八年级初二数学勾股定理单元测试含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )
A .2
B .2
C .3
D .4
2.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )
A .2
B .2.5
C .3
D .4
3.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )
A .5
B .53
C .53
D .534
4.在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=1,则AB 的长是( )
A .2
B . 23
C . 43
D .4
5.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )
A .49
B .25
C .12
D .10
6.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )
A .24
B .30
C .40
D .48 7.下列各组线段能构成直角三角形的一组是( )
A .30,40,60
B .7,12,13
C .6,8,10
D .3,4,6 8.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( )
A .6
B .8
C .10
D .12 9.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c = B .A B C ∠+∠=∠
C .::2:3:5A B C ∠∠∠=
D .6a =,12b =,10c = 10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为
( )
A .5
B .7
C .5或7
D .3或4 二、填空题
11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.
12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.
13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.
14.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________
15.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13
S 矩形ABCD ,则
点P 到点A 、D 的距离之和PA +PD 的最小值为_____.
16.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.
17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.
18.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.
19.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.
20.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.
三、解答题
21.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .
(1)若∠AED =20°,则∠DEC = 度;
(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.
22.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?
分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.
感悟与应用:
(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;
(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,
①求证:180B D ∠+∠=︒;
②求AB 的长.
23.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.
(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);
(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.
24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-
(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.
(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.
(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,
64AB AC ∇=-,求BC 和AB 的长.
25.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.
下列结论:
①E 、P 、D 共线时,点B 到直线AE 的距离为5;
②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;
=532
ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;
⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.
其中正确结论的序号是___.
26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列
问题:
(1)叙述勾股定理(用文字及符号语言叙述);
(2)证明勾股定理;
(3)若大正方形的面积是13,小正方形的面积是1,求()2
a b +的值.
27.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠;
(2)若=8AB ,=6CE . 求BC 的长 .
28.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.
(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .
(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .
29.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,
0),交y轴于点B(0,n),且m,n满足6
m +(n﹣12)2=0.
(1)求直线AB的解析式及C点坐标;
(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
30.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
(1)如图1,求∠BGD的度数;
(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
过点O作OE⊥BC于E,OF⊥AC于F,由角平分线的性质得到OD=OE=OF,根据勾股定理求出BC的长,易得四边形ADFO为正方形,根据线段间的转化即可得出结果.
【详解】
解:过点O作OE⊥BC于E,OF⊥AC于F,
∵BO,CO分别为∠ABC,∠ACB的平分线,
所以OD=OE=OF,
又BO=BO,
∴△BDO≌△BEO,∴BE=BD.
同理可得,CE=CF.
又四边形ADOE为矩形,∴四边形ADOE为正方形.
∴AD=AF.
∵在Rt△ABC中,AB=6,AC=8,∴BC=10.
∴AD+BD=6①,
AF+FC=8②,
BE+CE=BD+CF=10③,
①+②得,AD+BD+AF+FC=14,即2AD+10=14,
∴AD=2.
故选:B.
【点睛】
此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.2.C
解析:C
【分析】
作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.
【详解】
解:作DE⊥AB于E,如图,
在Rt△ABC中,BC22
106
8,
∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,
∴DE=DC,
设DE=DC=x,
S△ABD=1
2
DE•AB=
1
2
AC•BD,
即10x=6(8﹣x),解得x=3,
即点D到AB边的距离为3.
故答案为C.
【点睛】
本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..
3.C
解析:C
【分析】
在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.
【详解】
解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,
∵∠ACB=90°,∠ABC=60°,
∴△AB’B是等边三角形,
∴∠B’=∠B’AB=60°,AB’=AB,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠B’AD+∠DAB=∠DAB+∠BAE,
∴∠B’AD=∠BAE,
∴△AB’D≌△ABE(SAS),
∴∠ABE=∠B’=60°,
∴点E在直线BE上运动,
过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,
∠CBH=180°-∠ABC-∠ABE=60°,
∴∠BCH=30°,
∴BH=1
2
BC=
5
2
,
∴CH.
即BE.
故选C.
【点睛】
本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB构造成等边三角形,通过全等证出∠ABC 是定值,即点E的运动轨迹是直线是解决此题的关键.
4.B
解析:B
【分析】
根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出
∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.
【详解】
如图
∵∠C=90°,∠A=30°,
∴∠ABC=90°-30°=60°,
∵BD平分∠ABC,
∴∠ABD=1
2∠ABC=1
2
×60°=30°,
∵CD=1,∠CDB=30°
∴BD=2
根据勾股定理可得BC=2222
=21=3
BD CD
--
∵∠A=30°
∴AB=23
故选B.
【点睛】
此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.
5.C
解析:C
【解析】
试题解析:如图,∵大正方形的面积是25,
∴c 2=25,
∴a 2+b 2=c 2=25,
∵直角三角形的面积是(25-1)÷4=6, 又∵直角三角形的面积是
12
ab=6, ∴ab=12.
故选C. 6.A
解析:A
【解析】
已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12
×6×8=24,故选A . 7.C
解析:C
【分析】
根据勾股定理的逆定理解答即可.
【详解】
A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;
B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;
C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;
D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;
故选:C .
【点睛】
此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.
8.D
解析:D
【分析】
此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.
【详解】
当5和13
当1312=;
故这个三角形的第三条边可以是12.
故选:D .
【点睛】
本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
9.D
解析:D
【分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.
【详解】
解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形; B 、A B C ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形;
C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=
⨯︒=︒++,故能判定ABC ∆是直角三角形;
D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形; 故选:D .
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
10.C
解析:C
【分析】
根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.
【详解】
由题意可得,当3和45,
当斜边为4,
故选:C
【点睛】
本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.
二、填空题
11.
【分析】
在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .
【详解】
∵90ACB ︒∠=,4,2AC BC ==, ∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E
∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455
DE = ∴22855CE AC AE =
-= ∴22213CD CE DE =+=
情况二:当25BD AB ==时,作BE CE ⊥于E ,
∴1122BC AC AB BE ⋅=⋅,即45BE =,145DE = ∴22255CE BC BE =
-= ∴22210CD CE DE =+=
情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =
355
CE ∴= ∵ABD △为等腰直角三角形
∴152
BF DF AB === ∴955
DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-
= ∴2232CD CE E D ''=+=
故答案为:1021332【点睛】
本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 12.5cm
【分析】
连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果.
【详解】
解:如图
展开成平面图,连接AC ',分三种情况讨论:
如图1,AB=4,BC '=1+2=3,
∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),
如图2,AC=4+2=6,CC '=1
∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),
如图3,AD =2,DC '=1+4=5,
∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )
∵2937,
∴蚂蚁爬行的最短路径长是5cm ,
故答案为:5cm .
【点睛】
本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.
13.1或
78
【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.
【详解】
解:分为3种情况:
①当PB PQ =时,
4=OA ,3OB =, ∴22435BC AB ==+=, C 点与A 点关于直线OB 对称,
BAO BCO ∴∠=∠,
BPQ BAO ∠=∠,
BPQ BCO ∴∠=∠,
APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,
APQ CBP ∴∠=∠,
在APQ 和CBP 中,
BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩
, ()APQ CBP AAS ∴△≌△,
∴5AP BC ==,
1OP AP OA ∴=-=;
②当BQ BP =时,
BPQ BQP ∠=∠,
BPQ BAO ∠=∠,
BAO BQP ∴∠=∠,
根据三角形外角性质得:BQP BAO ∠>∠,
∴这种情况不存在;
③当QB QP =时,
QBP BPQ BAO ∠=∠=∠,
PB PA ∴=,
设OP x =,则4PB PA x ==-
在Rt OBP △中,222PB OP OB =+,
222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或
78; 【点睛】
本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.
14.310或10
【详解】
分两种情况:
(1)顶角是钝角时,如图1所示:
在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,
∴AO=4,
OB=AB+AO=5+4=9,
在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,
∴BC=310;
(2)顶角是锐角时,如图2所示:
在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,
∴AD=4,
DB=AB-AD=5-4=1.
在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,
∴10;
综上可知,这个等腰三角形的底的长度为1010.
【点睛】
本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.15.2
【分析】
根据S△PAD=1
3
S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关
于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.
【详解】
设△PAD中AD边上的高是h.
∵S△PAD=1
3
S矩形ABCD,
∴1
2
AD•h=
1
3
AD•AB,
∴h=2
3
AB=4,
∴动点P在与AD平行且与AD的距离是4的直线l上,
如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.
在Rt△ADE中,∵AD=8,AE=4+4=8,
DE2222
++=
8882
AE AD
即PA+PD的最小值为2.
故答案2.
【点睛】
本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
16.6或2.
【分析】
由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:
①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;
②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.
【详解】
解:分两种情况讨论:
①当D点在BC上方时,如图1所示,
把△ABD绕点D逆时针旋转90°,得到△DCE,
则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°
在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,
∴∠ABD+∠ACD=360°-180°=180°,
∴∠ACD+∠ECD=180°,
∴A、C、E三点共线.
∴222
在等腰Rt△ADE中,AD2+DE2=AE2,
即2AD2=(2)2,解得AD=6
②当D点在BC下方时,如图2所示,
把△BAD绕点D顺时针旋转90°得到△CED,
则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,
所以∠EAD=∠AED=45°,
∴∠BAD=90°+45°=135°,即∠CED=135°,
∴∠CED+∠AED=180°,即A、E、C三点共线.
∴AE=AC-CE=42-22=22
在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.
故答案为:6或2.
【点睛】
本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.17.4或2510
【分析】
分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.
【详解】
①以A为直角顶点,向外作等腰直角三角形DAC,如图1.
∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=2+2=4;
②以C为直角顶点,向外作等腰直角三角形ACD,如图2.
连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°.
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=2
2
2
2
⨯=.
在Rt△BAC中,BC22
22
=+=22,∴BD2222
2222
BE DE()()
=+=++= 25;
③以AC为斜边,向外作等腰直角三角形ADC,如图3.
∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=AC sin45°=2
2
2
2
⨯=.
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°.
又∵在Rt△ABC中,BC22
22
=+=22,
∴BD2222
22210
BC CD
=+=+=
()().
故BD的长等于4或510.
故答案为4或510.
【点睛】
本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,18.2或18
【分析】
分两种情况:点E在AD线段上,点E为AD延长线上的一点,进一步分析探讨得出答案即可.【详解】
解:①如图
点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,
∴△A ′BE ≌△ABE,
∴∠B A′E=∠A=90o ,AB=A ′B
∠B A′C =90o ,∴E 、A',C 三点共线,
在△ECD 与△CB A′中,{CD A B
D BA C DEC ECB
='∠=∠'∠=∠,
∴△ECD ≌△CB A′,
∴CE=BC=10,
在RT △CB A′中,A′C=22BC BA -'=22106-=8,
∴AE= A′E=CE - A′C=10-8=2;
②如图
点E 为AD 延长线上,由题意得:
∠A"BC+∠A"CB=∠DCE+∠A"CB=90o
∴∠A"BC=∠DCE,
在△A"BC 与△DCE 中,"={""A CDE
CD A B A BC DCE
∠∠=∠=∠
∴△A"BC ≌△DCE,DE= A"C,
在RT △ A"BC 中,22"BC BA -22106-
∴AE=AD+DE=AD+ A"C=10+8=18;
综上所知,AE=2或18.
故答案为:2或18.
【点睛】
此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.
19.10
【分析】
首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN
的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.
【详解】
作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.
根据轴对称的定义可
知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N ′=22''OM ON +=10. 故答案为10.
【点睛】
本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.
20.17,144,145
【分析】
由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.
【详解】
解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,
继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,
所以有222
17(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.
故答案为17,144,145.
【点睛】
本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可. 三、解答题
21.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;
(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的
性质可得∠AEC=∠ACE=45°+α,可得结论;
(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.
【详解】
解:(1)∵AB=AC,AE=AB,
∴AB=AC=AE,
∴∠ABE=∠AEB,∠ACE=∠AEC,
∵∠AED=20°,
∴∠ABE=∠AED=20°,
∴∠BAE=140°,且∠BAC=90°
∴∠CAE=50°,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=∠ACE=65°,
∴∠DEC=∠AEC﹣∠AED=45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH2CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,
∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH AF,
∵在Rt△AEF中,AE2=AF2+EF2,
AF)2+EF)2=2AE2,
∴EH2+CH2=2AE2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14
【分析】
(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;
(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;
②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.
【详解】
解:(1)BC−AC=AD.
理由如下:如图(a),在CB上截取CE=CA,连接DE,
∵CD平分∠ACB,
∴∠ACD=∠ECD,
又CD=CD,
∴△ACD≌△ECD(SAS),
∴DE=DA,∠A=∠CED=60°,
∴∠CED=2∠CBA,
∵∠CED=∠CBA+∠BDE,
∴∠CBA=∠BDE,
∴DE=BE,
∴AD=BE,
∵BE=BC−CE=BC−AC,
∴BC−AC=AD.
(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,
∵AC 平分∠DAB ,
∴∠DAC =∠MAC ,
∵AC =AC ,
∴△ADC ≌△AMC (SAS ),
∴∠D =∠AMC ,CD =CM =12,
∵CD =BC =12,
∴CM =CB ,
∴∠B =∠CMB ,
∵∠CMB +∠CMA =180°,
∴∠B +∠D =180°;
②设BN =a ,
过点C 作CN ⊥AB 于点N ,
∵CB =CM =12,
∴BN =MN =a ,
在Rt △BCN 中,2222212CN BC BN a --==,
在Rt △ACN 中,2222216(8)CN AC AN a --+==
, 则2222
1216(8)a a --+=
, 解得:a =3,
即BN =MN =3,
则AB =8+3+3=14,
∴AB=14.
【点睛】
本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.
23.(15132)见解析;(3)23
【分析】
(1)分两种分割法利用勾股定理即可解决问题;
(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.
【详解】
解:(1)当MN 最长时,BN=225
MN AM -=,
当BN 最长时,BN=2213AM MN +=;
(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,
在△ADC 和△BNC 中,
AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩
,
∴△ADC ≌△BNC (SAS ),
∴CD=CN ,∠ACD=∠BCN ,
∵∠MCN=45°,
∴∠DCA+∠ACM=∠ACM+∠BCN=45°,
∴∠MCD=∠MCN ,
在△MDC 和△MNC 中,
CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩
,
∴△MDC ≌△MNC (SAS ),
∴MD=MN
在Rt △MDA 中,AD 2+AM 2=DM 2,
∴BN 2+AM 2=MN 2,
∴点M ,N 是线段AB 的勾股分割点;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,
根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,
∴∠AMC=∠BPC=120°,AM=PB=1,
∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,
∴∠BPN=120°-60°=60°,
∴∠BNP=30°,
∴NP=2BP=2=MN ,
∴BN=22213-=,
∴BM=MN+BN=23+.
【点睛】
本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.
【分析】
(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;
(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;
(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.
【详解】
(1)已知如图:AO 为BC 上的中线,
在Rt AOC ∆中,
AO 2-OC 2=AC 2
因为81AB AC ∇=
所以AO 2-OC 2=81
所以AC 2=81
所以AC=9.
(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,
在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,
在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,
∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =
12
AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =
222212663AB AE -=-=, ∴DE =AD +AE =12,
在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=
+=
∴BA ∇BC =BD 2﹣CD 2=216;
(3)作BD ⊥CD,
因为24ABC S ∆=,8AC =,
所以BD=26ABC S AC ∆÷=,
因为64AB AC ∇=-,AO 是BC 边上的中线,
所以AO 2-OC 2=-64,
所以OC 2-AO 2=64,
由因为AC 2=82=64,
所以OC 2-AO 2= AC 2
所以∠OAC=90°
所以OA=24228322ABC S AC ∆⨯
÷=⨯÷= 所以22228373AC OA +=+所以73
在Rt △BCD 中,
()2222276163BC BD -=-=
所以AD=CD-AC=16-8=8
所以22228610AD BD +=+=
【点睛】
考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.
25.②③⑤
【分析】
①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利
用勾股定理求出BE ,即可求得点B 到直线AE 的距离;
②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;
⑤先证得
ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.
【详解】
①∵ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,
∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,
∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,
∴222PE BE PB +=, ∵2AE AP ==
90EAP ∠=︒, ∴22PE =
=, ∴22227BE +=, 解得:3BE =
作BH ⊥AE 交AE 的延长线于点H ,
∵45AEP ∠=︒,90PEB ∠=︒,
∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 45322HB BE =︒==, ∴点B 到直线AE 的距离为
6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =,
∴APD ABP ABE APB S S S S ∆∆∆∆+=+
AEP BEP S S ∆∆=+
1122
AE AP PE EB =⨯⨯+⨯⨯ 11222322
=⨯⨯+⨯⨯ 13=+,故②正确;
③在Rt AHB 中,由①知:62EH HB ==
, ∴62AH AE EH =+=+, 22
222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222
ABD S AB AD AB ∆=
⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,
∵A C 、关于 BD 的对称, ∴523AB BC ==
+,
∴225231043AC BC ==+=+,
∴ min PC AC AP =-,
10432=+-,故④错误;
⑤∵
ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩
,
∴()ABP ADE SAS ≅,
∴ABP ADE ∠=∠,
∵AN BN =,
∴ABP NAB ∠=∠,
∴EAN ADE ∠=∠,
∵90EAN DAN ∠+∠=︒,
∴90ADE DAN ∠+∠=︒,
∴AN DE ⊥,故⑤正确;
综上,②③⑤正确,
故答案为:②③⑤.
【点睛】
本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.
26.(1)见解析;(2)证明见解析;(3)25.
【分析】
(1)直接叙述勾股定理的内容,并用字母表明三边关系;
(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;
(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.
【详解】
解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.
在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.
(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×
12
ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,
即 a 2+b 2= c 2.
(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,
∴ 2ab=12.
∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.
【点睛】
本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.
27.(1)见解析;(2)BC =.
【分析】
(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.
【详解】
(1)证明:∵AB AD =,=60A ∠︒,
∴△ABD 是等边三角形.
∴60ADB ∠=︒.
∵CE ∥AB ,
∴60CED A ∠=∠=︒.
∴CED ADB ∠=∠.
(2)解:连接AC 交BD 于点O ,
∵AB AD =,BC DC =,
∴AC 垂直平分BD .
∴30BAO DAO ∠=∠=︒.
∵△ABD 是等边三角形,8AB =
∴8AD BD AB ===,
∴4BO OD ==.
∵CE ∥AB ,
∴ACE BAO ∠=∠.
∴6AE CE ==, 2DE AD AE =-=.
∵60CED ADB ∠=∠=︒.
∴60EFD ∠=︒.
∴△EDF 是等边三角形.
∴2EF DF DE ===,
∴4CF CE EF =-=,2OF OD DF =-=.
在Rt △COF 中, ∴2223OC CF OF =-=.
在Rt △BOC 中, ∴22224(23)27BC BO OC =
+=+= 【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
28.(1131710,
112
;(2)图见解析;7. 【分析】
(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.
(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.
【详解】
解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,
S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣
32﹣2=112, 故答案为13,17,10,
112
. (2)△PMN 如图所示.
S △PMN =4×4﹣2﹣3﹣4=7,
故答案为7.
【点睛】
此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.
29.(1)y =-2x +12,点C 坐标(4,4);(2)画图形见解析,点D 坐标(-4,0);(3)点P 的坐标(143
-
,643) 【分析】
(1)由已知的等式可求得m 、n 的值,于是可得直线AB 的函数解析式,把点C 的坐标代入可求得a 的值,由此即得答案;
(2)画出图象,由CD ⊥AB 知1AB CD k k =-可设出直线CD 的解析式,再把点C 代入可得CD 的解析式,进一步可求D 点坐标;
(3)如图2,取点F (-2,8),易证明CE ⊥CF 且CE =CF ,于是得∠PEC =45°,进一步求出直线EF 的解析式,再与直线AB 联立求两直线的交点坐标,即为点P .
【详解】
解:(16m -n ﹣12)2=0,
∴m =6,n =12,
∴A (6,0),B (0,12),
设直线AB 解析式为y =kx +b , 则有1260b k b =⎧⎨+=⎩,解得212k b =-⎧⎨=⎩
,。