第十六章-面板数据模型一
面板数据模型.讲课文档
其中,
称为复合误差(composite error)。
这一结果与1987年数据的横截面OLS回归结果不一 样。注意,使用混合OLS并不解决遗漏变量问题。
两时期面板数据分析(续4)
另一种方法,考虑了非观测效应与解释变量相关性。
(面板数据模型主要就是为了考虑非观测效应与解 释变量相关性的情形)例如在犯罪方程中,让ai中
为两类:一类是恒常不变的;另一类则随时间而变。
d2t表示当t=1时等于0而当t=2时等于1的一个虚拟变 量,它不随i而变。ai概括了影响yit的全部观测不到 的、在时间上恒定的因素,通常称作非观测效应, 也称为固定效应,即ai在时间上是固定的。特质误 差uit表示随时间变化的那些非观测因素。
两时期面板数据分析(续2)
第三,Panel Data Model可以通过设置虚拟变量对 个别差异(非观测效应)进行控制;即面板数据模 型可以用来有效处理遗漏变量(omitted varaiable) 的模型错误设定问题。
遗漏变量
使用面板数据的一个主要原因是,面板数据可以用 来处理某些遗漏变量问题。
例如,遗漏变量是不随时间而变化的表示个体异质 性的一些变量,如国家的初始技术效率、城市的历 史或个人的一些特征等。这些不可观测的不随时间 变化的变量往往和模型的解释变量相关,从而产生 内生性,导致OLS估计量有偏且不一致。
2000 4203.555 8206.271 5522.762 4361.555 3890.580 4077.961 5317.862 3612.722 4360.420 3877.345 5011.976 8651.893 3793.908 6145.622 6950.713
2001 4495.174 8654.433 6094.336 4457.463 4159.087 4281.560 5488.829 3914.080 4654.420 4170.596 5159.538 9336.100 4131.273 6904.368 7968.327
面板数据模型ppt课件
精选课件
计量经济学,面板数据模型,3王0 少平
六、动态面板-IV估计
IV估计量求解:如果只选择 Y i ,t 2 作为 Yi,t 1 的工具变量, 正交的约束条件:
E(Yi,t2it ) 0
基于一个给定的样本,通过求解:
1
N Ti t
Y i,t 2ˆ it N 1 Ti
Y i,t 2 (Y it ˆY i,t 1 ) 0
▪ OLS估计量:
▪
有偏的,非一致的。
▪ 本质问题:
▪
个体效应(或时间效应)的内生性。
▪ 其BLUE是最小二乘虚拟变量(LSDV)法。
精选课件
计量经济学,面板数据模型,1王5 少平
四、静态面板-固定效应LSDV估计
LSDV估计方法:
基本思想:
通过虚拟变量把个体效应(和时间效应)从误差
项中分离出来,使分离后剩余的误差项与解释变量不
协方差矩阵估计量。
精选课件
计量经济学,面板数据模型,2王3 少平
五、Hausman检验
若随机效应为真时,豪斯曼检验统计量:
H~2(K)
自由度K为模型中解释变量(不包括截距项)的个数。
精选课件
计量经济学,面板数据模型,2王4 少平
六、动态面板数据模型
▪ 动态面板模型:解释变量中包含被解释变量的滞后 项。
(11)
▪ 为解决虚拟变量的完全多重共线性,可直接估计模型:
Y it1 * D 1 N * D N 1 X it u it
(12)
如果 u it 是经典误差项,可以直接对(12)进行OLS估计。并 且
ˆ0
1 N
N i1
ˆi*
ˆi
ˆi*
1 N
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学中常用的数据分析方法。
它适用于具有时间和个体维度的数据,可以帮助研究人员更好地理解个体之间的关系以及时间的变化趋势。
本文将详细介绍面板数据模型的概念、应用领域、优势和限制,并提供一些实际案例来说明其实际价值。
正文内容:1. 面板数据模型的概念1.1 面板数据模型的定义面板数据模型是一种同时考虑时间和个体维度的数据分析方法。
它将个体的观察结果按照时间顺序排列,形成一个面板数据集,以便分析个体之间的关系和时间的变化趋势。
1.2 面板数据模型的分类面板数据模型可以分为固定效应模型和随机效应模型。
固定效应模型假设个体之间的差异是固定的,而随机效应模型则允许个体之间的差异是随机的。
2. 面板数据模型的应用领域2.1 经济学领域面板数据模型在经济学领域得到广泛应用。
例如,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长率、失业率和通货膨胀率之间的关系,以及企业的生产效率和市场竞争程度之间的关系。
2.2 社会科学领域面板数据模型也在社会科学领域具有重要意义。
研究人员可以利用面板数据模型来研究教育、健康、就业等社会问题,并分析个体特征对这些问题的影响。
2.3 金融领域面板数据模型在金融领域的应用也非常广泛。
例如,研究人员可以利用面板数据模型来分析不同股票的收益率之间的关系,以及股票市场的波动与宏观经济指标之间的关系。
3. 面板数据模型的优势3.1 控制个体固定效应面板数据模型可以通过固定效应来控制个体固有的差异,从而更准确地分析个体之间的关系。
3.2 利用时间维度的信息面板数据模型可以利用时间维度的信息,分析个体随时间的变化趋势,更好地理解时间的影响。
3.3 提高数据的效率面板数据模型可以利用面板数据集中的交叉个体和时间信息,提高数据的效率,减少估计的方差。
4. 面板数据模型的限制4.1 数据缺失问题面板数据模型在面对数据缺失问题时可能会出现一些困难,需要采取一些特殊的处理方法。
面板数据模型经典PPT
该模型假设个体和时间特定效应是固定的,不会随着解释变量的变化 而变化。
03
固定效应模型可以通过固定效应估计量来估计变量的影响,该估计量 不受个体和时间特定效应的影响。
04
固定效应模型可以通过各种方法进行估计,包括最小二乘法、广义最 小二乘法、工具变量法和随机效应法等。
随机效应模型
01 02 03 04
面板数据模型经典
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的混合 数据集。
特点
能够同时考虑时间和个体效应对因变 量的影响,提供更全面的分析视角, 有助于揭示数据背后的复杂关系。
面板数据模型的适用场景
01
面板数据模型适用于分析长时间跨度下多个个体或 经济实体的数据,如国家、地区或公司等。
02
当需要探究时间趋势和个体差异对因变量的影响时, 面板数据模型是理想的选择。
03
在经济学、社会学、生物学等领域,面板数据模型 被广泛应用于实证研究。
面板数据模型与其他模型的比较
01
与时间序列模型相 比
其他领域的应用案例
总结词
除了上述领域外,面板数据模型还广泛应用 于金融、环境科学、医学和交通等领域,为 各领域的科学研究和实践提供了重要的方法 和工具。
详细描述
在金融领域,面板数据模型被用于股票价格 、收益率和风险评估等方面;在环境科学领 域,面板数据模型被用于研究气候变化、环 境污染和生态平衡等方面;在医学领域,面 板数据模型被用于疾病诊断、治疗方法和药 物研发等方面;在交通领域,面板数据模型 被用于交通流量、交通规划和交通安全等方
计量经济学-第16章 面板数据回归分析
如果截距写成1it , 就是时变的(time variant)。
10
FEM还假定回归元的系数不随个体或时间变化而变化 FEM 中截距的变化可以用虚拟变量方法来刻画: (16.3.2) 变为 :
Yit 1 2D2i 3D3i 4D4i 2 X 2it 3 X3it uit
E[(εi
uit )(εi uis )]
σ
2 ε
σu2
Eεi2 σε2 σu2
σ
2 ε
σ
2 ε
σu2
可见(16.4.3)式中
w
是自相关的。
it
OLS 是低效的,适合的估计方法是 GLS(generalized least squares)。
10.1.2 面板数据分类
来自:《计量经济分析方法与建模:EViews应用及 实例》,高铁梅,清华大学出版社,2006年
2
16.1 为什么使用面板数据?
面板数据的优势: 1、可以研究个体差异性; 2、变量之间增加了多边性,减少了共线性,
并且提高了自由度和有效性; 3、适于动态研究;
3
4、具有独特的优势(与单独使用时间序列数 据,或单独使用横截面数据相比);
5、可以研究复杂的行为,如规模变化,技术 变动等;
6、减少偏差。当我们把不同类型的数据(如 不同省份或不同年代的数据)混合在一起 时,就会产生偏差(bias)。
(16.3.3)
返回
11
其中, 1
D2i 0
1 D3i 0
1 D4i 0
如果观测值属于GM(通用电气) 不属于
如果观测值属于US (美国钢铁) 不属于
观测值属于WEST(西屋电气) 不属于
面板数据模型介绍
融合发展的方法可以充分利用各种方法的优点,提高模型的预测精度和稳 定性。
融合发展的方法有助于解决复杂的数据分析问题,促进相关领域的发展和 应用。
THANKS FOR WATCHING
感谢您的观看
公司财务数据的面板数据模型分析
要点一
总结词
要点二
详细描述
公司财务数据的面板数据模型分析是评估公司财务状况和 经营绩效的有效手段。
通过收集公司在一段时间内的财务数据,如收入、利润、 资产负债表等,利用面板数据模型分析这些数据的动态变 化,可以评估公司的盈利能力、偿债能力和运营效率,为 投资者和债权人提供决策依据。
02 面板数据模型的类型
固定效应模型
01
固定效应模型是一种用于面板数据分析的统计模型,它通过控 制个体和时间特定效应来估计变量的影响。
02
该模型假设个体和时间特定效应是恒定的,不会随着自变量的
变化而变化。
它主要用于消除个体和时间特定效应对估计的影响,以更好地
03
解释变量的影响。
随机效应模型
01
02
该模型同时控制个体和时间特定效应,并允许它们在某些情 况下随自变量的变化而变化。
03
它适用于当个体和时间特定效应对解释变量有不同程度的影 响时的情况。
其他类型
其他类型的面板数据模型包括空间面板数据模型、动态面板 数据模型等。
这些模型在特定的研究领域和应用场景中有其特定的用途和 优势。
03 面板数据模型的估计方法
面板数据模型介绍
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例 • 面板数据模型的发展趋势与展望
面板数据模型 计量经济学 EVIEWS建模课件
三、 Pool数据的统计处理 ㈠一般描述统计
在 Pool 中 选 View/ Descriptive Statistics , 有如下话框:
堆积数据
堆积-截 面均值后 的数据
(3)截面成员变量(Cross-section specific): 计算每个截面变量所有时期的描述统计量。是通过 对各单独序列计算统计量而得到的。
(4)时期变量(Time period specific): 计算时 期特性描述统计量。对每一时期,使用pool中所有 截面成员的变量数据计算的统计量。
利用面板数据,采用不同的限制性假设,会 得到不同的面板数据回归计量模型。
㈠面板数据模型的一般形式
在面板数据中,我们设有N个成员,T个时期, 则以i表示截面,以t表示时间;且β0表示截距项 向量,β为回归系数向量。则一般模型形式为:
Yit = β0 + Xitβ + εit 其中Yit是分块被解释变量列向量,xit是解释变量 分块矩阵;β0和分别是对应于N和T的截距和斜 率的参数分块列向量; εit是残差分块列向量。
可以 把时期特 性统计量 存储为序 列对象。
㈢ 其它数据处理方法
⒈生成数据 ⑴可以使用PoolGenr(panelgenr)程序生成或 者修改Pool序列。即点击Pool工具栏的Poolgenr 并输入要生成的方程式,例如输入:r?=I?/I_US, 相当于输入下面五个命令:r_CM = I_CM/I_US; r_CH = I_CH/I_US;r_GE = I_GE/I_US;r_WE = I_WE/I_US;r_US = I_US/I_US。PoolGenr按照输 入的方程在各截面成员间进行循环计算,生成新 的序列或修改已有序列。 ⑵可联合使用PoolGenr和Genr生成新的变量。
第16章:面板数据回归模型
提供更多个体动态行为的信息 例如,对于失业问题,截面数据能告诉 我们在某个时点上哪些人失业,而时间序列 数据能告诉我们某个人就业与失业的历史, 但这两种数据均无法告诉我们是否失业的总 是同一批人(意味着低流转率,low turnover rate),还是失业的人群总在变动 (意味着高流转率,high turnover rate) 面板数据可能解决此类问题
477.6000 488.1951 512.0038 529.4399 595.4147 627.1859 720.5337 754.6824 756.4338 738.1251
412.4400 445.6976 450.5022 474.4142 510.8094 571.2644 639.0028 666.0424 707.5816 650.5806
陈文静
22
为什么使用面板数据?
(7)解决遗漏变量问题 在计量经济建模过程中,遗漏变量偏差是 一个普遍存在的问题,遗漏变量常常是不可 观测的个体差异或“异质性”造成的,如果 这种个体差异“不随时间而改变”,则面板 数据提供了解决遗漏变量的方法。
暨南大学经济学院统计系
陈文静
23
为什么使用面板数据?
352.8409
356.1099 376.3157 389.0615 417.7114 459.3653 519.7328 550.2303 574.9075
300.5505
311.4781 316.4172 324.9145 347.8568 381.5282 424.2052 425.7236 422.8841
暨南大学经济学院统计系 陈文静 14
表
中国城乡居民消费——收入统计数据
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它能够有效处理时间序列和截面数据的结合。
本文将介绍面板数据模型的概念、应用领域、优势以及常见的面板数据模型方法。
一、面板数据模型的概念1.1 面板数据的定义面板数据是指在一段时间内对多个个体进行观测得到的数据,其中个体可以是个人、公司、国家等。
面板数据包含了时间序列和截面数据的特点,能够提供更全面和准确的信息。
1.2 面板数据模型的基本假设面板数据模型的基本假设包括个体异质性、时间稳定性和无序列相关等。
个体异质性指个体之间存在差异;时间稳定性指个体的特征在时间上保持稳定;无序列相关指个体之间的观测值在时间上不相关。
1.3 面板数据模型的分类面板数据模型可以分为固定效应模型、随机效应模型和混合效应模型。
固定效应模型假设个体间存在固定差异,随机效应模型假设个体间存在随机差异,而混合效应模型同时考虑了固定差异和随机差异。
二、面板数据模型的应用领域2.1 经济学领域面板数据模型在经济学领域广泛应用于宏观经济分析、产业经济分析、金融市场分析等方面。
它能够匡助研究人员更准确地分析经济现象,提供政策制定的依据。
2.2 社会科学领域面板数据模型在社会科学领域中的应用也较为广泛,例如教育领域的学生绩效评估、健康领域的医疗资源分配等。
通过面板数据模型,研究人员可以更好地理解社会问题并提供相应的解决方案。
2.3 管理学领域面板数据模型在管理学领域的应用主要集中在企业绩效评估、市场竞争分析、人力资源管理等方面。
它能够匡助企业决策者更好地了解企业内外部环境对企业绩效的影响。
三、面板数据模型的优势3.1 提供更多信息相比于传统的时间序列或者截面数据分析方法,面板数据模型能够提供更多的信息,更全面地反映个体和时间的差异。
3.2 提高估计效率面板数据模型能够利用个体和时间的交叉信息,提高估计的效率。
通过引入个体固定效应或者随机效应,可以降低估计的方差。
面板数据模型
第一讲面板数据模型相关概念面板数据定义面板数据特点面板数据模型介绍一、面板数据的定义☐在经济学研究和实际应用中,我们经常需要同时分析和比较横截面观察值和时间序列观察值结合起来的数据,即:数据集中的变量同时含有横截面和时间序列的信息。
☐这种数据被称为面板数据(panel data),它与我们以前分析过的纯粹的横截面数据和时间序列数据有着不同的特点。
0112233,1,2,,;1,2,,it it it it it Y X X X i N t Tββββμ=++++==☐对于面板数据模型☐一般为了分析每个个体的特殊效应,对随机扰动项的设定是itμ=it i itμαε+☐其中代表个体的特殊效应,它反映了不同个体之间的差别。
是服从经典假定的扰动项。
it εi α☐最常见的两种面板数据模型是建立在的不同假设基础之上的。
☐一种假设是固定的常数,这种模型被称为固定效应模型(fixed effect model );☐另一种假设假定不是固定的,这种模型被称为随机效应模型(random effect model )。
i αi αi α在固定效应模型中假定it i it εαμ+= 其中i α是对每一个个体是固定的常数,代表个体的特殊效应,也反映了个体间的差异。
it it i it x y εβα++= 整个固定效应模型可以用矩阵形式表示为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛N N N N x x x i i i y y y εεεβααα 21212121000000 其中i 为1⨯T 的单位向量。
☐OLS估计量:有偏的,非一致的。
☐本质问题:个体效应的内生性。
☐其常用的方法是最小二乘虚拟变量(LSDV)法。
基本思想:通过虚拟变量把个体效应从误差项中分离出来,使分离后剩余的误差项与解释变量不相关,以便进行OLS 估计。
01it it itY X ββμ=++it i itμαε=+N i ,,2,1 =Tt ,,2,1 =二、固定效应模型估计引入虚拟变量,。
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它能够有效地处理时间序列和横截面数据的结合。
本文将介绍面板数据模型的概念、应用领域以及其在实证研究中的优势。
一、概述面板数据模型1.1 面板数据模型的定义面板数据模型是一种将时间序列和横截面数据结合起来的统计模型。
它包含了多个个体(cross-section)在多个时间点(time period)上的观测数据。
面板数据模型可以分为固定效应模型和随机效应模型两种类型。
1.2 面板数据模型的应用领域面板数据模型广泛应用于经济学、金融学、社会科学等领域的实证研究中。
它可以用于分析个体间的差异、时间变化以及两者之间的相互作用。
面板数据模型可以帮助研究者更准确地捕捉数据的动态特征,从而提高研究的可信度和准确性。
1.3 面板数据模型的优势面板数据模型相比于传统的时间序列或横截面数据模型具有以下优势:(1)更多的信息:面板数据模型结合了时间序列和横截面数据,可以提供更多的信息,从而增加了研究的可靠性。
(2)更强的效率:面板数据模型可以利用个体间和时间间的差异,提高模型的效率和准确性。
(3)更广泛的应用:面板数据模型可以适用于各种数据类型,包括面板数据、平衡面板数据和非平衡面板数据等。
二、固定效应模型2.1 固定效应模型的基本原理固定效应模型假设个体间存在不可观测的个体固定效应,即个体特征对因变量的影响在模型中是固定的。
通过控制个体固定效应,固定效应模型可以更准确地估计其他变量对因变量的影响。
2.2 固定效应模型的估计方法固定效应模型的估计方法包括最小二乘法(OLS)和差分法(Difference-in-Differences)。
最小二乘法可以通过控制个体固定效应来估计其他变量的系数。
差分法则通过个体间的差异来估计因果效应。
2.3 固定效应模型的应用案例固定效应模型可以应用于许多实证研究中,例如研究个体间的收入差距、教育对收入的影响等。
面板数据模型_经济学_高等教育_教育专区
面板数据模型1.面板数据定义。
时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。
面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据示意图见图1。
面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。
面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, TN表示面板数据中含有N个个体。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
图1 N=7,T=50的面板数据示意图例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个个体组成。
共有330个观测值。
对于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
注意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估计模型。
面板数据模型
it
it
it
面板数据模型
第6页
得
( )( )
X X Y Y it
i.
it
i.
ˆi t
( )2
X X it
i.
i
t
再预计 i
ˆ i Y i. ˆ X i.
方差预计量为:
e e 2
ˆ
i
( )2
it
i.
t
nt (n 1)
(3)设定检验
H : ...
0
1
2
n
H 1:至少有一个不等
Y X
it
i
it
it
截距项
, i
随机的 i
模型可以改写为:Y it
X W
it
it
其中W
it
i
it
混合影响
面板数据模型
横截面对Y干扰
第2页
二.固定效应模型
Y X
it
i
it
it
模型 (1)截距项
i
模型 (2)
i
t
i,
非随机的
t
对模型(1)
当 X it X *时
...
it
2 it 2
n itn
it
it
面板数据模型
第8页
3.对固定效应模型(2)设定和预计
Y X
it
i
t
it
it
(1)设定(不含截距项, 引进n+T-1个虚拟变量)
Y D D H H X
...
...
it
1 it1
n itn
2 it 2
T
itT
面板数据模型分析PPT学习教案
面板数据的优点
(1)可以控制个体异质性 可以克服未观测到的异质性(unobserved heterogeneity)这种遗漏变量问题。
这个异质性是指在面板数据样本期间内取值恒定的某些遗漏变量。 (2)面板数据模型容易避免多重共线性问题 面板数据具有更多的信息; 面板数据具有更大的变异; 面板数据的变量间更弱的共线性; 面板数据模型具有更大的自由度以及更高的效率。 (3)与纯横截面数据或时间序列数据相比,面板数据模型允许构建并检验更复
第1页/共43页
例 1 表 1 中展示的数据就是一个面板数据的例子。 表 1 华东地区各省市 GDP 历史数据
单位:亿元
1995
1996
1997
1998
1999
上海 2462.57 2902.20
3360.21
3688.20
4034.96
江苏 5155.25 6004.21
6680.34
7199.95
2
yN 0 0 i N xN N
其中 i 为T 1 的单位向量。
第11页/共43页
进一步定义:
D d1
d2
i
d
N
0
0 i
0 0
0 0 i
d i 为TN 1 向量,是一个虚拟变量(dummy variable)。模
型可以再写为: y D x
其中 D 是一个有虚拟变量组成的矩阵。因此固定效应模型也 被 称 为 最 小 二 乘 虚 拟 变 量 模 型 ( least squares dummy variable(LSDV) model),或简单称为虚拟变量模型。
1962.98
山东 4996.87 5960.42
面板数据模型(FixedEffectRandomEffect)
目 录
• 面板数据模型简介 • Fixed Effects模型 • Random Effects模型 • 面板数据模型的选择 • 面板数据模型的扩展
PART 01
面板数据模型简介
面板数据模型的定义
面板数据模型是一种统计模型,用于分析时间序列和横截面数据。它利用了数据 中既有时间维度又有横截面维度的特性,能够更好地揭示数据的内在结构和关系 。
面板数据模型可以用来研究不同个体在时间维度上的行为和表现,以及不同时间 点上个体之间的差异。
面板数据模型的分类
要点一
固定效应模型(Fixed Effects Model)
固定效应模型是一种常见的面板数据模型,它通过在模型 中加入个体和时间虚拟变量来控制个体和时间固定效应。
要点二
随机效应模型(Random Effects Model)
局限性
固定效应模型无法处理随时间变化的影响因素,对于存在多个固定效应的情况,模型可能变得复杂且难以解释。 此外,对于非平衡面板数据,固定效应模型的适用性也可能受到限制。
PART 03
Random Effects模型
Random Effects模型的原理
面板数据模型
面板数据模型是一种用于分析时间序列和截面数据相结合的数据模型,也称为混合数据模型。它能够 同时考虑个体和时间两个维度的效应,从而更准确地估计参数。
PART 05
面板数据模型的扩展
面板数据模型的进一步发展
1 2
动态面板数据模型
考虑时间序列和个体特性的动态变化,通过引入 滞后项或差分项来反映时间趋势和个体效应。
异质性面板数据模型
考虑到不同个体或时间序列的异质性,通过引入 随机效应或固定效应来控制个体或时间上的差异。
01面板数据分析PPT课件
变截距模型:
12 i
24
最简单的模型就是忽略数据集中每个横截 面个体可能有的特殊效应,而简单的将模 型视为横截面数据堆积的模型,即混合横 截面模型。 注意:尽管我们可以将横截面数据简单的 堆积起来用普通回归模型进行处理,但此 时丧失了分析个体特殊效应的机会。
25
2. 面板数据模型的设定检验
检验统计量:
F (S S R R S S R U R )/k S S R U R/(n 1 n 2 2 k)
F (k,n 1 n 2 2 k)
31
面板数据模型的设定检验
假定模型1、2和3的残差分别为S2、S3和S1。 构造F统计量
F 1 ( S S 1 2 /[ N S T 1 ) /[N (N (k 1 ) 1 k )] ] F [(N 1 )k ,N (T k 1 )] F 2 ( S 3 S 1 / S [ 1 N ) T /[ ( N N ( 1 k ) ( k 1 ) ] 1 ) ]F [ ( N 1 ) ( k 1 ) ,N ( T k 1 ) ]
H2 :1 2 N
1 2 N
26
检验步骤:
首先对假设H2进行检验,如果H2成立,则无 需进行下一步检验,并选择模型(2);
如果拒绝H2 ,则需对假设H1进行检验; 如果拒绝H1 ,则选择模型(3);如果不能拒绝
假设H1 ,则选择模型(1);
检验思路:
以Chow检验为基础;
27
Chow检验
;
有N个横截面,即
;
时间指标
。
变量: ——因变量在横截面i和时间t上的观测值;
——第k个解释变量在横截面i和时间t上的观测值;
第i个横截面的数据为
其中 是在横截面i和时间t上的随机误差项。
面板数据模型
面板数据模型一、概述面板数据模型是一种用于描述面板数据的统计模型。
面板数据,也称为纵向数据或者追踪数据,是在一段时间内对同一组体进行多次观测的数据集合。
面板数据模型通过考虑个体间的固定效应和时间效应,可以更准确地捕捉数据的动态变化和个体间的差异。
二、面板数据模型的基本假设1. 独立性假设:个体间观测数据相互独立,不存在相关性。
2. 同方差假设:个体间观测数据的方差相同,不存在异方差性。
3. 零条件均值假设:个体固定效应与解释变量无关,即个体固定效应的均值为零。
4. 随机效应假设:个体固定效应和时间效应是随机变量,并且与解释变量无关。
三、面板数据模型的常见形式1. 固定效应模型(Fixed Effects Model):该模型假设个体固定效应与解释变量无关,可以通过个体固定效应的差异来捕捉个体间的异质性。
2. 随机效应模型(Random Effects Model):该模型假设个体固定效应和时间效应是随机变量,并且与解释变量无关,可以通过个体固定效应和时间效应的方差来捕捉个体间和时间间的异质性。
3. 混合效应模型(Mixed Effects Model):该模型将固定效应模型和随机效应模型相结合,既考虑了个体间的异质性,又考虑了个体间和时间间的异质性。
四、面板数据模型的估计方法1. 最小二乘法(OLS):适合于固定效应模型,通过最小化残差平方和来估计模型参数。
2. 广义最小二乘法(GLS):适合于随机效应模型,通过考虑个体固定效应和时间效应的方差来估计模型参数。
3. 随机效应模型的估计方法:包括随机效应模型的最大似然估计法(MLE)和随机效应模型的广义矩估计法(GMM)等。
五、面板数据模型的应用领域面板数据模型在经济学、社会学、医学等领域得到广泛应用。
具体应用包括但不限于以下几个方面:1. 经济学领域:研究经济增长、劳动力市场、贸易、金融市场等问题。
2. 社会学领域:研究教育、健康、家庭、犯罪等社会问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章静态面板数据模型时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。
面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。
对于面板数据y it(i=1,2,…,N,t=1,2,…,T)来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
本章主要讨论静态面板数据模型的相关理论及软件操作,首先从模型的检验开始到介绍变截距模型中的固定影响变截距模型和随机影响变截距模型,然后到变系数模型。
本章的流程图如下:16.1面板数据模型建模的基本原理在应用多元回归分析建立的计量经济模型时,如果所建的模型中缺失了某些不可观测的重要解释变量,使得回归模型随机误差项常常存在自相关。
于是回归参数的最小二乘法OLS 估计量不再是无偏估计或有效估计。
但是,运用面板数据建立的计量经济模型时,对于一些忽略的解释变量可以不需要其实际观察值,而通过控制该变量对被解释变量的影响的方法获得模型参数的无偏估计。
由此可见,面板数据不仅可以同时利用截面数据和时间序列数据建立计量经济模型,而且能更好地识别和度量单纯的时间序列模型和单纯截面数据模型所不能发现的影响因素,它能够构造和检验更复杂的行为模型。
例如:在宏观领域,它被广泛用于劳动经济学、国际金融、经济增长、产业结构、技术创新、税收政策等领域。
16.1.1面板数据模型基本框架面板数据能更好地识别和度量时间序列或截面数据不可发觉的效应,有助于建立和检验更复杂的行为模型,其基本模型是如下形式的一般回归模型:1,2,,,1,2,,it it it i t it y x i N t T αβδγε=++++==L L (16.1.1)其中:it y 是个体i 在时间t 时期的观测值,α表示模型的常数项,i δ代表固定或者随机的截面效应,t γ代表固定或者随机的时期效应,it x 表示k 阶解释变量观测值向量。
β表示解释变量的系数向量,并且在根据其条件的限制分为三种值,一是对所有截面和时期都是相同的常数,二是在不同的截面是不同的系数,三是在不同的时期是不同的。
it ε是独立同分布的误差项,即()0it E ε=。
在公式(16.1.1)中,如果考虑k 个解释变量,自由度NT 远小于参数个数,对于截面成员方程,待估计参数的个数为((1))NT k N ++,对于时间截面方程,待估计参数的个数为((1))NT k T ++,这使得该模型无法估计。
为了对模型进行估计,则可以建立以下的两类模型:从个体成员角度考虑,建立含有N 个个体成员方程的面板数据模型;在时间点上截面,建立含有T 个时间点截面方程的面板数据模型。
1)含有N 个个体成员方程的面板数据模型 模型形式如下:i T i it i T T i y l x l I αβδγε=++++ (16.1.2)其中:i y 是个体i 的观观测值的时间序列。
系数向量β取值受不同个体的影响,i x 表示个体i 解释变量观测值时间序列。
T l 是T 阶的单位行向量,T I 是T 阶的单位列向量。
'12()T γγγγ=L ,,,,包括所有的时点效应。
该式含有N 个截面方程。
2)含有T 个时间截面方程的面板数据。
其形式如下:t N t it N t N t y l x I l αβδγε=++++ (16.1.3)其中:t y 是某一时间点的各个个体成员的因变量观测值序列。
系数向量β取值受不同时期的影响,t x 表示某一时间点的各个个体成员的解释变量观测值序列。
N I 是N 阶行向量,N l 是N 阶列向量。
12()N δδδδ=L ’,,,,包括所有的截面效应。
该式含有T 个时间截面方程。
(1)为了更好讨论,将这些方程堆积在一起。
首先,按照面板数据的截面方程堆积起来的,表示如下:()()NT N T N T y l x I l l I αβδγε=++⊗+⊗+ (16.1.4)在截面单位和时期的数据和参数满足经典假设的前提下建立的β矩阵和t x 矩阵,其无约束的协方差矩阵如下:'''11211'''2122''1()N N N N E E εεεεεεεεεεεεεεεε⎛⎫⎪ ⎪Ω== ⎪ ⎪ ⎪⎝⎭L O M M O O M L L(16.1.5) (2)将这些方程看出是一系列的时点方程,通过时点堆积起来的方程组如下:()()NT N T N T y l x l I I l αβδγε=++⊗+⊗+ (16.1.6)其协方差矩阵如下:'''11211'''2122''1()T T T T E E εεεεεεεεεεεεεεεε⎛⎫⎪⎪Ω== ⎪ ⎪ ⎪⎝⎭L O M M O O M L L(16.1.7) 为了得到模型(16.1.1)的参数的无偏有效估计量,假设模型满足下列条件:①误差项均值为0,并且同方差。
②误差项不存在截面相关。
③解释变量与误差项相互独立。
④解释变量之间线性无关。
⑤解释变量是非随机的。
如果模型满足上面的假设,可以用最小二乘法估计模型的参数。
16.1.2面板数据分类在模型(16.1.1)式子中,将i δ和t γ归入截距里,常用的有如下的三种情形: 情形1:,i j i j ααββ== (16.1.8)情形2:,i j i j ααββ=≠ (16.1.9) 情形3:,i j i j ααββ≠≠ (16.1.10)1)对于情形1,假设在横截面既无个体的影响,也没有结构的变化。
即对于每个个体成员方程,截距项和系数向量均相同。
对于该模型,将各个个体的时间序列数据堆积在一起来作为样本数据,这种模型称为混合回归模型(Pooled Regression Model )。
那么可以直接利用普通最小二乘法(OLS)估计参数,则该模型为:,1,2,,i i i y x u i N αβ=++=L (16.1.11)实际上,混合回归模型假设了解释变量对被解释变量的影响与个体无关。
这种假设被广泛的应用,但是在很多实际问题的研究中,该模型不是很适用。
因此,本书不详细讨论这种模型。
2)对于情形2,假设在个体成员上存在个体影响而无结构变化,并且个体影响可以截距项的差别来说明,而系数向量相同,称该模型为变截距模型。
从估计方法角度,有书也称之为个体均值修正回归模型(individual-mean corrected regression model )。
即模型形式如下:,1,2,,i i i i y x u i N αβ=++=L (16.1.12)3)对于情形3,假设在个体成员上既存在个体影响,又存在结构变化,即用变化的截距项来说明的同时,用系数向量依个体成员的不同而变化,来说明个体成员之间的结构变化。
这样的模型我们称为变系数模型或无约束模型(unrestricted model )。
,1,2,,i i i i i y x u i N αβ=++=L (16.1.13)16.1.3模型检验原理在对面板数据进行估计时,使用的样本包含了个体、指标、时间3个方向上的信息。
如果模型设定不正确,估计结果将与所要模拟的经济现实偏离很远。
因此,建立面板数据模型之前要检验被解释变量的参数是否在所有横截面样本点和时间上都是常数,即检验所研究的问题属于上述3种情况的哪一种,以确定模型的形式。
常用的检验是协变分析检验或协方差分析检验(analysis of covariance)。
主要检验如下的两个假设:N H βββ===Λ211: (16.1.14)NNH βββααα======ΛΛ21212: (16.1.15)如果接受了假设2,可以认为样本数据符合模型(16.1.11),不需要进行进一步的检验了。
如果拒绝了假设2,还要进行检验假设1。
如果接受假设1,则认为样本数据符合模型(16.1.12)。
如果假设1也被拒绝了,才应采用模型(16.1.13)。
下面是进行假设检验F 统计量的计算方法。
记11T it i t y y T ==∑,11Ti it t x x T ==∑ (16.1.16)模型(11.8)的参数最小二乘法估计后,得到:',1()()T i i xx i it it t w x x x x ==--∑,,1()()Ti xy i it it i t w x x y y ==--∑,2,1()Tyy i it i t w y y ==-∑ (16.1.17)模型(16.1.13)的残差平方和为:'11,,,,1()Nyy i xy i xx i xy i i S w w w w -==-∑ (16.1.18)计算模型(16.1.12)的残差平方和,如果记为:,1N yy yy i i w w ==∑,,1N xy xy i i w w ==∑,,1Nxx xx i i w w ==∑模型(16.1.12)残差平方和为:'12yy xy xx xy S w w w w -=- (16.1.19)计算模型(16.1.11)的残差平方和,如果记'11()()N T xx it it i t T x x x x ===--∑∑,11()()N Txy it it i t T x x y y ===--∑∑ (16.1.20)211()NTyy it i t T y y ===-∑∑ (16.1.21)其中:111N Titi t x x NT ===∑∑,111N Titi t y yNT ===∑∑,则模型(16.1.11)残差平方和记为'13yy xy xx xy S T T T T -=- (16.1.22)在假设H 2下检验统计量F 2服从相应自由度下的F 分布,即)]1(),1)(1[(~)]1(/[)]1)(1/[()(1132+-+-+-+--=k N NT k N F k N NT S k N S S F (16.1.23)若计算所得到的统计量F 2的值不小于给定置信度下的相应临界值,则拒绝假设H 2,继续检验假设H 1,检验统计量F 1服从相应自由度的F 分布,)]1(,)1[(~)]1(/[])1/[()(1121+--+---=k N NT k N F k N NT S k N S S F (16.1.24)若计算所得的统计量F 1的值不小于给定置信度下的相应临界值,则拒绝假设H 1,用模型(16.1.13)拟合样本,反之,则用模型(16.1.12)。