现代仪器分析与应用 (1)

合集下载

现代仪器分析方法及应用共74页

现代仪器分析方法及应用共74页

40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
现代仪器分析方法及应用
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

现代分析仪器的应用综述

现代分析仪器的应用综述

现代分析仪器的应用----分析仪器在制药工程的应用近年来,仪器分析飞速发展,新方法、新技术、新仪器层出不穷,仪器分析的应用也日益普遍。

分析仪器的分析方法大致分为电化学分析法、光谱分析法、色谱分析法和核磁共振波谱法。

下面是分析仪器在制药过程中的应用。

1.电化学法分析仪器电化学分析法有电解法、电导法、电位法、伏安法等。

电解法在分析中除了作为测定方法,还用作分离方法。

很多电化学分析法,又能分析有机物又能分析无机物质,是仪器分析的重要组成部分,在生产、科研、医药等很多领域有广泛的应用。

以后还会出现更多新方法,尤其在自动化和与其他分析法联用等技术方面,会得到更多的发展。

2.光谱法分析仪器(1)紫外—可见分光光度法紫外—可见分光光度法在药学中主要用于有机物的分析。

大多有机药物分子中含有一些有共轭不饱和基团,能吸收紫外可见光,能显示出吸收光谱。

不同的化合物有不同的吸收光谱。

利用吸收光谱的特点可以进行药品与制剂的定性分析、纯物质鉴别和杂质的检测。

在药品和制剂生产时,可以用这种方法来对药品成分进行分析,以确保药品质量。

这种方法不需要复杂的分离,比较简便。

(2)荧光分析法虽然有天然荧光的物质数量不多,但很多重要的药物都有荧光的现象。

荧光衍生化试剂的使用,扩大了荧光分析法的应用范围。

荧光分析可用作初步鉴别和含量的测定,现在广泛应用在医药学,特别适用于药物在体液中的浓度测定及药物在体内代谢过程的研究。

例如测定复方炔诺酮中炔雌醇含量,可以通过荧光光谱法,与炔雌醇对照品同法测定,计算得到。

(3)红外光谱法红外分光光度法的用途可概括为定量鉴别、定性分析和结构分析等。

因红外光谱的高度特征性,在药物分析中,用于鉴别组分单一、结构明确的原料药。

在药物分析中,各国药典均将红外光谱法列为药物的常用鉴别方法并对晶型和异构体区分提供有用信。

在定量分析方面,红外光谱上可供选择的波长较多,但操作比较麻烦,准确度也比紫外分光光度法低,除用于测定异构体的相对含量外,一般很少用于定量分析。

(现代仪器分析课件)仪器分析技术综合应用

(现代仪器分析课件)仪器分析技术综合应用

例1, 某未知物的95%乙醇溶液在245nm有最大吸收(lgε2.8)。该未知物 纯品的质谱显示,分子离子峰的质荷比为130,参照元素分析分子式 应为C6H10O3。试由质谱(图1)、红外光谱(用不含水的纯液体测得图2) 及核磁共振氢谱(图3),推断其分子结构式。
图1 C6H10O3的质谱
烯基峰
1420及2930cm-1峰分别是亚甲基的峰。说明未知物可能具有CH3CH2-基团。由分子式减去羰基与酯基:C6Hl0O3-C2O3=C4Hl0,说明 应含有两个甲基与两个亚甲基。进一步证明CH3与CH2基团的存在 及连接方式,可用NMR提供的信息。
(3)由于未知物不含水,而在其IR光谱的~3600、1315 及 115~0c1m15-10c,m可-1处能有是醇叔羟醇基基的。未知物只O有H,及 三峰个,CO氧根,据峰因位此
5.验证
(1) 不饱和度 乙酰乙酸乙酯的不饱和度是2,合理。 (2) 质谱
15 115 43 87
85 45 29
CH3——CO—CH2—CO—O—CH2CH3
乙酰乙酸乙酯断裂的碎片离子峰在质谱图上都可以找
到。证明化学结构式合理。因化学结构简单,无须再 查对标准光谱核对。
6.峰归属小结
(1)IR σmax(cm-1) : ~ 3400( 酮 醇 异 构 时 的 羟 基 峰 , 很 弱 ) 、
不同光谱之间进行配合和相互佐证。
质谱在综合光谱解析中的作用
质谱(MS) 主要用于确定化合物的分子量、分子式。 质谱图上的碎片峰可以提供一级结构信息。对于一些特征性
很强的碎片离子,如烷基取代苯的m/z 91的苯甲离子及含 γ氢的酮、酸、酯的麦氏重排离子等,由质谱即可认定某些 结构的存在。 质谱的另一个主要功能是作为综合光谱解析后,验证所推测 的未知物结构的正确性。

现代仪器分析技术在食品安全检测中的应用分析

现代仪器分析技术在食品安全检测中的应用分析

现代仪器分析技术在食品安全检测中的应用分析
食品安全一直是人们关注的焦点之一,而现代仪器分析技术的发展对于食品安全检测的提升起着重要作用。

现代仪器分析技术的应用已成为近年来食品安全检测的主要手段之一。

质谱技术是一种非常先进的现代仪器分析技术,它在食品安全检测中得到了广泛的应用。

质谱技术能够对食品中的有害成分进行高灵敏度、高精确度的定量分析,可以将不同的化学物质进行分离和鉴定。

质谱技术还可以检测食品中的农药残留、重金属、有害物质等,为食品质量和安全的控制提供了强有力的支持。

电化学传感器也是一种非常重要的现代仪器分析技术,在食品安全检测中占有重要地位。

电化学传感器能够快速检测食品中的有害成分,如荧光染料、二噁英等,还可以对食品中的物质进行识别和分类。

电化学传感器能够快速、准确地将数据反馈给食品安全监管机构,帮助监管机构及时掌握食品安全状况。

总的来说,现代仪器分析技术在食品安全检测中应用非常广泛,不仅提高了检测的精度和效率,而且保障了人们的饮食安全。

未来,随着现代仪器分析技术的不断发展,它在食品安全检测中的应用将会更加深入和广泛。

现代仪器分析在医学中的应用

现代仪器分析在医学中的应用

现代仪器分析在医学中的应用现代仪器分析是一门研究和应用尖端的分离分析方法和技术的课程。

可使学生掌握用于成分及组成分析、结构分析、表面形态分析、物质物化性质测定的大型分析仪器的基本理论,训练学生正确掌握现代大型仪器分析实验的基本操作技术,能独立进行实验。

其使用的仪器分析方法在现代医学以及其他学术领域起着不可忽视的作用。

代表的仪器如电子显微镜,流式细胞仪,质谱仪等。

一、电子显微镜电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。

电子显微镜放大倍率大,它可以通过荧光屏显示出更精微的组织结构,同时还可以用用光学放大系统,把成在荧光屏上的标本进行第二次扩大,因此电子显微镜在研究人体器官组织以及超微结构中起到重要作用。

可分为透射式电子显微镜和扫描时电子显微镜,由于标本厚薄不同,超薄切片机切出的很薄的标本,可用透射式电子显微镜观察。

不能切得很薄的标本可用扫描式电镜进行观察。

电子显微镜打破了光学显微镜的极限,显微技术进步发展到能观察分子原子电子显微镜的世界,它给医学科学带来新的研究超微结构的途径。

当今人们应用电子显微镜的超微特性观察细胞,不仅能清楚的证实了细胞膜的存在,而且还明确了细胞膜的三层结构,而且还明确了细胞膜由三个薄层组成.其中两侧层密度高,中间层密度低,而且这三层的任何一层厚度都一样。

利用电子显微镜观察无健神经纤维结构时,发现无健神经纤维的神经膜细胞可以包裹多根轴突( 一般约为 2 ~9 条) 。

利用电子显微镜研究肌肉的结构时,使我们了解到肌原纤维有二个很重要的特点:( 1 ) 在肌原纤维中有规则地排列着明暗横条纹,具有横纹结构;( 2 ) 肌原纤维由与其长轴平行的更微细的单位纤维组成。

利用电子显微镜研究核酸分子结构时,可以观察到核酸分子的结构呈线丝状,直径约为 2 0 A。

实践证明了电子显微镜的应用,为探索生命的秘密起到了重要的推动,为医学的发展,人类的健康发挥着巨大的作用。

现代仪器分析技术与应用简介

现代仪器分析技术与应用简介
6
1 引言
1926年,T. Svedberg采用超离心机研究分散体系 1930年,V. Raman发现拉曼光谱 1939年,E. O. Lawrence发现并发展回旋加速器 1944年,I. I. Rabi用共振方法记录了原子核的磁性 1948年,A. W. K. Tiselius采用电泳及吸附分析方法发现血浆蛋白质性质 1952年,F. Block和E. T. S. Walton发现核磁共振的精细测量方法 1952年,A. J. P. Matin和R. L. M. Synge发明了分配色谱法 1953年,F. Zernike发明了相差显微镜 1959年,J. Hey’rovsky首先发现极谱分析仪及分析方法 1979年,A. M. Cormack和G. N. Jownsfield发明计算机控制扫描层析诊断(CT) 1981年,K. M. Sieghahn发展了高分辨率电子光谱仪 1982年,A. Klug对晶体电子显微镜的发展 1991年,R. R. Ernst对高分辨核磁共振方法的发展
22
2 分离分析仪器与技术 2.2 液相色谱(HPLC)
(5)荧光检测器(FLD)
① 许多化合物,特别是芳香族化合物、生化物质,如有机胺、维生素、激 素、酶等被入射的紫外光照射后,能吸收一定波长的光,使原子中的某 些电子从基态中的最低振动能级跃迁到较高电子能态的某些振动能级, 之后,由于电子在分子中的碰撞,消耗一定的能量而下降到第一电子激 发态的最低振动能级,再跃迁回到基态中的某些不同振动能级,同时发 射出比原来所吸收的光频率较低、波长较长的光,即荧光。
常量分析为微量和痕量分析
化学结构为立体结构
3
1 引言
以 MS为例:1922年F.M.Aston发明质谱技术
原理:物质分子电磁性---应用于物理学研究

现代仪器分析在日常生活中的应用

现代仪器分析在日常生活中的应用

现代仪器分析在日常生活中的应用生命科学学院生物技术131班卢婉华1314300076现代仪器分析是以物质的物理性质或物理化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,并借助于比较复杂的或特殊的现代仪器,对待测物质进行定性,定量及结构分析和动态分析一类分析方法。

仪器分析在食品安全方面的应用现代仪器分析在食品安全领域发挥了重要的作用。

前几年,闹得沸沸扬扬的三聚氰胺事件,三聚氰胺是一种重要的有机化工中间产品,主要用来制作三聚氰胺树脂,具有优良的耐水性、耐热性、耐电弧性、优良阻燃性。

动物长期摄入三聚氰胺会造成生殖、泌尿系统的损害,膀胱、肾部结石,并可进一步诱发膀胱癌。

国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。

三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。

也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。

厂家为了检测时提高氮的含量,提高收益,不惜加入三聚氰胺这一有害物质,虽然能提高产品氮的含量,但却并不能提高奶粉的蛋白质含量,反而会给人体带来伤害。

在这时,我们可以用质谱分析法检测奶粉中的物质组成,根据结构分析能看出奶粉中含有哪几类的化学物质,从而得知三鹿集团是否有在奶粉中添加三聚氰胺这一有害物质。

也可以用气相色谱法,高效液相色谱,苦味酸法和升华法等方法来检测。

仪器分析在制药方面的应用仪器分析在制药领域也发挥了重要作用,近年来,仪器分析飞速发展,新方法、新技术、新仪器层出不穷,仪器分析的应用也日益普遍。

仪器分析逐渐向药学、医学、生物学等领域渗透,特别是在新药研究、药物分析、临床检验、病因研究等方面都大量使用了仪器分析方法,其在药学专业中的重要地位日渐突出。

仪器分析大致可以分为电化学分析法、光谱分析法、色谱分析法和核磁共振波谱法。

例如光谱分析法:其中紫外—可见分光光度法,是利用吸收光谱的特点可以进行药品与制剂的定量分析、纯物质的鉴别及杂质的检测。

现代化学仪器分析方法及其应用

现代化学仪器分析方法及其应用

现代化学仪器分析方法及其应用现代化学仪器分析方法的发展为化学领域的研究提供了强有力的支持。

这些先进的仪器能够提供准确、快速和敏感的分析结果,广泛用于材料科学、环境科学、食品安全等领域。

本文将介绍几种常见的现代化学仪器分析方法及其应用。

一、质谱仪质谱仪是一种能够实时检测和定量分析样品中的分子结构和组成的仪器。

它利用样品中的分子在高能量电子轰击下分解成离子,根据离子的质量-电荷比进行分析。

质谱仪广泛应用于化学、生物、医药等领域。

例如,在药物研发过程中,质谱仪可以确定化合物的分子结构、分子量,从而帮助研究人员验证合成目标的成功率。

二、核磁共振仪核磁共振仪是一种利用核磁共振现象来研究物质结构和性质的仪器。

核磁共振指的是在外加磁场和射频辐射作用下,原子核会发生能级跃迁,从而产生共振信号。

核磁共振仪广泛应用于有机化学、生物化学等领域。

例如,在有机化学中,核磁共振仪可以通过分析化合物中不同原子的信号强度和化学位移,确定化合物的结构和组成。

三、气相色谱仪气相色谱仪是一种用于分离和检测混合物的分析仪器。

它利用样品中化合物在固定相和流动相之间的分配系数不同来实现分离,并通过检测器对化合物进行定量分析。

气相色谱仪广泛应用于环境监测、食品安全等领域。

例如,在环境监测中,气相色谱仪可以快速分析空气、水体中的有机污染物,帮助监测人员了解环境质量。

四、液相色谱仪液相色谱仪是一种利用样品溶液中化合物在固定相和流动相之间的分配系数不同来实现分离和定量分析的仪器。

它广泛应用于生物化学、食品安全等领域。

例如,在药物研发中,液相色谱仪可以用于分析药物中的杂质,确保药物的质量和安全性。

综上所述,现代化学仪器分析方法的应用范围十分广泛,为各个领域的研究提供了有力的工具和支持。

质谱仪、核磁共振仪、气相色谱仪和液相色谱仪等仪器的发展和应用,不仅提高了化学分析的准确性和速度,也推动了科学研究的进步。

随着技术的不断创新和发展,相信化学仪器分析方法将在未来发挥更加重要的作用。

现代分析仪器在化学测量中的最新发展与应用

现代分析仪器在化学测量中的最新发展与应用

现代分析仪器在化学测量中的最新发展与应用化学测量在科学研究、工业生产、环境监测、医疗诊断等众多领域都发挥着至关重要的作用。

而现代分析仪器的不断发展和创新,为化学测量带来了前所未有的机遇和突破。

这些先进的仪器不仅提高了测量的准确性和灵敏度,还拓展了化学测量的范围和应用场景。

一、色谱技术的新进展色谱技术是化学分析中常用的分离和检测方法之一。

在现代分析仪器的发展中,高效液相色谱(HPLC)和气相色谱(GC)都取得了显著的进步。

HPLC 系统在硬件方面不断改进,高压输液泵的性能更加稳定,能够提供更高的流速和压力,从而实现更快速和高效的分离。

同时,新型的色谱柱填料,如核壳型填料和整体柱,具有更高的柱效和更好的选择性,大大提高了分离效果。

此外,HPLC 与质谱(MS)的联用技术,如 LCMS/MS,成为了复杂样品分析的有力工具。

它能够同时提供化合物的保留时间、分子量以及结构信息,极大地增强了定性和定量分析的能力。

GC 方面,高分辨率气相色谱(HRGC)的出现提高了对复杂混合物中微量组分的分离能力。

此外,GC 与飞行时间质谱(TOFMS)的结合,使得对未知化合物的快速鉴定成为可能。

通过精确测量化合物的质荷比和飞行时间,TOFMS 能够提供高分辨率和高质量精度的质谱图,为化合物的结构解析提供了丰富的信息。

二、质谱技术的创新发展质谱技术作为一种强大的分析手段,在化学测量中占据着重要地位。

近年来,质谱技术在仪器设计、离子化方法和数据分析等方面都取得了重大突破。

在仪器设计方面,高分辨率质谱仪的分辨率和质量精度不断提高。

例如,轨道阱质谱仪(Orbitrap)和傅里叶变换离子回旋共振质谱仪(FTICRMS)能够实现百万分之一甚至更高的质量分辨率,使得对同分异构体和复杂混合物的分析更加准确和可靠。

离子化方法的创新也为质谱分析带来了新的活力。

传统的电子轰击离子化(EI)和化学离子化(CI)方法在某些情况下存在局限性。

而近年来发展起来的电喷雾离子化(ESI)和基质辅助激光解吸离子化(MALDI)等软电离技术,使得大分子化合物如蛋白质、核酸等的分析成为可能。

现代分析仪器的应用

现代分析仪器的应用

现代分析仪器的应用———红外光谱的应用1 前言近红外光谱(NIR)是近十年来发展最为迅速的高新分析技术之一。

目前,大约有50多个国家和地区开展了NIR的研究和应用工作,特别是一些发达国家表现得尤为突出,这些国家拥有大量的各种类型的NIR分析仪器用于各行各业,有研究型、专用型、便携型,还有直接安装在工业生产线的在线型分析仪。

这些仪器在农业、石化、制药、食品等领域都得到很好应用,并取得极好的社会和经济效益。

我国从上世纪80年代开始进行NIR技术的研究,主要侧重于农产品的品质分析研究方面。

从上世纪90年代中期,国内许多科研院所和大专院校开始积极研发适合国内需要的NIR成套分析技术,并有多本专著出版,也有许多学者发表了多篇有关NIR原理和应用的综述文章,为这项技术的普及作了大量工作,开创了我国NIR研发和应用的崭新局面。

近几年我国在仪器硬件、化学计量学软件、分析模型建立以及实际应用等方面都有了长足发展,NIR分析技术已经应用于各个领域。

本文对我国NIR分析技术近10年来的研究与应用进展作了较为详细的综述,并根据国际现状和国内实际情况,提出了今后我国NIR分析技术的发展方向。

2 仪器硬件NIR技术的一个重要特点就是技术本身的成套性,即近红外光谱仪、化学计量学软件和应用模型的三位一体性,性能优异的近红外光谱仪是该技术的基础和前提。

目前,国际上NIR光谱仪的类型较多,按单色器分类,市场上的NIR光谱仪可分为滤光片型、光栅色散型、傅立叶变换型(FT)和声光可调滤光器型(AOTF)等4类。

光栅色散型仪器又可分为扫描一单通道检测器和固定光路一阵列检测器两种类型。

除了采用单色器分光以外,也有仪器采用多种不同波长的发光二极管(LED)作光源,即LED型近红外光谱仪。

尽管我国NIR仪器硬件研制相对较晚,但以上提到的六种类型NIR仪器,在我国都有相关单位进行研发。

3 化学计量学方法研究与软件开发3.1 方法研究在光谱预处理方面,将浓度向量参与到光谱预处理算法中是一种新的发展方向,正交信号校正(OSC)和净分析信号(NAS)方法就是这类算法的代表。

现代仪器分析课件ppt

现代仪器分析课件ppt
分子吸收是指在原子化过程中生成的分子对辐射 的吸收。分子吸收是带状光谱,会在一定的波长范围 内形成干扰。
校正方法: 用邻近非共振线校正背景 连续光源校正背景 塞曼 效应校正背景 自吸效应校正背景
在 整 堂 课 的 教学中 ,刘教 师总是 让学生 带着问 题来学 习,而 问题的 设置具 有一定 的梯度 ,由浅 入深, 所提出 的问题 也很明 确
在 整 堂 课 的 教学中 ,刘教 师总是 让学生 带着问 题来学 习,而 问题的 设置具 有一定 的梯度 ,由浅 入深, 所提出 的问题 也很明 确
贫燃火焰:指助燃气大于化学计量的火焰,它的温度 较低,有较强的氧化性,有利于测定易解离,易电离 元素,如碱金属。
在 整 堂 课 的 教学中 ,刘教 师总是 让学生 带着问 题来学 习,而 问题的 设置具 有一定 的梯度 ,由浅 入深, 所提出 的问题 也很明 确
2、非火焰原子化器(石墨炉原子化器)
Ni / N0 = gi / g0 exp(- Ei / kT)
统计权重 表示能级 的简并度
激发能
Boltzman 常数
热力学 温度
在 整 堂 课 的 教学中 ,刘教 师总是 让学生 带着问 题来学 习,而 问题的 设置具 有一定 的梯度 ,由浅 入深, 所提出 的问题 也很明 确
二、原子吸收光谱轮廓
消除办法:配制与被测试样组成相近的标准溶液 或采用标准加入法。若试样溶液的浓度高,还可采用 稀释法。
在 整 堂 课 的 教学中 ,刘教 师总是 让学生 带着问 题来学 习,而 问题的 设置具 有一定 的梯度 ,由浅 入深, 所提出 的问题 也很明 确
2.化学干扰
化学干扰是由于被测元素原子与共存组份发生化学反 应生成稳定的化合物,影响被测元素的原子化,而引起 的干扰。

现代仪器分析与应用

现代仪器分析与应用

现代仪器分析与应用引言:现代仪器分析是研究化学物质和生物系统的基本组成、结构及其性质的一种重要手段。

随着科学技术的不断发展,各种先进的仪器和分析方法逐渐应用于化学分析、环境监测、药物研发、生物学研究等领域。

本文将对现代仪器分析与应用领域进行探讨。

一、现代仪器分析的发展历程现代仪器分析的发展可以追溯到19世纪,当时以化学分析为主要手段。

20世纪初,光谱学的发展使得我们可以通过物质的光谱特性来分析其组成和结构。

20世纪60年代后,质谱仪的出现引发了一场仪器分析的革命。

随着计算机技术的发展,各种仪器的自动化和智能化程度不断提高,使得仪器分析的速度和准确性有了显著提高。

二、常见的现代仪器分析方法1.质谱法:质谱法是一种通过分析物质的质谱图谱来确定其分子结构和组成的方法。

质谱法广泛应用于生物医学、食品安全、环境监测等领域。

2.核磁共振(NMR):核磁共振是通过测量分子中的原子核在磁场中的共振现象来确定物质的结构和性质。

核磁共振广泛应用于有机合成、药物研发以及材料科学领域。

3.液相色谱法(HPLC):液相色谱法是利用溶液中固定相和液相之间的相互作用来分离和鉴定化合物的方法。

液相色谱法广泛应用于药物分析、环境监测以及食品安全检测等领域。

4.气相色谱法(GC):气相色谱法是通过将样品挥发成气体,然后通过固定相中一系列与样品成分有选择的相互作用进行分离和鉴定的一种方法。

气相色谱法广泛应用于石油化工、环境监测以及食品安全检测等领域。

三、现代仪器分析在不同领域的应用1.化学分析:现代仪器分析在化学分析领域的应用非常广泛。

它可以通过测量物质的光谱、质谱、核磁共振谱等来确定其组成和结构,同时还可以测量物质的各种化学性质。

化学分析在无机化学、有机化学、生物化学、分析化学等领域都有重要应用。

2.环境监测:现代仪器分析在环境监测领域的应用主要用于监测大气、水体、土壤等环境中的污染物。

通过使用质谱仪、液相色谱仪、气相色谱仪等仪器,可以精确测量出环境中的微量污染物,为环境保护和资源利用提供科学依据。

现代仪器分析-仪器分析

现代仪器分析-仪器分析

THANKS FOR WATCHING
感谢您的观看
智能的分析。
02
仪器分析的分类
光学分析法
原子吸收光谱法
利用原子对特定光的吸收进行定量分析的方 法。
紫外-可见光谱法
利用物质对紫外和可见光的吸收特性进行分 析的方法。
原子发射光谱法
通过测量原子或离子在电场或磁场中发出的 光来进行分析的方法。
红外光谱法
利用物质对红外光的吸收特性进行分析的方 法。
电化学分析法
能源与资源利用
对工业生产中的能源和资源利用进行监测和优化,提高能源利用 效率和资源利用率,降低生产成本。
04
仪器分析的未来发展
高通量和高灵敏度仪器分析技术
高通量仪器分析技术
通过并行处理和自动化技术,提高分析速度和效率,适用于大规模样本检测和 筛选。
高灵敏度仪器分析技术
利用高灵敏度检测器,降低检测限,提高对微量和痕量成分的检测能力。
薄层色谱法
将固定相涂布在薄板上,通过 色谱分离技术进行分析的方法 。
凝胶色谱法
利用凝胶作为固定相的色谱分 析方法。
质谱分析法
01
02
03
有机质谱法
利用电离源将有机分子电 离成离子,然后通过质谱 仪测量离子的质量-电荷比 来进行分析的方法。
同位素质谱法
利用同位素作为标记物, 通过测量标记物的丰度来 进行分析的方法。
仪器分析的重要性
为科学研究提供准确数据
仪器分析为科学研究提供了精确的实 验数据,帮助科学家深入了解物质性 质和变化规律。
保障人类健康与安全
促进工业生产与发展
仪器分析在工业生产中发挥着关键作 用,提高了产品质量和生产效率。
仪器分析在食品、药品、环境等领域 的应用,保障了人类健康与安全。

现代仪器分析方法及应用

现代仪器分析方法及应用

现代仪器分析方法及应用一、分光光度法分光光度法利用物质对光的吸收、散射、干涉、闪烁等现象进行分析。

常用的分光光度法有紫外可见分光光度法、红外吸收分光光度法、原子吸收分光光度法等。

分光光度法广泛应用于药物分析、环境分析、食品分析等领域。

二、电化学方法电化学方法通过测定电极上物质的电荷转移过程或与电极表面发生的电化学反应来进行分析。

常用的电化学方法有电位滴定法、电化学溶液分析法、恒定电流伏安法等。

电化学方法在药物分析、环境分析、金属离子检测等方面具有广泛应用。

三、质谱分析法质谱分析法通过测定样品中物质的质量与电荷比来进行分析。

常用的质谱分析法有质子化质谱法、电喷雾质谱法、时间飞行质谱法等。

质谱分析法在有机化合物的结构分析、食品中农药残留的检测以及毒性物质的鉴定等方面具有重要应用。

四、色谱分析法色谱分析法通过分离和测定化合物混合物中不同组分的相对含量来进行分析。

常用的色谱分析法有气相色谱法、液相色谱法、超高效液相色谱法等。

色谱分析法广泛应用于药物分析、食品分析、环境分析等领域。

五、核磁共振法核磁共振法利用原子核间的磁耦合和原子核的磁共振现象来进行分析。

常用的核磁共振法有氢核磁共振波谱法、碳核磁共振波谱法等。

核磁共振法在有机化合物结构鉴定、药物分析和生物分子结构研究等方面具有重要应用。

六、质量光谱法质量光谱法通过测定物质的质量与电荷比来进行定性和定量分析。

常用的质谱法有线性离子阱质谱法、四级杆质谱法等。

质谱法广泛应用于有机物质的结构分析、药物代谢研究以及环境污染物的检测等领域。

以上是现代仪器分析方法的几个主要方向,这些方法在现代化学分析中具有重要的地位和作用。

随着科学技术的不断发展,这些方法将进一步提高其灵敏度、准确性和快速性,为化学分析提供更多的选择和可能性。

同时,仪器分析方法的应用范围也将进一步拓展,为人类社会的发展与进步做出更大的贡献。

《现代仪器分析》教案

《现代仪器分析》教案

《现代仪器分析》教案一、教学目标1. 知识与技能:(1)了解现代仪器分析的基本概念、原理和特点。

(2)掌握常见现代仪器分析方法,如原子吸收光谱仪、原子荧光光谱仪、质谱仪、X射线荧光光谱仪等。

(3)学会根据分析目的选择合适的仪器分析方法。

2. 过程与方法:(1)通过实验操作,培养学生对现代仪器分析仪器的操作能力和实验技能。

(2)通过案例分析,培养学生运用现代仪器分析方法解决实际问题的能力。

3. 情感态度与价值观:激发学生对现代仪器分析学科的兴趣,培养学生的创新意识和团队合作精神。

二、教学内容1. 现代仪器分析的基本概念(1)现代仪器分析的定义(2)现代仪器分析的特点(3)现代仪器分析的发展趋势2. 常见现代仪器分析方法(1)原子吸收光谱仪(2)原子荧光光谱仪(3)质谱仪(4)X射线荧光光谱仪3. 仪器分析方法的选用原则(1)分析目的(2)样品特性(3)仪器性能和实验条件三、教学方法1. 讲授法:讲解现代仪器分析的基本概念、原理和特点,以及常见仪器分析方法。

2. 实验操作法:指导学生进行实验操作,培养学生的操作能力和实验技能。

3. 案例分析法:提供实际案例,引导学生运用所学知识解决实际问题。

四、教学准备1. 教材和参考书:现代仪器分析相关教材和参考书。

2. 实验仪器和设备:原子吸收光谱仪、原子荧光光谱仪、质谱仪、X射线荧光光谱仪等。

3. 教学课件和多媒体设备:制作相关课件,用于辅助教学。

五、教学评价1. 课堂参与度:评估学生在课堂上的发言和提问情况,考察学生的学习兴趣和积极性。

2. 实验操作能力:评估学生在实验过程中的操作技能和实验素养。

3. 案例分析报告:评估学生在案例分析过程中的分析能力和创新思维。

六、教学进程1. 课时安排:共40课时,其中理论讲授20课时,实验操作10课时,案例分析10课时。

2. 教学安排:(1)第1-10课时:现代仪器分析的基本概念、原理和特点,常见仪器分析方法的讲解。

(2)第11-20课时:实验操作,包括原子吸收光谱仪、原子荧光光谱仪、质谱仪、X射线荧光光谱仪等仪器的操作练习。

现代仪器分析方法与具体应用

现代仪器分析方法与具体应用
现代仪器分析方法和具体应用
现代仪器分析方法和具体应用
Content
引言 第一部分 核磁共振谱(NMR) 第二部分 红外光谱法(IR) 第三部分 质谱法(MS) 第四部分 紫外-可见光谱法(UV-Vis)
现代仪器分析方法和具体应用
引言
现代仪器分析方法和具体应用
2分.1 析引未言知化合物的步骤
?
C, H, O, …
现代仪器分析方法和具体应用
13 31
H被三个等价的H裂 分为四重峰,四重峰 的峰强比为1:3:3:1
Ha
Hb
J ac ≠ Jad
现代仪器分析方法和具体应用
n + 1 规律:一组化学等价的质子被一组数目为n的等 价质子裂分时,那么其吸收峰数目为n+1, 峰强比例符合二项式。
现代仪器分析方法和具体应用
现代仪器分析方法和具体应用
HH
H
HCC
HH
外磁场方向
121
H被两个等价的H 裂分为叁重峰, 叁重峰的峰强比 为1:2:1
信号的位置:化学位移 信号的裂分:偶合常数
信号的强度:积分曲线
现代仪器分析方法和具体应用
2.3.1 信号的位置:化学位移
相对于一个
基准物的相 低
对值

样品 - 标准 仪器
单位():ppm
现代仪器分析方法和具体应用
高 场
零点:TMS
CH3
CH3 Si CH3
CH3
原则1:等价的质子化学位移相同
化学环境相同 △E = hH有效/2
替代原则
H有效=H0-H感应
CH4 CH3CH3
CH3aCH2bCH3a
CH3aCH2bCH2cCl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XRD分析:是利用X射线的被动性和晶体内部结构的周期性进行晶体结构分析。

ICP分析法:采用电感耦合等离子体(ICP)为光源的原子发射光谱测定物质的化学成分的方法。

GC-MS分析法:将气相色谱仪器(GC)与质谱仪(MS)通过适当接口相连接,借助计算机技术,进行联用分析的方法。

TEM分析法(透射电子显微镜):将加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射形成明暗不同的影像的分析方法。

原子吸收分光谱法(AAS):是基于被测元素基态原子在蒸汽状态对其原子共振辐射的吸收进行元素定量分析的一种方法,具有灵敏度高、准确度高、选择性高、分析速度块等优点,但不能多元素同时分析。

IR分析法:是根据不同物质会有性的吸收红外光区的电磁辐射来进行结构分析,对各种吸收红外光的化合物的定量和定性分析的一种方法,可以定性定量鉴定分析物质、进行物质结构分析。

BET分析:BET法是BET比表面积检测法的简称,比表面积是指每克物质中所有颗粒总外表面积之和。

SEM分析法(扫描电子显微镜):扫描电子显微镜是利用细聚焦电子束在样品表面逐行扫描时激发出来的各种物理信号来调制成像的,主要用于观察固体厚试样的表面形貌,具有很高的分辨力和连续可调的放大倍数。

(色谱分析中的)标准加入回收:在测定样品的同时,于同一样品的子样中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,以计算回收率通常回收率(记作R) 计算的定义公式:R = (加标试样测定值- 试样测定值)/ 加标量×100原子发射光谱分析法:原子发射光谱法是是利用元素发射的特征谱线的位置和强度进行定性和定量分析的一种光学方法。

根据流动相与固定相极性的差别,将色谱分为正相色谱:流动相极性低,固定相极性高的分配色谱。

反相色谱:流动相极性高,固定相极性低的分配色谱。

制备Cu/ZrO2催化剂:催化剂的制备方法主要有共沉淀法、浸渍法、沉淀沉积法、溶胶-凝胶法、热熔融法和混合法等。

通过程序升温还原(TRP)技术表征催化剂的还原特性,采用BET、XRD、TEM及XRF等方法对催化剂的比表面积、孔容、晶像、表面形貌以及活性组分进行表征。

化学分析方法主要有:重氮化法、偶合法、中和法、卤代法、银量法。

1、重氮化法:含有伯氨(—NH2)的有机中间体,可以采用重氮化法分析其含量,即在酸性条件下用亚硝酸钠标准溶液滴定其氨基化合物:Ar-NH2+2HCl+NaNO2→Ar-N2+Cl-+NaCl+H2O2、偶合法:偶合法分析的反应为:Ar-N2+Cl-+Ar-OH→Ar-N=N-Ar-OHAr-N2+Cl-+Ar-NH2→Ar-N=N-Ar-NH2偶合反应发生在羟基(氨基)的邻位或对位。

对于某些含羟基(—OH)、氨基(—NH2)或两者均有,但又不宜用重氮化法分析的中间体。

如:丁一酸、间苯二胺,可以用重氮盐标准溶准溶液与其偶合来分析其含量。

3、中和法对于芳香族羧酸(Ar-COOH),如水杨酸、2,3—酸、邻苯二甲酸酐,可以用NaOH标准溶液与之发生中和反应来分析其含量。

.OHCOOH+ NaOH H2O + COONaOH4、卤代法:KBrO3+5KBr+6HCl→6[Br]+3H2O+6KClO H+ 6[Br] 3HBr +OHBrBr Br含羧基(—COOH)或氨基(—NH2)的有机中间体,其羧基或氨基的邻、对位电子云密度比较高,容易被卤素团所取代,因而可以采用卤代法分析其含量。

实际采用的是溴化法和碘量法,溴化不是采用液溴或溴的水溶液,而是采用溴酸钾与溴化钾在酸性溶液中作用生成的新生态Br进行溴化。

5、银量法对于含有卤素基团(一般为氯)的有机中间体,可以用氢氧化钠标准溶液处理,使氯水解以后,用硝酸银标准溶液与之作用而定量。

根据硝酸银标准溶液的消耗量和分子中氯原子的个数确定其含量。

以硝酸银液为滴定液,测定能与Ag+生成沉淀的物质,根据消耗滴定液的浓度和毫升数,可计算出被测物质的含量。

反应式:Ag++X-→AgX↓(X-表示Cl-、Br-、I-、CN-、SCN-等离子)。

湘江流域水质受到重金属的严重污染,重金属主要指哪些金属,来源如何,如何进行分析和检测?主要有铬、镉、铜、铅、锌等主要来源1、矿石伴生的重金属污染人类对矿石的开采和冶炼使伴生在各类矿石中的重金属对环境造成污染。

2、作为生产原料的重金属污染重金属作为生产原料的生产过程中,很容易污染工作场所,进而污染从事生产活动的员工和附近居民,使用重金属作为原料的产品,在使用过程中容易导致重金属污染。

3、随废气、废水、固体废物排放的重金属污染重金属的检测可以用原子吸收光谱法、原子发射光谱法、分光光度法等,分析步骤:配制一系列浓度一次增高的标准溶液,在给定的实验条件下,测其吸光度,绘制A—C标准曲线,在相同的实验条件下,测出待测试样溶液的吸光度,在标准曲线上查出其浓度,即可求出待测元素的含量。

红外光谱和紫外光谱在分析原理和仪器组成上有何区别,主要功能是什么,画出苯的红外紫外光谱图。

红外光谱:分析原理:根据不同物质会有性的吸收红外光区的电磁辐射来进行结构分析。

仪器组成:光源、干涉仪、样品室、检测器、计算机记录系统。

主要功能:对各种吸收红外光的化合物的定量和定性分析。

紫外光谱:分析原理:是测定物质分子在紫外光区的分析方法。

紫外是物质吸收紫外光后,其价电子从低能级向高能级,产生形成的。

仪器组成:光源、单色器、样品室、检测器、结果显示记录系统。

主要功能:对物质进行定性定量分析,对位置化合物的的结构进行分析鉴定。

在仪器分析的定量分析中,何谓仪器的灵敏度、最小检出限和线性范围,以氢火焰离子化检测器的气相色谱为例,对灵敏度、最小检出限的概念和影响因素进行说明?灵敏度(b):是指某方法对单位浓度或单位量待测物质变化所致的响应量变化程度,它可以用仪器的响应量或其他指示量与对应的待测物质的浓度或量之比来描述。

灵敏度=信号变化量/浓度(质量)变化量=dx/dc(dm)= b最小检出限:指某一分析方法在给定的置信度能够被仪器检出待测物质的最低量(最小浓度、最小物质的量或最小质量),以浓度表示时称为相对检出限,以质量表示时为绝对检出限。

线性范围:线性范围:是某一方法的校准曲线的直线部分所对应的待测物质的浓度(或量)的变化范围。

操作条件对灵敏度的影响:1、气体流量:FTD使用的气体有载气、燃气氢气和助燃剂空气,三者的流速和比例要调节合适,流速太低难以维持连续稳定的火焰,流速太高会导致火焰飘忽,噪音增大。

2、气体中存在机械杂质或载气含微量有机杂质时,对基线的稳定性影响很大,因此要保证管路的干净并使用高纯度载气。

3、使用温度:与热导检测器不同,氢火焰离子化检测器的温度对输出信号没有明显的影响,但为了防止燃烧生成的水蒸气冷凝在离子室FID的使用温度应小于100℃.金属元素的分析方法有哪些,各自的特点,适用于何种场合?1、原子吸收分光谱法(AAS):是基于被测元素基态原子在蒸汽状态对其原子共振辐射的吸收进行元素定量分析的一种方法,具有灵敏度高、准确度高、选择性高、分析速度块等优点,但不能多元素同时分析。

2、原子发射光谱法(AES):是根据处于激发态的待测元素原子回到基态时发射的特征谱线,对元素进行定性与定量分析的方法,操作简单,分析速度快;多元素同时检出能力强,具有较高的灵敏度和选择性,可以定性及半定量检测金属元素,但只能用于,不能进行结构、形态的测定。

3、原子荧光光谱法(AFS):是根据气态原子在辐射激发下发射的荧光强度来进行定量分析的方法,主要特点是检出限低、灵敏度高、谱线简单,可以实现多元素同时测定,但在使用时会存在荧光淬灭效应、散射光干扰等问题。

4、X射线荧光光谱法(XFS):是利用样品被激发后所发射的X射线岁样品中的元素成分及元素含量变化而变化来定性或定量测定样品中成分的一种方法,其检出限低、分析迅速、样品前处理简单、可分析元素范围广、谱线简单、光谱干扰小、成本低等优点,目前大量用于金属的无损检测、污水中金属元素的检测以及仪器的无损探视等。

5、光学传感器:是一种信号传导器,通常与对金属元素敏感的物质结合使用而达到检测样品中金属元素的目的,能做到非接触和非破坏性测定。

6、激光诱导分解光谱法:通过检测激光诱导产生的质子的荧光来达到定性定量检测金属元素的目的,与传统的荧光光谱法相比,LIBS的灵敏度与精确度更高。

7、化学法:(1)双硫腙比色法,根据双硫腙与某些金属离子形成有色络合物,再采用分光光度计进行比色的一种定性定量检测方法,用于测定食品、化妆品、生物材料等样品中金属元素的常用方法,但该方法操作繁琐、试剂成本高、灵敏度较低、重复性差。

(2)高效液相色谱法:是基于流动相中的各组分与固定相发生作用的大小、强弱不同以致在固定相中滞留时间不同的原理进行检测的一种方法,HPLC分辨率和灵敏度高、分析速度快、重复性好、应用范围广、可实现多元素同时测定,适用于分析高沸点、大分子、强极性、热稳定性差的化合物。

何谓波谱分析,有哪些分析方法,写出每种分析方法的分析原理、分析目的和波谱分析的解析步骤?波谱分析主要是以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互关系,从而进行物质分子几何异构、立体异构、构象异构和分子结构分析和鉴定的方法,主要包括红外光谱法、法、核磁共振光谱法和质谱分析法。

1、红外光谱法:是根据不同物质会有性的吸收红外光区的电磁辐射来进行结构分析,对各种吸收红外光的化合物的定量和定性分析的一种方法。

目的:可以定性定量鉴定分析物质、进行物质结构分析。

解析步骤:(1)根据确定的分子,计算不饱和度,预测可能的官能团。

(2)首先观察红外光谱的官能团区,找出该化合物可能存在的官能团。

(3)查看红外光谱的指纹区,找出官能团的相关吸收峰,最后才确定该化合物存在某官能团。

(4)判断是否芳香族化合物,若为芳香化合物,找出苯的取代位置。

(5)根据红外光谱指纹区的吸收峰与已知化合物的红外光谱或标准图谱对照,确定是否为已知化合物。

2、紫外光谱法分析原理:是测定物质分子在紫外光区的分析方法。

紫外是物质吸收紫外光后,其价电子从低能级向高能级,产生形成的。

目的:对物质进行定性定量分析,对位置化合物的的结构进行分析鉴定。

解析步骤:(1)如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。

(2)如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。

(3)如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。

相关文档
最新文档