异生作用。

4、核苷酸的一些衍生物具重要生理功能(如CoA、NAD+,NADP+,cAMP,cGMP)。

6.真核生物RNA转录生成后,是如何进行加工修饰的?

答:真核生物mRNA的加工修饰,主要包括对5’端和3’端的修饰以及对中间部分进行剪接。

1.在5’端加帽

成熟的真核生物mRNA,其结构的5’端都有一个m7G-PPNmN结构,该结构被称为甲基鸟苷的帽子。如图17-9所示。鸟苷通过5’-5’焦磷酸键与初级转录物的5’端相连。当鸟苷上第7位碳原子被甲基化形成m7G-PPNmN时,此时形成的帽子被称为“帽0”,如果附m7G-PPNmN外,这个核糖的第“2”号碳上也甲基化,形成m7G-PPNm,称为“帽1”,如果5’末端N1和N2中的两个核糖均甲基化,成为m7G-PPNmPNm2,称为“帽2”。从真核生物帽子结构形成的复杂可以看出,生物进化程度越高,其帽子结构越复杂。真核生物mRNA 5’端帽子结构的重要性在于它是mRNa 做为翻译起始的必要的结构,对核糖体对mRNA的识别提供了信号,这种帽子结构还可能增加mRNA的稳定性,保护mRNa 免遭5’外切核酸酶的攻击。

2.在3’端加尾

大多数的真核mRNA 都有3’端的多聚尾巴(A),多聚(A)尾巴大约为200bp。

多聚(A)屠巴不是由DNA编码的,而是转录后在核内加上去的。受polyA

聚合酶催化,该酶能识别,mRNa 的游离3’-OH端,并加上约200个A残基。近年来已知,在大多数真核基因的3’一端有一个AATAA序列,这个序列是mRNa 3’-端加polyA尾的信号。靠核酸酶在此信号下游10-15碱基外切断磷酸二酯键,在polyA聚合酶催化下,在3’-OH上逐一引入100-200个A碱基。

3.mRNA前体(hnRNA)的拼接

原核生物的结构基因是连续编码序列,而真核生物基因往往是断裂基因,即编码一个蛋白质分子的核苷酸序列被多个插入片断所隔开,一个真核生物结构基因中内含子的数量,往往与这个基因的大小有关,例如胰岛素是一个很小的蛋白质,它结构基因只有两个内含子,而有些很大的蛋白质,它的结构基因中可以有几十个内含子。经过复杂的过程后,切去内元,将有编码意义的核苷酸片段连接起来。

相关文档
最新文档