复杂网络上的博弈演化共59页
基于复杂网络的演化策略博弈及其应用
![基于复杂网络的演化策略博弈及其应用](https://img.taocdn.com/s3/m/a00e125d6d175f0e7cd184254b35eefdc8d3159e.png)
基于复杂网络的演化策略博弈及其应用近年来,复杂网络理论在许多领域引起了广泛的关注和研究。
复杂网络的研究不仅可以帮助我们更好地理解和描述自然和社会系统,还可以为各种应用提供新的思路和方法。
其中,基于复杂网络的演化策略博弈是一个备受关注的研究方向。
演化策略博弈是一种描述个体在群体中互相作用和演化的模型。
它通过建立博弈和演化的数学模型,研究个体如何根据自身策略和环境变化来调整行为,并最终形成一种稳定的群体结构。
在传统的演化策略博弈模型中,个体之间的相互作用往往是基于简单的规则和随机的连接方式。
然而,现实世界中的许多系统往往具有复杂的网络结构,例如社交网络、生物网络和交通网络等。
因此,基于复杂网络的演化策略博弈成为了研究的热点之一。
基于复杂网络的演化策略博弈的研究不仅可以帮助我们更好地理解复杂网络的演化机制,还可以为各种实际问题提供一种分析和解决的思路。
例如,在社交网络中,人们的行为往往受到自身利益和他人的影响。
通过研究基于复杂网络的演化策略博弈,我们可以更好地理解人们在社交网络中的行为选择和演化规律,为社交网络的管理和设计提供一种指导。
另外,基于复杂网络的演化策略博弈还可以应用于交通系统的优化和设计。
交通网络中的车辆和路口可以看作是一个个个体,它们之间的相互作用和演化将决定整个交通系统的效率和稳定性。
通过研究基于复杂网络的演化策略博弈,我们可以分析交通网络中车辆和路口的行为选择和演化规律,从而提出一种优化交通流的策略和方法。
综上所述,基于复杂网络的演化策略博弈是一个具有重要理论和应用价值的研究方向。
通过对复杂网络的研究和分析,我们可以更好地理解和描述自然和社会系统的演化机制,为各种实际问题提供一种分析和解决的思路。
相信随着研究的深入和应用的推广,基于复杂网络的演化策略博弈将会在各个领域发挥更大的作用。
复杂系统中演化博弈研究背景介绍
![复杂系统中演化博弈研究背景介绍](https://img.taocdn.com/s3/m/ab91f47f02768e9951e738ad.png)
复杂系统中演化博弈研究 背景介绍
姜罗罗 中国科学技术大学
提纲 演化博弈理论简介 • 经典博弈理论 • 演化博弈理论
1、博弈理论简介
• 博弈论(Game Theory):研究具有斗争或竞争性质现象的 理论和方法。 三要素:参与者(players)集合,策略(strategies)集合和收益 (payoffs)集 分类:合作博弈、非合作博弈; 静态博弈、动态博弈; 完全信息博弈、不完全信息博弈; • 研究博弈论的意义:理解人类的经济行为;理解社会和生 态物种系统中的合作行为以及自自组织斑图。
如何分配才是合理的呢?
按可以票力分配,a50万、b40万、c10万;c向a提出:a70万、b0、c30 万b向a提出:a80万、b20万、c0…… 权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的 “关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。 夏普里值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除 以各种可能的联盟组合。
生态博弈
非合作博弈强调个体理性
(individual rationality),就是从个 体的角度考虑策略选择,使得个体 收益最大。所以非合作博弈研究的 是参与者在利益相互影响的情况下 如何选策略使自己的收益最大,即 策略选择问题。
约翰· 纳什 (J. Nash)
纳什均衡(Nash Equilibrium):所有参与人最优策略的
争当少数者博弈
智猪博弈
小猪和大猪住在猪圈的一边(食槽在这里),开启食物的 开关在另一头,谁去踩,谁丧失先机。如何小猪去踩开关, 等小猪回来的时候大猪已经把大部分食物吃完。如果大猪 去踩开关,等大猪回来的时候小猪已经把一半的食物吃完。 对于小猪来说,最佳策略是等待大猪去踩开关,然后“搭 便车”获得小部分食物。然而,当大猪不去踩开关的时候, 小猪也要冒风险去踩开关。例如腾讯毫无顾忌地跟风,做 QQ旋风,做拍拍,做滔滔。因为不甘心的小猪早早把新技 术研发的前期搞定了,大猪们只需要悄悄跟随,适当的时 候踢开挡路的,就可以了。
复杂网络中的博弈
![复杂网络中的博弈](https://img.taocdn.com/s3/m/ed6653f0ce2f0066f5332289.png)
2. 小世界网络上的囚徒窘境博弈
2001 年Abramson 和Kuperman 在期刊Physical Review E 第63 卷首先研究了WS 小世界网络上的囚徒窘境博 弈。在他们的模型中,个体采用确定性策略更新规则 :每个个体采用邻居中收益最高者的策略。底层的交 互网络是一个由一维规则环进行断开重连得到的WS 小世界网络。
第八章 复杂网络中的博弈
目录
8.1 引言 8.2 博弈论概述 8.3 复杂网络中的演化博弈 8.4 复杂网络的抗毁性分析 8.5 复杂网络的抗毁性优化和修复策略
8.1 引言
广义上讲,复杂网络中的博弈问题包括:网络的攻击 和安全防护(包括抗毁性分析和优化)、网络中的流 行病(病毒、谣言)传播和抑制、网络的同步和牵制 控制、网络的拥塞和拥塞控制、网络的级联故障和故 障预防控制、网络中个体的合作和竞争
这种情况下达到的精炼贝叶斯纳什均衡解及其求解过 程一般也比较繁难,因此在此不做过多介绍。
8.3 复杂网络的演化博弈
8.3.1 演化博弈简介 8.3.2 演化网络博弈概述 8.3.3 基于囚徒窘境博弈模型的演化网络博弈 8.3.4 基于铲雪博弈模型的演化网络博弈
8.3.1 演化博弈简介
1973 年生态学家Smith 和Price 结合生物进化论与经 典博弈论在研究生态演化的基础上提出演化博弈论的 基本均衡概念—演化稳定策略(evolutionarily stablestragegy,ESS),标志着演化博弈理论的诞生。 此后,演化博弈理论逐渐被广泛地用于生态学、社会 学和经济学等领域。
如果参与博弈的局中人不能或者不被允许达成有约束 力的合作协议,或者虽达成协议但不被遵守,则把这 种博弈称为非合作博弈。
1. 合作博弈与非合作博弈
复杂网络演化博弈理论研究综述
![复杂网络演化博弈理论研究综述](https://img.taocdn.com/s3/m/5c1ec5f2c67da26925c52cc58bd63186bdeb9276.png)
复杂网络演化博弈理论研究综述一、本文概述Overview of this article随着信息技术的飞速发展,复杂网络作为一种描述现实世界中各种复杂系统的有效工具,已经引起了广泛关注。
而在复杂网络中,演化博弈理论则为我们提供了一种深入理解和分析网络动态行为的重要视角。
本文旨在全面综述复杂网络演化博弈理论的研究现状和发展趋势,以期能为相关领域的学者和研究人员提供有益的参考和启示。
With the rapid development of information technology, complex networks have attracted widespread attention as an effective tool for describing various complex systems in the real world. In complex networks, evolutionary game theory provides us with an important perspective to deeply understand and analyze the dynamic behavior of networks. This article aims to comprehensively review the research status and development trends of complex network evolutionary game theory, in order to provide useful reference and inspiration for scholars and researchers in related fields.本文首先回顾了复杂网络和演化博弈理论的基本概念和研究背景,阐述了两者结合的必要性和重要性。
接着,文章从网络结构、博弈规则、动态演化等多个方面对复杂网络演化博弈理论进行了深入的分析和讨论。
复杂网络上的演化博弈
![复杂网络上的演化博弈](https://img.taocdn.com/s3/m/0ef583e64afe04a1b071dec1.png)
t e n t e e o u i n rl t b es r t g n e l a o y a c s e t b ih d w e h v l t a i s a l t a e y a d r p i t rd n mi si s a l e .Th n,t e s o h s i v l - o y c s e h t c a t e o u c
ton r y m is o i ie we lmi d po l to nd t i e a i s p t he de e m i i tc r p i a o — i a y d na c ffn t l— xe pu a i ns a her r l ton hi O t t r n s i e lc t r dy— ‘ n m is a epr s n e a c r e e t d.So er s lson fx d pr ba iiy a d tm ea e a s v n m e u t i e o b lt n i r lo gi e .Fu t r r ,s me r c n r he mo e o e e t r s ls o v l i na y g me n c e u t fe o uto r a s o ompl x n t e e wor uc s s l— rd a c l- r e ne wo ks a ei r - kss h a ma lwo l nd s a e fe t r r nt o du e c d.Fi a l n ly,un e ol e e r l ms,f t e r s a c ie to , a os i e a pl a i r a or r s v d op n p ob e u ur e e r h d r c i ns nd p sbl p i ton a e s f c e o uton r a s O omplx ne wo k r i t d o . v l i a y g me n c e t r s a e po n e ut Ke wo d : v l ton r m e;r p ia o y mi s v l ton rl t b e s r t g y r s e o u i a y ga e lc t r d na c ;e o u i a iy s a l ta e y;c m plx ne wor ;f- o e t ks i
演化博弈
![演化博弈](https://img.taocdn.com/s3/m/64d487f4aef8941ea76e05da.png)
基于历史记忆的雪堆博弈
1、模型规则 将N个个体放置与某种网络的节点上 每一轮相互连接的个体同时博弈 个体的总收益是根据收益矩阵与所有邻居
博弈收益之和 一轮博弈结束后个体选择最佳策略更新 个体对于最佳策略具有记忆性,选择某个
策略取决于该策略在记忆中的数量
假设个体的记忆长度有限,长度为M,即上 一时刻到M时刻以前的历史最佳策略,个体 依据自身的历史记忆进行决策:
其中,pc为选择策略c的概率,NC和ND分别为策略C和D的数量 个体不断更新记忆,不断重复博弈,整个系统就会演化下去。
2、二维网格上的演化博弈
(1)主要研究变量
合作频率 fc
记忆长度M 收益参数r
(2)二维网格模拟
网络规模为1000,初始策略C和D各占50%, 并且在网络中随机分配
每个个体的初始记忆随机分配,并且个体 记忆对系统最终稳定行为没有任何影响
2、雪堆博弈
假设铲雪的代价为c, 每个人的好处量化为b,b>c,那么双 方收益矩阵为:
合作
B 背叛
合作 A
背叛
b-c/2, b-c/2 b-c ,b
b ,b-堆博弈中,遇到背叛时选择合作的收益大于 双方都背叛的收益,遇到背叛则选择合作; 个体的最佳策略取决于对手的策略; 相比囚徒困境,合作在雪堆博弈中更容易涌现。
复杂网络上的演化博弈
主要内容
1、群体博弈简介 2、基于历史记忆的雪堆博弈 3、演化博弈动力学与网络结构的共同演化
群体博弈简介
1、囚徒困境
囚徒的选择策略有:合作(坦白)、欺骗(抵赖)
我们可以得到的博弈矩阵为:
囚徒b
T>R>P>S
合作
欺骗
2R>T+S合作
基于复杂网络的演化博弈及一致性动力学研究
![基于复杂网络的演化博弈及一致性动力学研究](https://img.taocdn.com/s3/m/befb0241a7c30c22590102020740be1e640ecc78.png)
基于复杂网络的演化博弈及一致性动力学研究基于复杂网络的演化博弈及一致性动力学研究一、引言随着社会网络的普及以及信息技术的迅猛发展,人类社会开始呈现出复杂网络结构。
在这样的复杂网络中存在着大量的个体节点以及复杂的关联关系,如何研究其中的演化博弈和一致性动力学成为了当前重要的研究课题。
本文将探讨基于复杂网络的演化博弈和一致性动力学的相关研究进展。
二、复杂网络的特点及其应用复杂网络是由大量节点和边组成的网络,节点代表个体或者事件,边代表节点之间的关联关系。
复杂网络的结构非常复杂且具有各种特点,如小世界性、无标度性、社区结构等。
这使得复杂网络在社会、生物、信息科学等领域得到广泛应用。
三、演化博弈在复杂网络中的研究演化博弈是研究个体之间相互作用和选择策略的重要方法。
在复杂网络中,个体节点的选择策略及其对策略的影响会随着时间的演化而改变。
这种演化过程通常可以通过重复博弈来模拟,包括囚徒困境、雪崩效应等。
研究人员通过建立演化方程模型,结合复杂网络的拓扑结构,探索博弈中的个体间策略演化规律,并发现了一些有趣的现象,如局部稳定态、共存态等。
四、一致性动力学在复杂网络中的研究一致性动力学研究的是节点之间的状态同步和信息传递过程。
在复杂网络中,节点之间的相互影响可以导致网络系统整体的一致性行为,如各节点同步、集群形成等。
研究人员通过建立一致性动力学模型,揭示了一致性动力学的演化规律,并发现了一些重要的现象,如达成共识、统一振荡等。
五、演化博弈与一致性动力学的关联研究演化博弈和一致性动力学都关注个体之间的相互影响及其演化规律,因此两者的研究有着密切的联系。
一方面,个体的策略选择和演化会直接影响网络的一致性行为,从而影响到一致性动力学的研究结果。
另一方面,网络结构也会影响个体的策略演化,对演化博弈的研究产生重要影响。
因此,在研究中融合演化博弈和一致性动力学的方法,将有助于深入理解复杂网络中的个体行为和系统性质。
六、结论及展望基于复杂网络的演化博弈和一致性动力学研究已经取得了一些重要进展,但仍存在一些待解决的问题。
复杂网络上的博弈演化-精品共60页文档
![复杂网络上的博弈演化-精品共60页文档](https://img.taocdn.com/s3/m/3ffc86c46c175f0e7dd13743.png)
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
复杂网络上的博弈演化-精品
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
第12讲复杂网络上的博弈演化
![第12讲复杂网络上的博弈演化](https://img.taocdn.com/s3/m/a82d1b89bceb19e8b9f6ba0f.png)
演化博弈论着重研究是在一个动态过程中有限理性的个
体如何在重复博弈过程中,通过自适应学习来实现自身收益 最大化的问题。它把均衡看作是过程调整的结果。
经典博弈论到演化博弈论的3个关键概念的内涵式改变 (演化博弈论与经典博弈论的区别): (1)策略内涵的不同:不同行为 到生物系统中的不同类
型物种本身,策略由物种的不同表现型来体现;
(2)均衡意义的不同:纳什均衡到演化稳定策略(ESS); (3)个体互相作用方式的不同(博弈个体与博弈次数)
二、复杂网络上的演化博弈
在传统的演化博弈理论中通常假设个体间以均匀混合的 方式交互,即所有个体全部相互接触,然而,现实情况中个 体间的接触总是有限的,个体仅与周围的少数其他个体接触 .这样我们就可以在博弈理论中引入网络拓扑的概念。
个体的策略演化会趋向于一个均衡态,在此均衡态下所
有的个体会同时采取“纳什均衡策略”。 Nash认为,博弈问题的解应该是这样的一组策略,在这组
策略中,每一个参与者都无法通过单独改变自己的策略而
获得更多的收益。这样的状态就被称作纳什均衡态. 实际上纳什均衡态对所有的参与者来说,不一定是最好的结局。
经典博弈模型
更新规则、网络结构等。
虽然使用的博弈模型和具体的模拟细节各不相同,但基 本的模拟过程是类似的,这个模拟过程是分回合进行的,每 个回合包含两步: (l)网络中所有的参与者与其网络上的邻居进行博弈,并 获得收益。每个参与者的收益为与其所有邻居发生博弈得到 收益的总和。 (2)然后参与者将他的收益与他在网络上邻居的收益进 行比较,按照一定规则改变自己的策略。
性的个体最终会处于相互背叛的状态(注意到此时的集体收
益低于两人同时选择合作时的情况). 这种相互背叛的状态 (D,D)就是系统的纳什均衡态。
复杂网络上演化博弈动力学研究综述
![复杂网络上演化博弈动力学研究综述](https://img.taocdn.com/s3/m/5b59c9df33d4b14e852468db.png)
复杂网络上演化博弈动力学研究综述作者:湛文涛纪庆群来源:《计算机光盘软件与应用》2012年第22期摘要:博弈论是研究个体之间相互作用的,演化博弈论能够很好地解释现实中的网络,因而博弈演化理论的研究越来越来得到关注。
本文对常见的复杂网络博弈理论做了介绍,然后我们探讨了这一领域的研究趋势。
关键词:网络结构;囚徒困境;合作行为中图分类号:TP3 文献标识码:A 文章编号:1007-9599 (2012) 22-0000-02博弈论(Game theory)主要是研究个体在相互作用过程中如何获得最大利益的理论,是对合作与竞争关系的一种反映。
一般而言,一个博弈通常由以下几个组成部分:a参与博弈的个体至少两个b.博弈个体可以从策略集中选取自己的博弈策略c.博弈结束后博弈个体可以得到得收益d.博弈个体进行策略更新的目的是为了达到最大收益。
经典博弈论认为博弈个体是非常理性的,博弈目的都是追求自己的最大收益,而且也知道其它博弈个体也是完全理性的;而演化博弈论以种群为研究对象,认为博弈个体是有限理性的,博弈个体的策略可能因变异而改变。
演化博弈论的特征与实际网络较为符合,使得复杂网络上的博弈演化研究得到越来约多学者的参与和研究,在这里主要综述一下复杂网络上的网络结构是如何对博弈产生影响的。
1 复杂网络中的经典网络模型当策略更新规则相同时,网络结构不一样,对博弈的影响也不一样。
在这里先介绍一下对演化博弈有影响的网络:规则网络、小世界网络和无标度网络。
1.1 规则网络:网络中节点间按某种规则连接的网络称之为规则网络。
规则网络中每个节点的边数都是一样的有,即有相同的邻居数或者度(一般用K来表示节点的度),规则网络节点之间聚成团的趋势比较大并且节点间平均最短路径比较大。
1.2 小世界网络:节点间平均路径长度比较短而聚集系数比较大是小世界网络的重要特征。
小世界网络分为两种,一种是WS小世界网络,在规则网络上进行随机化重连得到的;另一种是NW小世界网络,在规则网络上随机化加边得到的。
第八章复杂网络中的博弈
![第八章复杂网络中的博弈](https://img.taocdn.com/s3/m/1e4d2ef1d15abe23482f4df2.png)
8.2.1博弈论基本概念
对于标准形式的有限次的双人博弈通常可以用收益矩 阵U 描述,一个典型的例子如表所示
8.2.2 博弈的分类
Байду номын сангаас
1. 合作博弈和非合作博弈 如果参加博弈的局中人可以达成有约束力的合作协议, 也就是说,在博弈中,局中人可以在相互信任的基础 上共同寻求使大家都获利最大、损失最小的策略,且 这种互相信任的约定一定会被遵守,则这种博弈叫做 合作博弈。 如果参与博弈的局中人不能或者不被允许达成有约束 力的合作协议,或者虽达成协议但不被遵守,则把这 种博弈称为非合作博弈。
8.2.4 完全信息动态博弈与子博弈精炼纳什 均衡
2. 博弈树 例题:市场进入阻扰博弈树
8.2.5 不完全信息静态博弈与贝叶斯纳什均 衡
贝叶斯纳什均衡就是在已知(包括自己的)全部局中 人的类型概率分布情况下,分析得到的各个局中人最 优策略组合。类似地,任何一个局中人变化策略都会 导致损失,因此贝叶斯纳什均衡同样也会自然达到, 也是会被自动遵守的僵局。
化。
2. 小世界网络上的囚徒窘境博弈
2001 年Abramson 和Kuperman 在期刊Physical Review E 第63 卷首先研究了WS 小世界网络上的囚 徒窘境博弈。在他们的模型中,个体采用确定性策略 更新规则:每个个体采用邻居中收益最高者的策略。 底层的交互网络是一个由一维规则环进行断开重连得 到的WS 小世界网络。
前面讨论的市场进入阻挠博弈及其对称子博弈精炼纳 什均衡仅仅适用于高成本在位者。 例题:低成本在位者的市场进入阻扰博弈收益矩阵
8.2.5 不完全信息静态博弈与贝叶斯纳什均 衡
3. 不完全信息贝叶斯纳什均衡 如果进入市场者不了解在位者的全部信息(经 济、管理、技术实力等),只知道它属于高成本类型 (选择默许)的概率为p,属于低成本类型(选择斗 争)的概率为1-p,则它进入市场的“期望利润” 为40p-10(1-p),不进入市场的“期望利润”为 0。 容易计算得到:只有当p>0.2 时,进入市场的 期望利润才大于不进入市场的期望利润,进入才是优 策略。这样,最后的对称或不对称不完全信息贝叶斯 纳什均衡解取决于p 是否大于这个阈值0.2,而且这 个均衡解只能给出一个概率性的决策结果预言。
复杂网络上的演化博弈
![复杂网络上的演化博弈](https://img.taocdn.com/s3/m/617ccd7ca26925c52cc5bfc1.png)
第2卷第2期 智 能 系 统 学 报 Vol.2№.22007年4月 CAA I Transactions on Intelligent Systems Apr.2007复杂网络上的演化博弈王 龙,伏 锋,陈小杰,王 靖,李卓政,谢广明,楚天广(北京大学工学院,北京100871)摘 要:主要介绍了近年来复杂网络上的演化博弈研究现状和研究方向.复杂网络理论的发展为描述博弈关系提供了系统且方便的框架,网络上的节点表示博弈个体,边代表与其邻居的博弈关系.介绍了经典演化博弈论中的演化稳定策略概念和复制动力学方程,以及二者的相互联系.介绍了混合均匀有限人口中随机演化动力学问题,并给出了与确定复制方程的相互转化关系.介绍了小世界、无标度等复杂网络上演化博弈的研究结论,给出了复杂网络上演化博弈论的未来发展方向.关键词:演化博弈论;复制动力学;演化稳定策略;复杂网络;有限人口;合作中图分类号:N949 文献标识码:A 文章编号:167324785(2007)022*******Evolutionary games on complex net w orksWAN G Long ,FU Feng ,C H EN Xiao 2jie ,WAN G Jing ,L I Zhuo 2zheng ,XIE Guang 2ming ,C HU Tian 2guang(College of Engineering ,Peking University ,Beijing 100871,China )Abstract :In t his survey ,recent develop ment s and f ut ure directions of evolutionary games on complex net 2works are p resented.The develop ment of complex network t heory provides a systematic and convenient f ramework for description of t he dynamical interactions of games.The vertices represent players ,while t he edges denote t he links between players in terms of game dynamical interaction.First ,some important concept s of evolutionarily stable strategy and replicator dynamics are int roduced ,and t he connection be 2tween t he evolutio narily stable st rategy and replicator dynamics is established.Then ,t he stochastic evolu 2tionary dynamics of finite well 2mixed pop ulatio ns and t heir relationship to t he deterministic replicator dy 2namics are presented.Some result s on fixed probability and time are also given.Furt hermore ,some recent result s of evolutionary games on complex networks such as small 2world and scale 2f ree networks are int ro 2duced.Finally ,unresolved open p roblems ,f ut ure research directions ,and possible application areas for evolutionary games on complex networks are pointed out.K eyw ords :evolutionary game ;replicator dynamics ;evolutionarily stable strategy ;complex networks ;fi 2nite pop ulations ;cooperation收稿日期:2006212218.基金项目:国家自然科学基金资助项目(60674050,60528007);973国家重点基础研究发展计划资助项目(2002CB312200);863国家高技术研究发展计划资助项目(2006AA04Z258);“十一五”规划资助项目(A2120061303). 博弈论是研究依据其他参与者的效用(utility )情况,理性参与者策略之间相互作用的一门科学[1].博弈论的要素有两点:参与博弈者的目标或利益相互冲突,且他们都是理性的.现代博弈论已成为一门横跨数学、生物、心理学、计算机科学、运筹学、经济、哲学、政治、军事战略等领域的交叉学科.公认的现代博弈论起源于数学家Von Neumann 和经济学家Morgenstern 的合著:博弈理论和经济行为[2].尽管当时这本著作中的博弈论的理论框架只适用于一些有限的特例,如只讨论了零和非合作博弈问题等,但它第一次用数学语言描述和解决了博弈问题.此后,经过许多学者的努力,特别是Nash 在非合作博弈理论中创造性地引入策略均衡的概念,博弈论日渐成为非常重要且有用的分析工具[3].近十多年来,诺贝尔经济学奖先后授予研究博弈论的科学家Nash、Selten、Harsanyi、Aumann、Schelling等人,说明博弈论越来越得到更多人的重视,博弈论的威力也得到越来越广泛的承认.1 博弈论和复杂网络所谓Nash均衡(Nash equilibrium)是指给定博弈中其他个体(player)的策略时,任何一个个体都不能单方面改变自己的策略来增加自己的收益(payoff)的情形.换言之,在Nash均衡中,相对其他个体,个体的所选策略已经是最佳的反应,此时Nash均衡成为一致解的概念.但是,作为博弈一致解的概念,在有些情况下Nash均衡并不是必要条件而是充分条件.因此,博弈论的后Nash均衡时代主要是针对博弈的假设和前提的重新修改和扩展.其中最主要的2个分支:动态博弈和非完全信息博弈.非完全信息(incomplete information)和非完美信息(imperfect information)的区别在于:前者表示博弈中的个体不精确地知道博弈收益的大小或其他博弈个体的类型(type);后者表示博弈过程的信息集合的元素个数超过一(即不知道博弈中其他个体的行动(actions)).通过Harsanyi转换(Harsanyi t ransformation),可将“非完全信息博弈”转换成“完全但非完美信息博弈”.在动态博弈中,个体决策的时间(即行动的先后次序)将对博弈结果起作用.田忌赛马就是动态博弈的例子之一.本文将介绍完全信息下非合作博弈的基本概念和演化博弈理论.演化博弈这一概念最初是由Maynard Smit h和Price 在研究对称人口博弈时提出的[4],他们成功地把博弈论应用到生物背景中去.其主要思想就是采用依赖于接触频率的适应度(frequency2dependent fit2 ness,对应于博弈论中的效用或收益)的策略更新方法.近些年,演化博弈论不仅在理论生物学中得到充分的发展,也在其他学科,如经济学、社会学、心理学等得到广泛的应用.近年来,由于复杂网络研究的兴起与发展,使得人们对各种现实网络的结构演化、复杂性有了比较清晰的认识.特别是1998年Cornell大学的Watt s 和其导师St rogatz在Nat ure杂志上撰文给出了小世界网络模型[5],复杂网络研究迅速引起了诸多领域中科研工作者的兴趣,特别是物理学界、生物学界,复杂网络理论得到了充分的探索和发展.1999年美国Not re Dame大学的Barabasi和其学生Al2 bert在Science杂志撰文指出[6],很多复杂网络的度分布近似服从幂率分布,也就是常说的无标度网络(scale2f ree networks),并给出了一个偏好连接(p referential attachment)的模型,简单探讨了这一现象的内在机制.自20世纪60年代以来,随着匈牙利数学家Erdos和Renyi的关于随机图论的论文的发表,人们对真实世界网络的认识停留在随机网络的认识水平上.Barabasi和Albert的发现,改变了以往人们对现实网络的认识,从而成为复杂网络研究的催化剂.很多有关复杂网络的重要性质、组织规律及其复杂网络上的动力学的研究论文相继发表,特别是无标度网络上传染病的阈值问题、复杂网络的层次性、结构性、自相似性等方面重要的结果[7-10].有关复杂网络研究的现状,读者可参考文献[11-15],这里不再赘述.复杂网络理论为描述博弈个体之间的博弈关系提供了方便的系统框架.网络上的节点表示博弈个体,边代表与其邻居的博弈关系.这样一来,就可以利用复杂网络拓扑关系,来研究一些复杂的博弈关系下的博弈.比如,以前的博弈理论中的混合均匀(well2mixed)假设就可以看成是在全连通图上进行的博弈.在空间二维格子(lattice)或一维格子(ring)上博弈即可转化为规则网络上的博弈.然而,真实世界的网络是异质的(heterogeneous),大部分节点的邻居数目存在差异,甚至成幂率分布.因此,研究接触网络(network of contact s)的异质性对其上的博弈动力学的影响是非常有意义的.在演化博弈研究中,一个重要的方向就是研究理性的博弈者之间如何涌现出合作行为.比如,在囚徒困境博弈(Prisoner’s Dilemma)中,每个纯策略的个体都有2种选择:合作(cooperation,C)与作弊(defection,D).D策略个体利用C策略个体,获得T收益,而C获得S.双方都合作获得R,都作弊获得P,其中T>R>P>S,2R>T+S.在单轮博弈情况下,无论对手采取何种策略,个体的最佳策略总是作弊(defect).然而,在双方都采取合作(cooperate)策略的情况下,二者总的收益才是最大的.这一现象说明了社会两难(social dilemma)问题的实质.当囚徒困境博弈在2个个体之间进行多次时,每个个体都可以根据上次博弈的结果选择进行下次博弈的策略(即迭代囚徒困境博弈)(iterated prisoner’s di2 lemma game).在20世纪70年代末的Axelrod锦标赛(Axelrod tournament)中,英国数学家、生物学家Rapoport提出的Tit2for2Tat(TF T)策略脱颖而出,打败了其他策略.所谓TF T是一个偏向合作的策略,第一步采取合作,然后重复其对手上一步的策略.但是TF T在有环境干扰时表现并不好,此时・2・智 能 系 统 学 报 第2卷Pavlov策略就能打败TF T.Pavlov策略是属于更一般的Win2Stay2Lo se2Shift(WSL S)策略类型. WSL S策略是指个体如果现在的策略获得的收益大于某个期望水平(aspiration level),那么下一步就保持这个策略不变,否则就切换到另外一个策略.在演化博弈中使用较多的另外一个范例是雪堆博弈(snowdrift game).假设合作的收益为b,成本为c(b>c),两个个体都选择合作则得到收益b-c/2,如果都作弊则收益为0.合作者遇到作弊者,则收益为b-c,作弊者则得到收益b.由于在雪堆博弈中,选择合作总比选择作弊要好,Nash均衡为混合策略(合作的频率为x3=(b-c)/(b-c/2).因此雪堆博弈被广泛地用于研究生物之间的合作行为.TF T策略和WSL S策略是建立合作和作弊策略基础上的宏策略(meta2st rategy).一般在博弈中只考虑最简单的策略(合作或作弊),如果囚徒困境博弈在相同的多个个体之间进行多次,其中个体可以通过记忆或学习、或者对作弊者进行惩罚,那么在合适的内在机制之下,合作行为将会涌现并逐渐占据优势.对合作机制的研究,特别是在复杂网络上的演化博弈背景中,是目前演化博弈研究的一个热点.2 演化稳定策略与复制动力学演化稳定策略(evolutio narily stable st rategy, ESS)相关概念最早由英国学者Maynard Smit h提出[16].策略I是ESS,必须满足条件:如果几乎所有的个体(pop ulation)都采取策略I,那么这些I策略的个体的适应度要比任何可能的变异策略要大.否则变异策略可以入侵种群并且I将不稳定.有了ESS的概念,就可以判断策略的稳定性.由于经典博弈中最重要的概念是收益矩阵(payoff mat rix)和收益,因此可以把经典博弈中的想法应用到ESS中来.假设生物的适应度跟收益成正比(或是收益的函数),或就等于收益,并且经典博弈中参与者理性(rationality)选择的策略就对应于ESS.与传统的Nash均衡相比,ESS这个概念要更加严格一些,因此可用于平衡点选择.因为所有的ESS必定是Nash均衡,但只有严格对称Nash均衡才是ESS.值得一提的是,这里的ESS是一个“静态”的概念,其假设只要求表现更好的策略具有更快的复制(增长)速率,并不涉及具体的博弈动力学.复制动力学(replicator dynamics)在1978年由Taylor和Jonker引进[17].其主要假设为给定的策略类型的单位复制率 ρiρi 正比于适应度之差:ρiρi=fit ness of type i-average fit ness.(1) 复制动力学是关于博弈动力学(策略更新)的连续确定性方程,从而可以赋予前面介绍的ESS这一静态的概念以动力学含义.复制方程在不动点附近的稳定性将对应于策略的稳定性(ESS).复制动力学与演化稳定性的关系可以总结如下[18-19]:1)ESS对应于吸引子;2)内部ESS对应于全局吸引子;3)对势博弈(potential game)而言,某个不动点是ESS当且仅当它是吸引子;4)对2×2矩阵博弈而言,某个不动点是ESS当且仅当它是吸引子.3 有限人口上的演化博弈动力学以往复制动力学及ESS的概念均假设人口为无限且混合均匀.但更实际一点,往往需要考虑人口非无限情形,此时演化动力学将受到有限人口因素的影响而满足随机动力学基本性质(Markov过程).2004年Nowak等人在Nat ure上发表文章指出在有限人口的情形下,采用依赖于频率的Moran过程(birt h2deat h process),经典的ESS的判据需要做修改,并提出了在弱选择下的“1/3规则”[20].假设种群由N个混合均匀的策略为A或B的个体组成,收益矩阵为A BA a bB c d假设有i个A策略的个体,那么策略A和B的适应度分别为f i=1-w+w[a(i-1)+b(N-i)]/[N-1],g i=1-w+w[ci+d(N-i-1)]/[N-1].(2) 这里适应度由个体原有的基线(baseline)1加上通过博弈获得的收益经过加权得到.w∈[0,1],表示自然选择的强度,即博弈收益对适应度贡献的大小.在每一时间步长,按照正比于适应度的概率选择一个个体进行复制,并替代一个随机选取的种群中个体.A类型的个体可能增加一个,减少一个或保持不变.因此Markov过程的转移矩阵为三对角矩阵(t ri2diagonal mat rix),矩阵元素为P i,i+1=if ii f i+(N-i)g iN-iN,P i,i-1=(N-i)g ii f i+(N-i)g iiN,(3)・3・第2期 王 龙,等:复杂网络上的演化博弈P i,i=1-P i,i+1-P i,i-1,其他元素为零.这个随机过程具有2个吸收态(ab2 sorbing state)i=0和i=N.如果种群达到这2个吸收态之一的话,系统将永远保持状态不变.以x i表示种群从i个A个体开始演化到i=N终态的概率,即固定概率(fixation p robability),那么有以下关于x i的递归方程(recursive equation)[20-22]:x i=P i,i+1x i+1+P i,i x i+P i,i-1x i-1,(4)边界条件为x0=0和x N=1.方程的解由Karlin和Taylor在1975年给出[23]:x i=1+∑i-1j=1∏jk=1g kf k1+∑N-1j=1∏jk=1g kf k,(5)考虑单个A个体能入侵并占据所有的B个体的概率:ρA=x1=11+∑N-1j=1∏jk=1g kf k,(6)对于中立博弈(neut ral game)来说,此时w=0,x1= 1/N.若ρA>1/N,那么自然选择偏向于A取代B.在有限人口N的情况下,B策略是ESS,记作ESS N,如果以下条件满足[20]:1)选择不利于A入侵B,这意味着B种群中的一个变异A具有较低的适应度;2)选择不利于A取代B,这意味着固定概率ρA<1/N.值得一提的是,不像在无限人口中2种策略有可能共存的情况,在有限人口中,某种策略最终会被固定下来(即最终不存在2种策略共存的情况),但达到固定的时间有可能很长,此时讨论固定概率就没有多少意义了.因此固定时间(fixation time)从另一个方面反映了自然选择如何影响种群进化的速度.一般讨论条件平均固定时间(conditional mean fixation time).在文献[22]、[24]中,发现系统从状态i=1演化到i=N,或从i=N-1到i=0的条件平均固定时间是相等的.进一步地,这一结果跟收益矩阵没有关系,即无论是在A对B是占优的情况下,还是在A和B都是对自己的最好反应等情况下,条件平均固定时间的均值和方差都是相等的.这是一个相当有趣的结果.文献[24]还发现,这一结果对于Wright2Fisher过程或同时有多个变异存在的情况并不成立.对于有限人口,演化动力学是一个随机过程,那么在人口N趋于无穷大的情况下,二者有没有联系呢?Traulsen等人发现[25],若采用标准的Moran 更新过程,在N→∞时,人口演化的随机动力学将对应于调整复制方程(adjusted replicator equation )或Maynard Smit h形式的复制方程.如果采用对比较(pair comparison)更新方式,在N→∞时,人口演化的随机动力学形式上将对应于标准复制方程.如果记x=i/N,以ρ(x,t)表示人口在t时刻处于x 状态的概率密度,那么ρ(x,t)满足Fokker2Planck 方程(FPE)[25-26]:dd xρ(x,t)=-dd x[a(x)ρ(x,t)]+12d2d x2[b2(x)ρ(x,t)].(7)式中:T+(x)=f ix f i+(1-x)g ix(1-x),T-(x)=g ix f i+(1-x)g ix(1-x),a(x)=T+(x)-T-(x),b(x)=(1/N)[T+(x)+T-(x)],使用Ito积分,式(7)FPE方程变成Langevin方程:x=a(x)+b(x)ξ,(8)式中:ξ为非相关高斯噪声.在N→∞时,b(x)→0,式(8)方程由随机微分方程变成了确定性的复制方程.文献[26]推广了Nowak的有限人口时弱选择下ESS N的充分条件:当N wν1时,“1/3规则”是有效的;对w固定且Nµ1时,传统的ESS判定条件成立.有限人口因素对人口策略演化的影响是当前研究的一个热点问题.更详细的内容可以参考文献[27-30].4 复杂网络上的演化博弈上面所讨论的混合均匀的有限人口中的博弈动力学,相当于在全连通图上的演化博弈问题.复杂网络或图为描述博弈关系提供了方便的框架:顶点表示博弈个体,边表示博弈关系.在每一时间步长,节点与其所有邻居进行博弈,累积博弈获得的收益,然后根据更新规则进行策略更新,如此这样重复迭代下去.近年来,复杂网络上演化博弈问题,尤其是对合作行为产生的机制的探索,引起了学术界广泛的注意和兴趣[31-33].尽管对合作行为提出了一些可行的机制,但合作行为的本质和真正内在机理,仍然是一个尚未解决的问题[34-35].复杂网络上的演化博弈研究主要可分为2种:一种是研究网络拓扑对合作的影响,主要是静态(static)网络的拓扑性质对合作水平的影响;另外一种是网络拓扑和博弈动力学的共演化(co2evolution),主要是自适应(adaptive)网・4・智 能 系 统 学 报 第2卷络上博弈动力学,即网络拓扑调整受博弈动力学影响.Nowak等人首先研究了空间二维格子上的囚徒困境博弈,即每个博弈个体跟邻近的4个或8个邻居进行博弈.在此基础上发现了美妙的空间混沌[36-37],并发现了对于囚徒困境博弈,博弈个体的空间分布会加强合作(spatial cooperation).但是, Hauert等人发现对于雪堆博弈,博弈个体的空间分布结构往往会削弱合作水平[38].Szabó等人利用平均场(mean2field)、对估计(pair2app roximation)等方法,系统地研究了二维平面各种规则格子上的演化博弈问题[39-41].由于社会网络具有小世界和无标度等特性,因此研究拓扑特性对合作的影响是十分有意义的.小世界网络上的空间纯策略博弈主要分为2类:一类是基于环的小世界网络;另一类是基于方格的小世界网络.Santo s等人研究了同质(homogeneo us)和异质(heterogeneous)的小世界网络上的演化博弈问题[42-44].异质小世界网络是由规则网络演化而来:由一个具有N个节点的环开始,环上每一个节点与两侧各有m条边相连.对每条边以概率p随机进行重连(自我连接和重边除外).重连以后,如果保持网络的平均度不变,此时的网络就为异质小世界网络;而同质小世界网络也是由规则网络演化而来:由一个具有N个节点、平均度为z的规则网络开始,其边数为E=N・z/2.以概率p进行交叉换边重连(同样避免重复连边).这样重连以后不改变节点的度的网络就为同质的小世界网络(此时每个节点的度相等,亦称之为规则随机图(regular random grap h).对于上述2种小世界网络,当概率p=0时,相应的网络为规则网络,而当概率p=1时,相应的网络为随机网络.Santo s等仿真了环型小世界网络上的“弱”囚徒困境的博弈情形.他们发现平衡态时异质小世界网络上的合作策略比例比同质小世界网络上的要大.在异质小世界网络上,当概率p不断增大时,平衡态时合作策略比例也不断增强[42,45].而在同质小世界网络上,对于囚徒困境博弈,存在一个临界作弊收益值b c,当b<b c时,随着概率p不断增大,对应平衡态时合作反而不断降低;当b>b c 时,随着概率p不断增大,对应平衡态时合作不断增强[42].Ren[46]等发现在均匀小世界网络上,同时也存在一个临界概率p c,当概率p<p c时,平衡态时合作水平不断增强;当概率p>p c时,平衡态时合作水平反而不断降低.这说明p c为最优概率值,能保证合作最强.大部分工作采取策略演化更新规则:w Sx←Sy=11+exp[(M x-M y)/T].(9)式中:w Sx←Sy表示节点x模仿邻居节点y策略的概率,M x、M y表示节点x、y的累积收益,T表示节点的理性程度.当T=0时,表示完全理性选择;当T→∞时,表示完全随机选择.适当的T也可以加强合作,即存在一个最优的能使博弈合作程度达到最强[46].Szabó等人也研究了方格小世界网络上的带有loner的囚徒困境博弈问题(即带有志愿者参加(volunteering participation)的囚徒困境博弈),发现重连概率大于一定的阈值时,相图会发生振荡[47].有趣的是,若分别用优先选择邻居和随机选择邻居的演化规则,在方格小世界上会发现优先选择邻居能促进合作[48-49].Tomassini等仿真研究了方格小世界网络上的鹰鸽博弈(hawk2dove game,数学上等价于前面所提到的雪堆博弈),发现平衡态的合作与演化规则、收益比(gain2to2cost)r以及重连概率p相关[50].Santo s和Pacheco等采用同步更新的策略模仿(st rategy imitation)更新方法对无标度网络上的空间纯策略博弈行为进行了较系统的研究[43,51-53],发现与规则网络、随机网络相比,无标度网络更有利于合作行为的产生.因此网络拓扑的异质性(度分布为幂率分布)是提升合作水平的一个重要因素.Ren等采用“优先学习”方法,即优先选择邻居来进行模仿演化,数值仿真显示平衡态时合作水平得到加强[54].类似于亲缘选择中的合作判据Hamilton规则[55],Oht suki等人发现在网络上合作行为产生的一个充分性判据:b/c>k,其中b、c分别为合作行为的收益和代价,k为网络的平均度[56].这一合作行为简单判定规则适用于二维格子、随机网络和无标度社会网络.考虑在网络上的入侵和固定动力学(dy2 namics of invasion and fixation),即一个变异A入侵种群B的固定概率,Antal等人发现在度不相关无标度网络上的一个变异的固定概率跟它发生的节点的度相关,且发现对投票模型(voter model),固定概率正比于度,对生灭(birt h2deat h)过程,固定概率反比于度[57].除了网络的异质性对合作行为有影响外,网络的平均度也是影响合作涌现的重要因素之一.文献[58]研究了随机图、小世界、无标度3种网络中平均度对合作水平的影响,发现对于每种网络均存在适当的平均度使得合作水平最优.另一方面,博弈动力学与网络拓扑共演化的问题也得到一些关注和研究.网络拓扑影响博弈结果,而博弈结果反过来作用于网络拓扑,调整网络拓扑・5・第2期 王 龙,等:复杂网络上的演化博弈(或社会关系),这种情形更符合实际.Zimmermann 等人认为个体可以依据博弈结果调整与邻居的边来实现合作者与合作者之间的联合,从而有利于合作行为的涌现和维持[59-60].Santo s等人考虑了网络拓扑调整与博弈演化之间的时间尺度的关系,并假设不满意博弈结果的节点以一定概率断开与邻居中作弊者的边,并随机重连到作弊者的邻居,发现存在时间尺度之比的临界值,一旦超过这个临界值,合作将会占上风[61].Pacheco等人考虑了简化的情形,提出了活跃连接(active linking)的假设,在一定条件下,自然选择将偏向于合作[62].目前文献中关于这方面的结果比较少,但这个问题又为大家所关注,因此这个问题将是今后研究的一个重点.5 演化囚徒困境博弈中的合作涌现真实社会的网络拓扑除了具有小世界、无标度等性质外,还具有社团结构(community st ruct ure)这一重要的性质.社团结构是指整个网络是由若干个“群(gro up)”或“团(cluster)”构成的.每个群内部的节点之间的连接相对比较紧密,但是各个群之间的连接却比较稀疏.因此,研究社团结构对合作水平的影响是很有意义的.笔者研究了具有社团结构的无标度网络上的囚徒困境博弈问题[63].不失囚徒困境博弈的一般特性,博弈矩阵M取为[36]M=10b0.(10)式中:1<b<2.采用文献[64]中具有社团结构的无标度网络模型,生成节点总数N=6000、具有3个相同大小群的社团结构的博弈关系网络.用二维向量表示个体的策略类型:合作(C)与作弊(D):C=1,D=1.个体x的收益为他跟所有邻居博弈一次的收益的总和:P x=∑y∈Ωxs T x Ms y,其中s x、s y表示节点的状态(策略),Ωx表示x的所有邻居.采用同步更新规则(synchronous up date rule),在每一时间步长,节点x从其邻居中随机选取节点y进行策略更新,若P y>P x,则以概率W sx ←xy=P y-P xbk>.(11)采用节点y所用的策略s y,其中k>为节点x和y的度中的较大值.初始时刻,合作者与作弊者等比例随机分布在网络顶点上.系统演化10000时间步长后,再取1000步时间步长上合作者比例的平均数,得到平衡态时合作者的比例.每个数据点对应于40次不同的网络实现和初始分布条件下合作者比例的平均值.图1显示了相同网络规模,但不同平均度m+n及不同社团内外连接数之比m/n时的合作频率对参数b的变化情况.可以发现,在具有社团结构无标度网络上,随着平均度m+n的增加,合作水平也相应地减小.同时,在保持平均度m+n不变,改变内外连接数之比m/n时,合作水平随着m/n减小而降低.另外,在没有外部连接时(对应于n=0),合作水平总是最优的.此时对应于3个Barabasi2Al2 bert(BA)无标度网络,而无标度网络是利于合作的涌现的[51],因此此时合作水平最高.随着外部连接数的增加、内部连接的较少,网络结构中的一些hub (网络中度较大的节点)并不直接相连,并且网络中回路(loop)减少了,这些因素影响了合作水平[63].图1 对应于不同m+n与m/n时合作频率对参数的变化情况Fig.1 Frequency of cooperators vs.b corresponding todifferent m+n and m/n文献[51-53]指出复杂网络的异质性是影响合作水平的重要因素.但复杂网络的异质程度大小会对合作水平产生什么影响呢?考虑了异质New2 man2Watt s小世界网络上的演化囚徒困境博弈问题[65].与Watt s2St rogatz小世界模型中断边重连机制不同[5],本文采用改进的Newman2Watt s小世界模型,即在低维规则环上添加m条长程边形成小世界网络.首先随机地从N个节点中选出N h个节点・6・智 能 系 统 学 报 第2卷。
复杂网络中的博弈演化和统计行为
![复杂网络中的博弈演化和统计行为](https://img.taocdn.com/s3/m/02fc934b336c1eb91a375d9d.png)
Networks”,a
series of research
networks
such
嬲different
structures of
topology,the function of networks and evolutionary rules have
on
been published by scientists from different studying fields.In this thesis,we will focus evolutionary properties
描述真实最适宜的网络。
随着计算机技术的高速发展,人们能够收集和存储各种规模巨大且种类不同的复 杂系统的拓扑性数据。另一方面,人们可以利用计算机高速计算能力来分析这些大量 的数据,探查这些复杂系统的整体特性。在这些大量的统计分析中,研究人员发现各 种类型的复杂系统、复杂网络并不是完全随机的,但表现出相同的统计属性。美国康
提的。
其次,我们研究了动物冲突现象在不同网络中演化的统计性质。Maynard和Price 提出动物冲突的模型,模型中提出了五种动物冲突时可能运用的策略。他们的研究表 明动物之间的冲突主要是进行不严重受伤的有限性冲突,得出具有报复性的策略和试 探报复性的策略是演化稳定策略。但在动物之间的关系具有复杂网络结构时最优演化 策略就有可能不同。有些网络中最终只有一种策略生存,另外一些网络中可以有两种
示这些复杂网络的规律具有深远的科学意义。
对于复杂网络的最早研究,我们可以追朔到欧拉的七桥问题。一条小河横穿哥尼 斯堡(Konigsberg)zb镇,河中有两个小岛,岛和岸上连有七座桥。有人问:在一次散 步中能不能一次性走过所有七座桥后返回出发点?欧拉在思考了这个问题之后,将陆 地抽象为节点,把桥抽象为点与点之间的连线,并通过推理得出“不可能一次性不重 复地走完这七座桥”,从而由此开创了数学的一个分支一一图论。但此后的一段相当 长时间里,图论并没有得到足够的发展。直到20世纪60年代,两位匈牙利数学家 Erd6s和R6nyi建立了随机图理论[101。从此研究者开始对复杂网络理论进行系统的 研究。在随后的40年中,随机图理论也成为了研究复杂网络的基本理论,被认为是
复杂网络的一种博弈论方法课件
![复杂网络的一种博弈论方法课件](https://img.taocdn.com/s3/m/69fc22604a35eefdc8d376eeaeaad1f346931123.png)
博弈论在网络信息传播与控制方面有广泛应用,例如谣言传播控制 、网络舆情管理等。
网络市场中的竞争与合作
在网络市场中,企业之间的竞争与合作行为可以用博弈论来描述和 解释,例如价格战、合作营销等。
06
总结与展望
研究成果与贡献
博弈论与复杂网络的结合
该方法成功地将博弈论与复杂网络理论相结合,为研究网络中的动态行为和策略互动提供 了新的视角。
合作与竞争行为
在社会网络中,个体之间的合作与竞争行为可以 用博弈论来描述和解释,例如合作行为的演化、 竞争策略的有效性等。
社会影响力分析
通过博弈论方法,可以分析个体在社会网络中的 影响力,预测其在特定情境下的行为和决策。
生物网络中的博弈研究
基因调控网络
01
博弈论被用于研究基因调控网络中的相互作用和演化机制,例
将博弈论应用于复杂网络的研究,可以揭示网络中个体之间的相互作用和演化规律 ,为解决实际问题提供新的思路和方法。
研究现状与趋势
目前,博弈论在复杂网络中的 应用已经取得了一定的成果, 如演化博弈、网络博弈等。
随着大数据和人工智能技术的 不断发展,博弈论在复杂网络 中的应用将更加深入和广泛。
未来,博弈论在复杂网络中的 研究将更加注重个体行为的异 质性和动态性,以及网络结构 的复杂性和演化性。
研究内容与方法
本研究旨在探索博弈论在复杂网络中 的一种方法,通过构建合适的博弈模 型,分析网络中个体之间的相互作用 和演化规律。
研究过程将涉及博弈论的基本原理、 复杂网络的基本概念和相关分析方法 等。
研究方法包括文献综述、理论分析和 实证研究等。
02
博弈论基础
博弈论基本概念
01
02
复杂网络上的博弈
![复杂网络上的博弈](https://img.taocdn.com/s3/m/85695f1e590216fc700abb68a98271fe900eaf5c.png)
复杂网络上的博弈
吴枝喜;荣智海;王文旭
【期刊名称】《力学进展》
【年(卷),期】2008(38)6
【摘要】博弈理论在社会、经济、生物以及生态等系统中存在着广泛的应用,复杂网络理论则是研究复杂系统全新而有力的工具,冈此将博弈理论与复杂网络理论相结合成为研究复杂系统一个新的热点.概述国内外当前关于复杂网络上博弈动力学的研究情况和发展动态,包括基本的博弈模型、主要关注的问题、以及网络结构和博弈动力学的相互作用等,最后探讨进一步的研究课题.
【总页数】11页(P794-804)
【作者】吴枝喜;荣智海;王文旭
【作者单位】香港城市大学混沌与复杂网络学术研究中心,香港;上海交通大学复杂网络与控制实验室,上海200240;美国亚利桑那州大学电子工程系,美国
【正文语种】中文
【相关文献】
1.复杂网络上的演化博弈动力学——一个计算视角的综述 [J], 谭少林;吕金虎
2.复杂网络上的演化博弈研究 [J], 梅创社
3.复杂网络上重复囚徒困境博弈的研究 [J], 王伊蕾;杨洪勇;李涛
4.复杂网络上的演化博弈研究 [J], 杨涵新;汪秉宏
5.复杂网络上的演化博弈及其学习机制与演化动态综述 [J], 王先甲
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通常博弈由以下4个部分所组成: (l)博弈个体:在一个博弈中至少有两位决策者(agent)参与博弈. (2)策略集:个体的博弈策略可以是纯策略,也可以是混合策略 博弈的策略集由参与博弈的个体所有可能采用的策略所组成. (3)收益矩阵:当博弈个体选定好自己的策略后,其所获取的收 益由收益矩阵中的相应元素来确定. (4)策略演化: 在多轮博弈过程中,博弈个体遵循自身收益最大 化的最终目标,即以此目标为指导原则来进行策略调整。
Nash认为,博弈问题的解应该是这样的一组策略,在这组 策略中,每一个参与者都无法通过单独改变自己的策略而 获得更多的收益。这样的状态就被称作纳什均衡态.
实际上纳什均衡态对所有的参与者来说,不一定是最好的结局。
经典博弈模型
下面以囚徒困境博弈和雪堆博弈为例来阐述纳什均衡
囚徒困境博弈: 两个小偷A和B合伙作案,被捕后被隔离审讯.如果双方都拒 绝坦白同伴的罪行,两人将会被轻判1年徒刑;为此,警方设 计了一个机制:如果A揭发B的罪行,B拒不供认A的罪行,则 A将无罪释放,而B将被重判5年徒刑;如果A、B都揭发对方 罪行,则双方均被判刑3年.
——陀思妥耶夫斯基,《白痴》第501页
一个游戏:两人轮流向圆桌上放一元硬币, 谁无法再在圆桌上放硬币则判负,另一方获胜, 假设所有的硬币不允许重叠。你会先放还是后放, 以何种策略确保自己获胜?
博弈研究的对象是游戏(Game),更确切的说, 是指在具有双方相互竞争对立的环境条件下, 参与者依靠所掌握的信息,在一定的规则约束下, 各自选择策略并取得相应结果(或收益)的过程。 博弈论就是使用数学模型研究冲突对抗条件下最优决策 问题的理论。
在此情况下,自私的个体应如何做出抉择?
合作(Cooperate-C) or 背叛(defect一D)
对于两人博弈,收益矩阵元通常用(R、S、T、P)来表示
相互合作则二人同获得较大收益R,相互背叛则同获较小 收益P,一方合作一方背叛,则背叛者获得最高收益T, 而合作者获得最低收益S,即参数满足关系:T>R> P >S, 此外2R>T+S,即相互合作能获得集体最高收益. 不论对手采取哪种策略,选择背叛策略都是最佳的,即理 性的个体最终会处于相互背叛的状态(注意到此时的集体收 益低于两人同时选择合作时的情况). 这种相互背叛的状态 (D,D)就是系统的纳什均衡态。
那么,理性个体的最优选择是什么呢?
如果对方选择背叛策略(呆在车中),那么另一方的最佳策略 是下车铲雪(因为按时回家的利益b一c好于呆在车中的背叛 收益0); 反之,如果对方下车铲雪,则自己的最佳策略是呆在舒服 的车中.所以,不同于囚徒困境博弈,在雪堆博弈中存在两 个纳什均衡态:(C,D)和(D,C).即雪堆博弈中的NE为两人 均以概率r选择背叛,概率1-r选择合作,其r=c/(2b-c)称为损 益比。
雪堆模型与囚徒困境不同:遇到背叛者时合作者的收益高于
双方相互背叛的收益.因此,一个人的最佳策略取决于对手的
策略: 如果对手选择合作, 他的最佳策略是背叛; 反过来
, 如果对手选背叛, 那么他的最佳策略是合作。 这样合作
在系统中不会消亡, 而与囚徒困境相比, 合作更容易在雪
堆博弈中涌现。
演化博弈论
传统博弈论中,常常假定参与人是完全理性的,且参与人在 完全信息条件下进行。而演化博弈理论并不要求参与人是完 全理性的,也不要求完全信息的条件。 演化博弈论是把博弈理论分析和动态演化过程分析结合起来 的一种理论。根据演化博弈理论,博弈双方的策略最终收敛 到演化稳定策略上。
1、博弈 2、复杂网络上的演化博弈 2.1、网络演化博弈的策略更新规则 2.2、网络拓扑对合作的影响 2.3、记忆对网络博弈中的影响 2.4、博弈动力学与网络拓扑共演化 2.5、学习机制导致合作的涌现 3、展望
一个个性和另一个个性的联结 对被联结的个性的命运具有多大的意义? 你要知道,这是一生的事情, 在我们的背后隐藏着无数的枝节。
雪堆博弈: 在一个风雪交加的夜晚,两人开车相向而行,被一个雪 堆所阻,如图所示.白色和灰色分别表示合作策略与背叛 策略.与囚徒困境博弈不同,对于雪堆博弈,收益矩阵元 满足关系: T>R> S > P
假设铲除这个雪堆使道路通畅需要付出的劳动量为c, 道路通畅则带给每个人的好处量化为b(>c)。
如果两人一齐动手铲雪,则他们的收益为R=b一c/2(分别承担 劳动量c/2);如果只有一人下车铲雪,虽然两人都能及时回家 ,但是背叛者逃避了劳动,它的收益为T=b,而合作者的收 益为S=b一c;如果两人都选择不合作,则两人都无法及时回家 ,其收益量化为P=0.雪堆模型的收益矩阵可表示为
演化稳定策略必须满足的条件:如果几乎所有的个体都采取该策 略,那么该策略的个体适应度要比任何可能的变异策略要大。
演化稳定策略的提出最初是为了精炼纳什均衡 ,通过借助 生物界进化论中优胜劣汰的思想 ,丢弃参与者完全理性的 假设 ,认为均衡是有限理性的个体随时间的推移寻求优化 这一目标的长期结果。 因此 ,演化稳定策略具有鲁棒性 ,可 以抑制噪声 ,它是纳什均衡的精炼。
一、博弈论
博弈论被认为是研究自然和之间的合作竞争关系,能够 很好地刻画生物系统中生物体之间的相互作用关系及演 化动力学。
不论在自然或是社会系统中,经典博弈论告诉我们自私个体 博弈的结果必然是背叛。显然是一个和实际情况不完全吻合 结论。社会经济活动中的绝大多数任务不可能由单人完成, 需要群体的分工和合作。
纳什均衡
真实生活中的博弈问题是很复杂的,可能会有很多的 参与者,每个参与者都有不同的策略。当参与者们在 进行一项博弈的时候,他们应该选择什么样的策略? 是否有办法预言出他们的策略组合(s1,s2,…,sN)? 纳什(Nash)均衡:其核心思想是对于两人或多人博弈, 个体的策略演化会趋向于一个均衡态,在此均衡态下所 有的个体会同时采取“纳什均衡策略”。