2012年全国统一高考数学试卷(理科)(全国二卷)

合集下载

2012年北京市高考数学试卷(理科)(含解析版)

2012年北京市高考数学试卷(理科)(含解析版)
与曲线 c 交于不同的两点 M、N,直线 y=1 与直线 BM 交于点 G.求证:A, G,N 三点共线.
第 5页(共 27页)
20.(13 分)设 A 是由 m×n 个实数组成的 m 行 n 列的数表,满足:每个数的绝 对值不大于 1,且所有数的和为零,记 s(m,n)为所有这样的数表构成的集 合.对于 A∈S(m,n),记 ri(A)为 A 的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A) 为 A 的第 j 列各数之和(1≤j≤n);记 K(A)为|r1(A)|,|R2(A)|,…, |Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表 A,求 K(A)的值;
1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A∈S(2,3)形如
(1)求证:A1C⊥平面 BCDE; (2)若 M 是 A1D 的中点,求 CM 与平面 A1BE 所成角的大小; (3)线段 BC 上是否存在点 P,使平面 A1DP 与平面 A1BE 垂直?说明理由.
17.(13 分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃 圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生
A.28+6
B.30+6
C.56+12
D.60+12
8.(5 分)某棵果树前 n 年的总产量 Sn 与 n 之间的关系如图所示.从目前记录的
结果看,前 m 年的年平均产量最高,则 m 的值为( )
A.5
B.7
C.9
第 2页(共 27页)
D.11
二.填空题共 6 小题.每小题 5 分.共 30 分.
点 E.则( )
A.CE•CB=AD•DB

2012年上海市高考数学试卷(理科)-含答案详解

2012年上海市高考数学试卷(理科)-含答案详解

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2012年普通高等学校招生全国统一考试(上海卷)数学(理科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若是关于x 的实系数方程x 2+ bx + c =0的一个复数根,则( )A. b =2,c =3B. b =−2,c =3C. b =−2,c =−1D. b =2,c =−12. 在△ ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ ABC 的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 设10≤ x 1< x 2< x 3< x 4≤104,x 5=105.随机变量ξ 1取值x 1,x 2,x 3,x 4,x 5的概率均为0.2,随机变量ξ 2取值,,,,的概率也均为0.2.若记Dξ 1,Dξ 2分别为ξ 1,ξ 2的方差,则( )A. Dξ 1> Dξ 2B. Dξ 1= Dξ 2C. Dξ 1< Dξ 2D. Dξ 1与Dξ 2的大小关系与x 1,x 2,x 3,x 4的取值有关……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 设,S n = a 1+ a 2+⋯+ a n .在S 1,S 2,…,S 100中,正数的个数是( )A. 25B. 50C. 75D. 100第II 卷(非选择题)二、填空题(本大题共14小题,共56.0分)5. 计算:__________(i 为虚数单位).6. 若集合A ={x|2 x +1>0},B ={x|| x −1|<2},则A ∩ B =__________.7. 函数的值域是__________.8. 若n =(−2,1)是直线l 的一个法向量,则l 的倾斜角的大小为__________(结果用反三角函数值表示).9. 在(x −)6的二项展开式中,常数项等于__________.10. 有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则__________.11. 已知函数f(x)=e |x−a|(a 为常数).若f(x)在区间[1,+∞)上是增函数,则a 的取值范围是 .12. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.13. 已知y = f(x)+ x 2是奇函数,且f(1)=1.若g(x)= f(x)+2,则g(−1)=__________.14. 如图,在极坐标系中,过点M(2,0)的直线l 与极轴的夹角.若将l 的极坐标方程写成ρ= f(θ)的形式,则f(θ)=__________.15. 三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是__________(结果用最简分数表示).……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………16. 在平行四边形ABCD 中,,边AB ,AD 的长分别为2,1.若M ,N 分别是边BC ,CD 上的点,且满足,则的取值范围是__________.17. 已知函数y = f(x)的图像是折线段ABC ,其中A(0,0),B(,5),C(1,0).函数y = xf(x)(0≤ x ≤1)的图像与x 轴围成的图形的面积为__________.18. 如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2 c ,且AB + BD = AC + CD =2 a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是__________.三、解答题(本大题共5小题,共74.0分。

2012年山东省高考数学试题(附答案和解释)(理科Word版)

2012年山东省高考数学试题(附答案和解释)(理科Word版)

2012年山东省高考数学试题(附答案和解释)(理科Word版)2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项: 1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:V= Sh,其中S是锥体的底面积,h是锥体的高。

如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)•P(B)。

第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为 A 3+5i B 3-5i C -3+5i D -3-5i 解析: .答案选A。

另解:设,则根据复数相等可知,解得,于是。

2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为 A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:。

答案选C。

3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件解析:p:“函数f(x)= ax在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R 上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。

2012年高考数学试卷及解析山东卷(理科)

2012年高考数学试卷及解析山东卷(理科)

2012年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数x 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 2. 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 3. 设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,...,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B )9 (C )10 (D )155. 已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2-(B )3[,1]2-- (C )[1,6]- (D )3[6,]2- 6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为 (A )2 (B )3 (C )4 (D )57. 若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35 (B )45 (C (D )348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =。

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012高考理科数学全国2卷试题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两局部,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试完毕,务必将试卷与答题卡一并上交。

第Ⅰ卷一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i +(D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m = (A )0(B )0或3 (C )1或(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的间隔 为(A )2 (B)(C)(D )1(5)已知等差数列{}n a 的前n 项与为n S ,55a =,515S =,则数列11{}n n a a +的前100项与为 (A )100101 (B )99101 (C )99100(D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos2α=(A )3-(B )9- (C )9(D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34(D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x <<(D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1(D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不一样,每列的字母也互不一样,则不同的排列方法共有(A )12种 (B )18种 (C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年湖南卷理科数学高考试卷(原卷 答案)

2012年湖南卷理科数学高考试卷(原卷 答案)

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)理科数学本试卷共24题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}1,0,1{−=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{−D .}1,0,1{− 2.命题“若4πα=,则1tan =α”的逆否命题是A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠D .若1tan ≠α,则4πα=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ−=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg5.已知双曲线1:2222=−b y a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为A .152022=−y x B .120522=−y x C .1208022=−y x D .1802022=−y x 6.函数)6cos(sin )(π+−=x x x f 的值域为A .]2,2[−B .]3,3[−C .]1,1[−D .]23,23[−7.在ABC ∆中,2=AB ,3=AC ,1=⋅BC AB ,则=BCABC .D8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log =的图像从左至右相交于点B A ,,2l 与函数x y 2log =的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,的最小值为 A . B . C .348 D .344二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9. 在直角坐标系xOy 中,已知曲线⎩⎨⎧−=+=t y t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a . 10.不等式01212>−−+x x 的解集为 .11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z . 13.6)12(xx −的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入3,1=−=n x ,则输出的数=S .ba15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点. (1)若6πϕ=,点P 的坐标为)233,0(,则=ω ; (2)若在曲线段与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为 . 16.设*2(,)nN n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列113124N N P x x x x x x −=,将此操作称为C 变换.将1P 分成两段,每段个数,并对每段作C 变换,得到2P ;当22i n ≤≤−时,将i P 分成2i段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 个位置; (2)当2()nN n =≥8时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 18.(本小题满分12分)ABC 2N 2N 2N如图5,在四棱锥P ABCD −中,PA ⊥平面ABCD ,4AB =,3BC =,5AD =,90DAB ABC ∠=∠=︒,E 是CD 的中点. (Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD −的体积. 19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++,231()n B n a a a +=+++,342()n C n a a a +=+++,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式. (Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分) 在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y −+=外,且对1C 上任意一点M ,M 到直线2x =−的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =−上运动时,四点,A B ,,C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()axf x e x =−,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)理科数学 (参考答案)1.【答案】B 【解析】 M={-1,0,1} M ∩N={0,1}.2. 【答案】C【解析】因为“若,则”的逆否命题为“若,则”,所以 “若α=,则tan α=1”的逆否命题是 “若tan α≠1,则α≠”.3.【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.4. 【答案】D【解析】【解析】由回归方程为=0.85x-85.71知随的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知,所以回归直线过样本点的中心(,),利用回归方程可以预测估计总体,所以D 不正确. 5.【答案】A【解析】设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点P (2,1)在C 的渐近线上,,即. 又,,C 的方程为-=1.6.【答案】B{}0,1N =∴p q p ⌝q ⌝4π4πy y x ˆ()y bx a bx y bx a y bx =+=+−=−x y 22x a 22y bc 210,5c c ==b y x a =±12ba∴=2a b =222c a b =+a ∴==∴220x 25y【解析】f (x )=sinx-cos(x+),,值域为]. 7.【答案】A【解析】由下图知..又由余弦定理知,解得.8.【答案】B【解析】在同一坐标系中作出y=m ,y=(m >0),图像如下图,由= m ,得,= ,得.依照题意得.,9.【答案】 6π1sin cos sin )226x x x x π=−+=−[]sin()1,16x π−∈−()f x ∴AB BC = cos()2(cos )1AB BC B BC B π−=⨯⨯−=1cos 2B BC ∴=−222cos 2AB BC AC B AB BC+−=⋅BC =821m +2log y x =2log x 122,2m mx x −==2log x 821m +821821342,2m m x x +−+==8218218218212222,22,22m m mmmm m m b a b a++−−+−−+−=−=−=−821821222m m mm +++==8141114312122222m m m m +=++−≥−=++min ()b a ∴=32AC821m =+xm【解析】曲线:直角坐标方程为,与轴交点为;曲线 :直角坐标方程为,其与轴交点为, 由,曲线与曲线有一个公共点在X 轴上,知. 10.【答案】 【解析】令,则由得的解集为.11.【解析】设交圆O 于C,D ,如图,设圆的半径为R ,由割线定理知12.【答案】10【解析】=,. 13.【答案】-160 【解析】()6的展开式项公式是.由题意知,所以二项展开式中的常数项为. 14.【答案】【解析】输入 ,n =3,,执行过程如下:;;,所以输出的是.15. 【答案】(1)3;(2)(lbylfx )1C 1,12x t y t=+⎧⎨=−⎩32y x =−x 3(,0)22C sin ,3cos x a y θθ=⎧⎨=⎩22219x y a +=x (,0),(,0)a a −0a >1C 2C 32a =14x x ⎧⎫>⎨⎬⎩⎭()2121f x x x =+−−()f x 13,()2141,(1)23,(1)x x x x ⎧−<−⎪⎪⎪=−−≤≤⎨⎪>⎪⎪⎩()f x 0>14x x ⎧⎫>⎨⎬⎩⎭PO ,1(12)(3-)(3),PA PB PC PD r r r ⋅=⋅⨯+=+∴=即2(3)z i =+29686i i i ++=+10z ==663166C (C 2(1)r r r r rr r r T x −−−+==−30,3r r −==33346C 2(1)160T =−=−4−1x =−2:6233i S ==−++=−1:3(1)115i S ==−−++=0:5(1)014i S ==−++=−4−4πO【解析】(1),当,点P 的坐标为(0,)时 ; (2)由图知,,设的横坐标分别为. 设曲线段与x 轴所围成的区域的面积为则,由几何概型知该点在△ABC 内的概率为. 16.【答案】(1)6;(2)【解析】(1)当N=16时,,可设为, ,即为,,即, x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第个位置.17.【解析】(1)由已知,得所以该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 的分布为X 的数学期望为 . (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则()y f x '=cos()x ωωϕ=+6πϕ=2cos,362πωω=∴=222T AC ππωω===122ABCS AC πω=⋅=,A B ,a b ABC S ()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+−+=⎰224ABCSP Sππ===43211n −⨯+012345616P x x x x x x x =(1,2,3,4,5,6,,16)113571524616P x x x x x x x x x =(1,3,5,7,9,2,4,6,8,,16)2159133711152616P x x x x x x x x x x x =(1,5,9,13,3,7,11,15,2,6,,16)43211n −⨯+251055,35,y x y ++=+=15,20.x y ==153303251(1),( 1.5),(2),10020100101004p X p X p X =========201101( 2.5),(3).100510010p X p X ======X 33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=(1,2)i X i =i. 由于顾客的结算相互独立,且的分布列都与X 的分布列相同,所以. 故该顾客结算前的等候时间不超过2.5分钟的概率为. 18. 【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,,E是CD的中点,所以所以而内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是为直线PB与平面PAE 所成的角,且.由知,为直线与平面所成的角.由题意,知因为所以 由所以四边形是平行四边形,故于是在中,所以于是 又梯形的面积为所以四棱锥的体积为 121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且12,X X 121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=9803BC =90 5.ABC AC ∠==,得5,AD =又.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面.PA CD ⊥,PA AE 是平面PAE ,,,,.BG CD AE AD F G PF //分别与相交于连接BPF ∠BG AE ⊥PA ABCD ⊥平面PBA ∠PB ABCD 4,2,,AB AG BG AF ==⊥,PBA BPF ∠=∠sin ,sin ,PA BF PBA BPF PB PB∠=∠=.PA BF =90//,//,DAB ABC AD BC BG CD ∠=∠=知,又BCDG 3.GD BC ==2.AG =Rt ΔBAG 4,2,,AB AG BG AF ==⊥25AB BG BF BG =====5PA BF ==ABCD 1(53)416,2S =⨯+⨯=P ABCD −解法2:如图(2),以A 为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB 与所成的角和PB 与所成的角相等,所以由(Ⅰ)知,由故解得. 又梯形ABCD 的面积为,所以四棱锥的体积为 . 19.【解析】(l bylfx )解(1)对任意,三个数是等差数列,所以即亦即故数列是首项为1,公差为4的等差数列.于是 (Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有111633515V S PA =⨯⨯=⨯⨯=,,AB AD AP x y z轴,轴,轴,PAh =(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h (4,2,0),(2,4,0),(0,0,).CD AE AP h =−==8800,0,CD AE CD AP ⋅=−++=⋅=,.CD AE CD AP ⊥⊥,AP AE PAE .CD PAE ⊥平面,CD AP PAE 平面ABCD 平面PAE 平面ABCD 平面cos ,cos ,.CD PB PA PB CD PB PA PB CD PBPA PB⋅⋅<>=<>=⋅⋅,即(4,2,0),(0,0,),CD AP h =−=−(4,0,),PB h =−=5h =1(53)4162S =⨯+⨯=P ABCD −111633515V S PA =⨯⨯=⨯⨯=N n *∈(),(),()A n B n C n ()()()(),B n A n C n B n −=−112,n n a a a ++−=2121 4.n n a a a a +−−=−={}n a 1(1)44 3.n a n n =+−⨯=−{}n a N n *∈由知,均大于0,于是即==,所以三个数组成公比为的等比数列. (2)充分性:若对于任意,三个数组成公比为的等比数列, 则,于是得即由有即,从而. 因为,所以,故数列是首项为,公比为的等比数列, 综上所述,数列是公比为的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数组成公比为的等比数列.20.【解析】 解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为由题设有期中均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为其定义域为易知,为减函数,为增函数.注意到 于是(1)当时, 此时1.n nq a a −=0n a >(),(),()A n B n C n 12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++()()B n A n ()()C n B n q (),(),()A n B n C n q N n *∈(),(),()A n B n C n q ()(),()()B n qA n C n qB n ==[]()()()(),C n B n q B n A n −=−2211(),n n a a q a a ++−=−2121.n n a qa a a ++−=−1n =(1)(1),B qA =21a qa =210n n a qa ++−=0n a >2211n n a a q a a ++=={}n a 1a q {}n a q (),(),()A n B n C n q 123(),(),(),T x T x T x 12323000100020001500(),(),(),6200(1)T x T x T x x x kx k x⨯====−+,,200(1)x kx k x −+{}123()max (),(),(),f x T x T x T x =2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭12(),()T x T x 3()T x 212()(),T x T x k=2k =12()(),T x T x =,由函数的单调性知,当时取得最小值,解得 .由于 . 故当时完成订单任务的时间最短,且最短时间为. (2)当时, 由于为正整数,故,此时易知为增函数,则.由函数的单调性知,当时取得最小值,解得 .由于 此时完成订单任务的最短时间大于. (3)当时,由于为正整数,故,此时由函数的单调性知,当时取得最小值,解得.类似(1)的讨论.此时 完成订单任务的最短时间为,大于. 综上所述,当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬−⎩⎭13(),()T x T x 100015002003x x=−()f x 4009x =134********4445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而44x =250(44)11f =2k >12()(),T x T x >k 3k ≥{}1375(),()max (),()50T x x T x T x xϕ==−()T x {}13()max (),()f x T x T x ={}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬−⎩⎭1(),()T x T x 100037550x x =−()x ϕ40011x =14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而250112k <12()(),T x T x <k1k ={}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬−⎩⎭23(),()T x T x 2000750100x x =−()f x 80011x =2509250112k =分别为44,88,68.21.【解析】(Ⅰ)解法1 :设M 的坐标为,由已知得,易知圆上的点位于直线的右侧.于是,所以.化简得曲线的方程为.解法2 :由题设知,曲线上任意一点M 到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.(Ⅱ)当点P 在直线上运动时,P 的坐标为,又,则过P 且与圆相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是整理得①设过P 所作的两条切线的斜率分别为,则是方程①的两个实根,故② 由得 ③ 设四点A,B,C,D 的纵坐标分别为,则是方程③的两个实根,所以④同理可得⑤于是由②,④,⑤三式得(,)xy 23x +=2C 2x =−20x +>5x =+1C 220y x =1C 2C (5,0)5x =−1C (5,0)5x =−220y x =4x =−0(4,)y −03y ≠±2C k 0(4),y y k x −=+0即kx-y+y+4k=0 3.=2200721890.k y k y ++−=,PA PC 12,k k 12,k k 001218.724y yk k +=−=−101240,20,k x y y k y x −++=⎧⎨=⎩21012020(4)0.k y y y k −++=1234,,,y y y y 0112120(4).y k y y k +⋅=0234220(4).y k y y k +⋅=.所以,当P 在直线上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.22.【解析】(Ⅰ)若,则对一切,,这与题设矛盾,又,故.而令 当时,单调递减;当时,单调递增,故当时,取最小值 于是对一切恒成立,当且仅当. ① 令则当时,单调递增;当时,单调递减. 故当时,取最大值.因此,当且仅当即时,①式成立. 综上所述,的取值集合为.(Ⅱ)由题意知, 令则 010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤−+⎣⎦=4x =−0a <0x >()f x 1axe x =−<0a ≠0a >()1,axf x ae '=−11()0,ln .f x x a a'==得11ln x a a <()0,()f x f x '<11ln x a a >()0,()f x f x '>11ln x a a=()f x 11111(ln )ln .f a a a a a=−,()1x R f x ∈≥111ln 1a a a−≥()ln ,g t t t t =−()ln .g t t '=−01t <<()0,()g t g t '>1t >()0,()g t g t '<1t =()g t (1)1g =11a=1a =a {}121212121()() 1.ax ax f x f x e e k x x x x −−==−−−2121()(),ax ax axe e xf x k ae x x ϕ−'=−=−−121()12121()()1,ax a x x e x e a x x x x ϕ−⎡⎤=−−−−⎣⎦−212()21221()()1.ax a x x e x e a x x x x ϕ−⎡⎤=−−−⎣⎦−令,则.当时,单调递减;当时,单调递增. 故当,即 从而,又所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使单调递增,故这样的是唯一的,且.故当且仅当时, .综上所述,存在使成立.且的取值范围为.(lbyl fx )()1t F t e t =−−()1tF t e '=−0t <()0,()F t F t '<0t >()0,()F t F t '>0t =()(0)0,F t F >=10.te t −−>21()21()10a x x ea x x −−−−>12()12()10,a x x ea x x −−−−>1210,ax e x x >−2210,ax e x x >−1()0,x ϕ<2()0.x ϕ>()y x ϕ=[]12,x x 012(,)x x x ∈0()0,x ϕ=2()0,()axx a e x ϕϕ'=>c 21211ln ()ax ax e e c a a x x −=−212211(ln,)()ax ax e e x x a a x x −∈−0()f x k '>012(,)x x x ∈0()f x k '>0x 212211(ln ,)()ax ax e e x a a x x −−。

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}1,0,1{-=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{-D .}1,0,1{- 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}. 【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N.2.命题“若4πα=,则1tan =α”的逆否命题是A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠ D .若1tan ≠α,则4πα=【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D 【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg 【答案】D【解析】由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.5.已知双曲线1:2222=-by a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为A .152022=-y x B .120522=-y x C .1208022=-y x D .1802022=-y x 【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又 C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴= ,即2a b =.又222c a b =+,a ∴==∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.6.函数)6cos(sin )(π+-=x x x f 的值域为A .]2,2[-B .]3,3[-C .]1,1[-D .]23,23[- 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin sin )26x x x x π=+=-,[]sin()1,16x π-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.7.在ABC ∆中,2=AB ,3=AC ,1=⋅BC AB ,则=BCA B C . D 【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC∴=-.又由余弦定理知222cos 2AB BC AC B AB BC+-=⋅,解得BC =【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC的夹角为B ∠的外角.8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log =的图像从左至右相交于点B A ,,2l 与函数x y 2log =的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,ba的最小值为 A. B. C .348 D .344 【答案】B【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2mmx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m mmmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()b a ∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可C821m =+xm解得.二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答.题卡..中对应题号后的横线上. (一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9. 在直角坐标系xOy 中,已知曲线⎩⎨⎧-=+=t y t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a . 【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. 【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得.10.不等式01212>--+x x 的解集为 . 【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z . 【答案】10【解析】2(3)z i =+=29686i i i ++=+,10z ==.【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用z =.13.6)12(xx -的二项展开式中的常数项为 .(用数字作答)【答案】-160 【解析】()6的展开式项公式是663166C (C 2(1)r r r r rr r r T x ---+==-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法.14.如果执行如图3所示的程序框图,输入3,1=-=n x ,则输出的数=S .【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点.(1)若6πϕ=,点P 的坐标为)233,0(,则=ω ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为 .【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0)时cos362πωω=∴=; (2)由图知222T AC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b .设曲线段ABC 与x轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC内的概率为224ABC S P S ππ=== . 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω,(2)几何概型,求出三角形面积及曲边形面积,代入公式即得.16.设*2(,)nN n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x = .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -= ,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n ≤≤-时,将i P 分成2i 段,每段2iN个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 个位置; (2)当2()nN n =≥8时,173x 位于4P 中的第 个位置. 【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x = ,可设为(1,2,3,4,5,6,,16) ,113571524616P x x x x x x x x x = ,即为(1,3,5,7,9,2,4,6,8,,16) ,2159133711152616P x x x x x x x x x x x = ,即(1,5,9,13,3,7,11,15,2,6,,16) , x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X =========201101( 2.5),(3).100510010p X p X ====== X 的分布为X 的数学期望为33111()11.522.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以 121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y ++=⨯+=从而解得,x y ,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得该顾客结算前的等候时间不超过...2.5分钟的概率.18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4AB =,3BC =,5AD =,90DAB ABC ∠=∠=︒,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂ 平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作,,,,.BG CD AE AD F G PF //分别与相交于连接由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是BPF ∠为直线PB与平面PAE 所成的角,且BG AE ⊥.由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角.4,2,,AB AG BG AF ==⊥由题意,知,PBA BPF ∠=∠ 因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠= 知,又所以四边形BCDG 是平行四边形,故 3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以2AB BG BF BG =====于是5PA BF == 又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为111633515V S PA =⨯⨯=⨯⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-== 因为8800,0,CD AE CD AP ⋅=-++=⋅= 所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面(Ⅱ)由题设和(Ⅰ)知,,CD AP 分别是PAE 平面,ABCD 平面的法向量,而PB 与PAE 平面所成的角和PB 与ABCD 平面所成的角相等,所以cos ,cos ,.CD PB PA PB CD PB PA PB CD PB PA PB⋅⋅<>=<>=⋅⋅ ,即 由(Ⅰ)知,(4,2,0),(0,0,),CD AP h =-=- 由(4,0,),PB h =- 故=解得5h =. 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1151633515V S PA =⨯⨯=⨯⨯=. 【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD ⊥即可,第二问算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积,或者建立空间直角坐标系,求得高几体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++ ,231()n B n a a a +=+++ ,342()n C n a a a +=+++ ,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【解析】解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以()()()(),B n A n C n B n -=-即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=-(Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有 1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. (2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()B n q A n C n q B n==, 于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即212.n n a qa a a ++-=-由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=.因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列, 综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.【解析】解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有1232300010*******50(),(),(),6200(1)T x T x T x x x k x k x ⨯====-+ 期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k =于是(1)当2k =时,12()(),T x T x = 此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数13(),()T x T x 的单调性知,当100015002003x x =-时()f x 取得最小值,解得4009x =.由于134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()max (),()50T x x T x T x x ϕ==-易知()T x 为增函数,则{}13()max (),()f x T x T x ={}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭. 由函数1(),()T x T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而 此时完成订单任务的最短时间大于25011. (3)当2k <时,12()(),T x T x < 由于k 为正整数,故1k =,此时{}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时 完成订单任务的最短时间为2509,大于25011. 综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数 分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆 2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得2200721890.k y k y ++-= ① 设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y y k k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④ 同理可得 0234220(4).y k y y k +⋅=⑤ 于是由②,④,⑤三式得 010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦= 22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想.22.(本小题满分13分)已知函数()ax f x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax e x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,ax f x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a>时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a =- 于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1. (Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==--- 令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则 121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t --> 从而21()21()10a x x e a x x ---->,12()12()10,a x x e a x x ---->又1210,ax e x x >-2210,ax e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在),(21x x c ∈,使0)(=c ϕ,2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>. 综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

2012江苏高考数学试卷(详细答案)

2012江苏高考数学试卷(详细答案)

2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B =U .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生. 3.设a b ∈R ,,117ii 12ia b −+=−(i 为虚数单位),则a b +为 .4.右图是一个算法流程图,则输出的k 的值是 . 5.函数()f x =的定义域为 .6.现有10个数,它们能构成一个以1为首项,3−等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 .(第4题)7.如图,在长方体1111ABCD A BC D −中,3cm AB AD ==,12cm AA =则四棱锥11A BB D D −的体积为 cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m −=+的离心率,则m 的值为 .9.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF =uuu r uuu r AE BF uuu r uuu r的值是 .10.设()f x 是定义在R 上且周期为2的函数,在区间[11]−,上,0111()201x x ax f x bx x <+−=+ + ≤≤≤,,,,其中a b ∈R ,.若1322f f=, 则3a b +的值为 .11.设α为锐角,若4cos 65απ += ,则sin 212απ+的值为 .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +−+=,若直线2y kx =−上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b −+−≤≤≥,,则ba的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =uuu r uuu r uuu r uuu r.(1)求证:tan 3tan B A =; (2)若cos C =求A 的值. 1 A (第7题)(第9题)16.(本小题满分14分)如图,在直三棱柱111ABC A B C −中,1111A B A C =,D E ,分别是棱1BC CC ,上的点(点D不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =−+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点已知a ,b 是实数,1和1−是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x ′=+,求()g x 的极值点;(3)设()(())h x f f x c =−,其中[22]c ∈−,,求函数()y h x =的零点个数.A1(第16题)E)19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c −,,2(0)F c ,.已知(1)e ,和2e,都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若122AF BF −=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n ∗+=∈N .(1)设11n n n b b n a ∗+=+∈N ,,求证:数列2nn b a是等差数列;(2)设1nn nb b n a ∗+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)。

2012年安徽高考数学理科试卷 (带详解)

2012年安徽高考数学理科试卷    (带详解)

2012年普通高等学校招生全国统一考试(安徽卷)数学理科一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数满足,则为 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出代数式,求复数.【难易程度】容易【参考答案】D【试题解析】设,则,所以可得,故.2.下列函数中,不满足等于的是()A. B. C. D.【测量目标】函数相等.【考查方式】给出一系列函数解析式,计算两函数值,得到答案.【难易程度】容易【参考答案】C【试题解析】令,则,其中C不满足,故答案为C.3.如图所示,程序框图(算法流程图)的输出结果是 ( )A.3B.4C.5D.8第3题图【测量目标】循环结构的程序框图.【考查方式】理解程序框图中的计算关系,求值.【难易程度】容易【参考答案】B【试题解析】第一次循环后:;第二次循环后:;第三次循环后:,跳出循环,输出 .4. 公比为2的等比数列{} 的各项都是正数,且=16,则 ( )A.4B.5C.6D.7【测量目标】等比数列的性质,对数的求值.【考查方式】给出等比数列两项乘积,求出等比中项,根据公比求出再求对数的值.【难易程度】中等【参考答案】B【试题解析】设等比数列的公比为,,则,所以,故.5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )第5题图A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【测量目标】频率直方图.【考查方式】给出频率直方图,通过图比较两者的中位数,平均数,以及方差和极差.【难易程度】容易【参考答案】C【试题解析】由条形图易知甲的平均数为,中位数为,(步骤1)方差为,极差为;(步骤2)乙的平均数为,中位数为5,(步骤3)方差为,极差为,(步骤4)故,甲乙中位数不相等且.(步骤5)6.设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且,则“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【测量目标】充分,必要条件.【参考方式】判断充分必要条件.【难易程度】容易【参考答案】A【试题解析】判断本题条件命题为“”条件命题,命题“”为结论命题,当时,由线面垂直的性质定理可得,所以条件具有充分性;但当时,如果,就得不出,所以条件不具有必要性,故条件是结论的充分不必要条件.7.()的展开式的常数项是 ( )A. B. C. D.【测量目标】二项式定理.【考查方式】整理所给的方程,直接利用二项式定理求展开式常数项.【难易程度】容易【参考答案】D【试题解析】因为,所以要找原二项式展开式中的常数项,(步骤1)只要找展开式中的常数项和含项即可.通项公式(步骤2)8.在平面直角坐标系中,点(0,0),点,将向量绕点按逆时针方向旋转后得向量,则点的坐标是()A. B. C. D.【测量目标】三角函数的定义和求值,两角和的正切.【考查方式】根据题意得到正切值,将向量转动后再利用两角和的正切公式求解.【难易程度】中等【参考答案】A【试题解析】设,因为,所以,(步骤1)可得,(步骤2)验证可知只有当点坐标为时满足条件,(步骤3)故答案为A;法二:估算.设,因为,所以,可得,,所以点在第三象限,排除B,D选项,又,故答案为A.9.过抛物线的焦点的直线交该抛物线于A,B两点,为坐标原点.若,则的面积为()第9题A. B. C. D.【测量目标】直线的方程,直线和抛物线的位置关系.【考查方式】给出抛物线方程求出直线方程,根据直线与抛物线的位置关系求三角形面积.【难易程度】较难【参考答案】C【试题解析】如图,设,由抛物线方程,可得抛物线焦点,(步骤1)抛物线准线方程为,故.(步骤2)可得,,故,直线的斜率为,(步骤3)直线的方程为,(步骤4)联立直线与抛物线方程可得,(步骤5)因为两点横坐标之积为,所以点的横坐标为,(步骤6)可得,,(步骤7)点到直线的距离为,所以.(步骤8)10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ` ( )A.1或3B.1或4C.2或3D.2或4【测量目标】简单的计数,排列组合的应用.【考查方式】通过实际的问题,利用简单的计数原理和排列组合求值.【难易程度】较难【参考答案】D【试题解析】任意两个同学之间交换纪念品共要交换次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题共100分)请用0.5毫米海瑟墨水签字笔在答题卡上作答,在试卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.若满足约束条件则的取值范围是______.第11 题图【测量目标】二元线性规划求目标函数的范围.【考查方式】直接给出约束条件,画出可行域,求目标函数的的取值范围.【难易程度】容易【参考答案】【试题解析】法一:画出可行域是如图所示的的边界及内部,令.易知当直线经过点时,直线在轴上截距最大,目标函数取得最小值,即;当直线经过点时,直线在轴上截距最小,目标函数取得最大值,即,所以.法二:界点定值,同法一先画出可行域,令,把边界点代入目标函数可得,,比较可得.12.某几何体的三视图如图所示,该几何体的表面积是______.第12题图【测量目标】三视图求几何体的表面积.【考查方式】观察三视图,通过空间想象得出几何体,求几何体表面积.【难易程度】中等【参考答案】【试题解析】如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为.第12题图13.在极坐标系中,圆的圆心到直线的距离是____________.【测量目标】点到直线的距离,坐标系和参数方程.【考查方式】将参数方程化为一般方程,利用点到直线的距离公式求值.【难易程度】容易【参考答案】【试题解析】圆,即化为直角坐标为,(步骤1)直线的方程也就是直线,即为,(步骤2)圆心到直线的距离为.(步骤3)14.若平面向量,满足,则的最小值是___________.【测量目标】绝对值,均值不等式,向量的异向性.【考查方式】给出绝对值不等式,利用均值不等式求两向量的最值.【难易程度】中等【参考答案】【试题解析】由,有,(步骤1),可得,所以,(步骤2)故当且方向相反时,的最小值为.(步骤3)15.设的内角所对边的长分别为,则下列命题正确的是_____________(写出所有正确命题的编号).①若,则;②若,则;③若,则;④若,则;⑤若,则.【测量目标】正余弦定理判断三角形角的大小,均值不等式,命题之间的关系.【考查方式】根据三角形的边角关系,通过均值不等式以及正余弦定理判断角的大小从而确定命题间的关系.【难易程度】较难【参考答案】①②③【试题解析】对于①,由得,(步骤1)则,因为,所以,故①正确;(步骤2)对于②,由得,即,则,(步骤3)因为,所以,故②正确;(步骤4)对于对于③,可变为,可得,(步骤4)所以,所以,故,③正确;(步骤5)对于④,可变为,可得,所以,(步骤6)因为,所以,④错误;(步骤7)对于⑤,可变为,即,(步骤8)所以,所以,所以,故⑤错误. (步骤9)答案为①②③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设函数.(I)求函数的最小正周期;(II)设函数对任意,有,且当时,,求函数在上的解析式.【测量目标】两角和与差的三角函数公式,二倍角公式,三角函数的性质,求分段函数解析式.【考查方式】给出函数解析式,根据三角函数的性质得到周期,利用两角和与差的三角公式以及二倍角公式求分段函数解析式.【难易程度】中等【试题解析】.(步骤1)(1)函数的最小正周期.(步骤2)(2)当时,,(步骤3)当时,,当时, .(步骤4)得:函数在上的解析式为(步骤5)17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量.(Ⅰ)求的概率;(Ⅱ)设,求的分布列和均值(数学期望).【测量目标】基本事件概率,条件概率,离散型随机变量及其分布列均值.【考查方式】通过实际问题考查基本事件的的概率以及分布列和数学期望.【难易程度】中等【试题解析】(I)表示两次调题均为类型试题,概率为.(步骤1)(Ⅱ)时,每次调用的是类型试题的概率为,随机变量可取.,,.(步骤2).(步骤4)答:(Ⅰ)的概率为;(Ⅱ)的均值为.(步骤5)18.(本小题满分12分)平面图形,其中是矩形,,,.现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图空间图形,对此空间图形解答下列问题.第18题图(1)证明:;(2)求的长;(3)求二面角的余弦值.【测量目标】空间中线线、线面、面面的位置关系,空间中的距离以及二面角.【考查方式】线线,线面,面面的垂直的相互转化,证明线线垂直;根据证明得到三角关系求距离;分析所求二面角所形成的三角形,解三角形,求角.【难易程度】中等【试题解析】(1)取的中点为点,连接,则,∴,∵平面平面,∴平面,(步骤1)同理:平面,得,∴共面,(步骤2)又∵,∴平面,∴.(步骤3)(2)延长到,使,得,(步骤4),平面平面∴平面,∴平面,(步骤5).(3),∴是二面角的平面角.(步骤6)在中,,在中,,∴二面角的余弦值为.(步骤7)19.(本小题满分13分)设.(I)求在上的最小值;(II)设曲线在点的切线方程为,求的值.【测量目标】函数、导数的基础知识,运用导数研究函数性质,导数的几何性质.【考查方式】给出含参的函数解析式,利用导数对参数进行分类讨论求函数的最值;根据导数的几何性质,得到切点方程联立该点函数方程求值.【难易程度】中等【试题解析】(I)设,则.(步骤1)①当时,在上是增函数,得:当时,的最小值为.(步骤2)②当时,,当且仅当时,的最小值为.(步骤3)(II),(步骤4)由题意得:20. (本小题满分13分)如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点;(I)若点的坐标为,求椭圆的方程;(II)证明:直线与椭圆只有一个交点.第20 题图【测量目标】椭圆方程和椭圆几何性质,直线与椭圆的位置关系. 【考查方式】通过图形以及已知条件求椭圆方程;根据直线与圆的位置关系进行证明.【难易程度】中等【试题解析】(I)点代入,得:.(步骤1).①又. ②.③(步骤2)由①②③得:,即椭圆的方程为.(步骤3)(II)设,则.(步骤4)得:,(步骤5).(步骤6)过点与椭圆相切的直线斜率.(步骤7)得:直线与椭圆只有一个交点.21.(本小题满分13分)数列满足:.(I)证明:数列是单调递减数列的充分必要条件是;(II)求的取值范围,使数列是单调递增数列.【测量目标】数列概念及其性质,不等式及其性质,充要条件.【考查方式】给出数列关系式,分步骤证明充分,必要条件;分类讨论,归纳求参数的取值范围使得数列单调递增.【难易程度】较难【试题解析】(I)必要条件当时,数列是单调递减数列;(步骤1)充分条件数列是单调递减数列.(步骤2)得:数列是单调递减数列的充分必要条件是.(II)由(I)得:.①当时,,不合题意;(步骤3)②当时,,,(步骤4).(步骤5)当时,与同号,由,.(步骤6)当时,存在,使与异号.(步骤7)与数列是单调递减数列矛盾得:当时,数列是单调递增数列.(步骤8)。

2012年辽宁高考数学理科试卷(带详解)

2012年辽宁高考数学理科试卷(带详解)

2012年普通高等学校招生全国统一考试(辽宁卷)答案与解析数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=UUA B 痧 ( )A .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6 【测量目标】集合的基本运算.【考查方式】通过列举法给出全集与子集,求两集合的交集. 【难易程度】容易 【参考答案】B 【试题解析】()()U UA B痧即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,()()(){}==7,9U UU A B A B 痧?.2.复数2i=2i -+ ( ) A .34i 55- B .34+i 55 C .41i 5- D .31+i 5【测量目标】复数代数形式的四则运算.【考查方式】给出复数的除法形式,考查复数的代数形式的四则运算.【难易程度】容易 【参考答案】A【试题解析】()()()22i 2i 34i 34===i 2+i 2+i 2i 555----- 3. 已知两个非零向量a,b 满足+=-a b a b ,则下面结论正确 ( ) A .a b B .⊥a bC .=a bD .+=-a b a b【测量目标】向量的线性运算.【考查方式】给出两个非零向量满足的关系式,求两向量的线性关系. 【难易程度】容易 【参考答案】B【试题解析】+=-a b a b ,可以从几何角度理解,以非零向量a,b 为邻边做平行四边形,对角线长分别为,+-a b a b ,若=+-a b a b ,则说明四边形为矩形,所以⊥a b ;也可由已知得22+=-a b a b ,即22222+=+2+=0-∴∴⊥a ab b a ab b ab a b 4. 已知命题()()()()122121:,,0p x x f x f x xx ∀∈--R …,则p ⌝是 ( )A .()()()()122121,,0x x f x f x xx ∃∈--R … B .()()()()122121,,0x x f x f x xx ∀∈--R … C .()()()()122121,,<0x x f x f x xx ∃∈--R D .()()()()122121,,<0x x f x f x xx ∀∈--R【测量目标】简单的逻辑联结词,全称量词与存在量词. 【难易程度】容易【考查方式】给出命题形式求其非命题形式. 【参考答案】C【试题解析】全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()21210f x f x xx --…”改为“()()()()2121<0f x f x x x --”.5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 ( ) A .33!⨯ B .()333!⨯ C .()43! D .9!【测量目标】排列组合及其应用.【考查方式】给出排列组合的条件,求不同的方案数量. 【难易程度】中等【参考答案】C【试题解析】每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S ( ) A .58 B .88 C .143 D .176 【测量目标】等差数列的性质,等差数列前n 项和.【考查方式】给出等差数列中两项的和,利用等差数列的性质求数列的前几项和. 【难易程度】容易 【参考答案】B【试题解析】4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a 7.已知()sin cos 0,πααα-∈,则tan α= ( ) A .1- B.2-C.2D .1【测量目标】同角三角函数的基本关系.【考查方式】给出sin α与cos α满足的关系,求tan α的值. 【难易程度】容易 【参考答案】A【试题解析】方法一:()sin cos 0,πααα-∈,两边平方得1sin 2=2,α-()sin 2=1,20,2π,αα-∈3π3π2=,=,24ααtan =1α∴- 方法二:由于形势比较特殊,可以两边取导数得cos +sin =0,tan =1ααα∴-8. 设变量,x y 满足100+20015x y x y y -⎧⎪⎨⎪⎩…剟剟,则2+3x y 的最大值为 ( )A .20B .35C .45D .55 【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出不等式组,画出不等式表示的范围,求解目标函数的最值. 【难易程度】容易【参考答案】D【试题解析】如图所示过点()5,15A ,2+3x y 的最大值为55第8题图9. 执行如图所示的程序框图,则输出的S 值是 ( ) A .1- B .23 C .32D .4第9题图【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,最后输出. 【难易程度】容易 【参考答案】D【试题解析】当=1i 时,经运算得2==124S --;(步骤1) 当=2i 时,经运算得()22==213S --;(步骤2) 当=3i 时,经运算得23==2223S -;(步骤3) 当=4i 时,经运算得2==4322S -;(步骤4) 当=5i 时,经运算得2==124S --;(步骤5) 从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S10. 在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段,AC CB 的长,则该矩形面积小于322cm 的概率为 ( ) A .16B .13 C .23D .45【测量目标】几何概型.【考查方式】给出围成长方形的方式,求其面积大于一定值时的概率. 【难易程度】中等 【参考答案】C【试题解析】如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==1232S xy x x -….解得0<48<12x x 或剟,该矩形面积小于322cm 的概率为82=123第10题图11. 设函数)(x f ()x ∈R 满足()()()(),=2f x f x f x f x -=-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos πg x x x ,则函数()()()=h x g x f x -在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为 ( ) A .5 B .6 C .7 D .8【测量目标】偶函数的性质,函数的周期性,函数零点的求解与判断,函数图象的应用. 【考查方式】给出函数式,求复合函数在某区间上的零点数. 【难易程度】较难 【参考答案】B【试题解析】()(),f x f x -=所以函数)(x f 为偶函数,所以()()()=2=2f x f x f x --,所以函数)(x f 为周期为2的周期函数(步骤一) 且()()0=0,1=1f f ,而()()=c o s πg x x x 为偶函数, 且()1130====0222g g g g ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在同一坐标系下作出两函数(步骤二)在13,22⎡⎤-⎢⎥⎣⎦上的图象,发现在13,22⎡⎤-⎢⎥⎣⎦内图象共有6个公共点,(步骤三) 则函数()()()=h x g x f x -在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为6.(步骤四)第11题图12. 若[)0,+x ∈∞,则下列不等式恒成立的是 ( ) A .2e 1++xx x …B2111+24x x -…C .21cos 12x x -… D .()21ln 1+8x x x -… 【测量目标】不等式比较大小.【考查方式】给出未知数的范围,判断不等式的正确性. 【难易程度】中等 【参考答案】C【试题解析】验证A ,当332=3e >2.7=19.68>1+3+3=13x 时,,故排除A ;(步骤一) 验证B ,当1=2x,而111113391+===<=22441648484848-⨯⨯,故排除B ;(步骤二)验证C ,令()()()21=cos 1+,=sin +,=1cos 2g x x x g x x x g x x '''---,显然()>0g x ''恒成立 所以当[)0,+x ∈∞,()()0=0g x g ''…,所以[)0,+x ∈∞,()21=cos 1+2g x x x -为增函数,所以()()0=0g x g …,恒成立,故选C ;(步骤三)验证D ,令()()()()()2311=ln 1++,=1+=8+144+1x x x h x x x x h x x x -'--, 令()<0h x ',解得0<<3x ,所以当0<<3x 时,()()<0=0h x h ,显然不恒成立(步骤四)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13. 一个几何体的三视图如图所示,则该几何体的表面积为 .第13题图【测量目标】由三视图求几何体的表面积.【考查方式】给出几何体的三视图,求其表面积. 【难易程度】容易 【参考答案】38【试题解析】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体,中心去除一个半径为1的圆柱,所以表面积为()243+41+31+2π2π=38⨯⨯⨯⨯-14.已知等比数列{}n a 为递增数列,且()2510+2+1=,2+=5n n n a a a a a ,则数列{}n a 的通项公式=n a ____________.【测量目标】等比数列的的通项,等比数列的性质.【考查方式】给出等比数列通项之间满足的关系,求等比数列的通项公式 【难易程度】容易 【参考答案】2n【试题解析】令等比数列{}n a 的公比为q ,则由()+2+12+=5n nn a a a 得,222+2=5,25+2=0q q q q -,解得1=22q q =或,(步骤一) 又由2510=a a 知,()24911=a qa q ,所以1=a q ,(步骤二)因为{}n a 为递增数列,所以1==2a q ,=2n n a (步骤三)15. 已知,P Q 为抛物线2=2x y 上两点,点,P Q 的横坐标分别为4,2-,过,P Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程,求抛物线上两点的切线交点的纵坐标. 【难易程度】容易 【参考答案】4- 【试题解析】21=,=2y x y x ',所以以点P 为切点的切线方程为=48y x -,以点Q 为切点的切线方程为=22y x --,联立两方程的=1y=4x ⎧⎨-⎩16. 已知正三棱锥P ABC -,点,,,PABC若,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为 . 【测量目标】正三棱锥的性质.【考查方式】通过球内接正三棱锥的性质,求球心到截面的距离.【参考答案】3【试题解析】如图所示,O 为球心,'O 为截面ABC 所在圆的圆心,令===PA PB PC a ,,,PA PB PC 两两相互垂直,==AB BC CA ,(步骤一)所以'=3CO a ,'=3PO a ,22+=333a ⎛⎛⎫ ⎪ ⎪⎝⎝⎭,解得=2a ,(步骤二)所以PO a ,OO (步骤三)第16题图三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角,,A B C 的对边分别为,,a b c ,角,,A B C 成等差数列. (1)求cos B 的值;(2)边,,a b c 成等比数列,求sin sin A C 的值【测量目标】利用正余弦定理解决有关角度问题.【考查方式】通过角成等差,求角的余弦值;在给出边成等比数列,求两角正弦的乘积. 【难易程度】容易【试题解析】(1)由已知π12=+,++=π,=,cos =32B AC A B C B B ∴(步骤一) (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB (步骤二)解法二:2=b ac ,222221++=cos ==222a c b a c acB ac ac--,由此得22+=,a c ac ac -得=a c (步骤二)所以π===3A B C ,3sin sin =4A C (步骤三) 18. (本小题满分12分)如图,直三棱柱'''ABC A B C -,=90BAC ∠,=='AB AC AA λ,点,M N 分别为'A B 和''B C 的中点(1)证明:''MNAACC 平面 ;(2)若二面角'--A MN C 为直二面角,求λ的值第18题图【测量目标】线面平行的判定,二面角,空间直角坐标系,空间向量及其运算. 【考查方式】给出线段的关系,用线线平行推导线面平行,根据二面角为之二面角求未知数. 【难易程度】中等 【试题解析】(1)连结','AB AC ,由已知=90,=BAC AB AC ∠ 三棱柱-'''ABC A B C 为直三棱柱,所以M 为'AB 中点.又因为N 为''B C 中点(步骤一) 所以'MN AC ,又MN ⊄平面''A ACC'AC ⊂平面''A ACC ,因此''MN AACC 平面 (步骤二)(2)以A 为坐标原点,分别以直线,,'AB AC AA 为x 轴,y 轴,z 轴建立直角坐标系-O xyz ,如图所示,设'=1,AA 则==AB AC λ,于是()()()()()()0,0,0,,0,0,0,,0,'0,0,1,',0,1,'0,,1A B C A B C λλλλ, 所以1,0,,,,12222M N λλλ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(步骤三) 设()111=,,x y z m 是平面'A MN 的法向量,由'=0,=0A M MN ⎧⎪⎨⎪⎩ m m 得11111=0221+=022x z y z λλ⎧-⎪⎪⎨⎪⎪⎩,可取()=1,1,λ-m (步骤四)设()222=,,x y z n 是平面MNC 的法向量,由=0,=0NC MN ⎧⎪⎨⎪⎩ n n 得22222+=0221+=022x y z y z λλλ⎧--⎪⎪⎨⎪⎪⎩,可取()=3,1,λ--n (步骤五) 因为'--A MN C 为直二面角,所以()()2=0,3+11+=0λ--⨯- 即m n,解得λ(步骤六)第18题图19. (本小题满分12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷“22⨯抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷“人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X附:()21122122121+2++1+2=n n n n n n n n n χ-,第19题图【测量目标】频率分布直方图,用样本估计总体,离散型随机变量的期望与方差.【考查方式】通过频率分布直方图,完成联表,判断相关性;给出随机抽样的方式求分布列期望与方差.【难易程度】中等 【试题解析】22⨯将列联表中的数据代入公式计算,得()()221122122121+2++1+210030104515100=== 3.0307525455533n n n n n n n n n χ-⨯⨯-⨯≈⨯⨯⨯(步骤一)因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.(步骤二) 由题意13,4X B ⎛⎫ ⎪⎝⎭,从而X 的分布列为()==3=44E X np ⨯,()()=1=3=4416D X np p -⨯⨯.(步骤三)20. (本小题满分12分)如图,椭圆()22022:+=1>b>0,,x y C a a b a b为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点(1)求直线1AA 与直线2A B 交点M 的轨迹方程;(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中2<<b t a ,12t t ≠.若矩形ABCD 与矩形''''A B C D 的面积相等,证明:2212+t t 为定值第20题图【测量目标】圆锥曲线中的轨迹问题,圆锥曲线中的定值问题.【考查方式】给出椭圆与动圆的函数表达式,求其上两直线交点的轨迹方程;再根据两动圆形成的矩形面积相等,证明两未知数的平方之和为定值. 【难易程度】较难 【试题解析】(1)设()()1111,,,A x y B x y -,又知()()12,0,,0A a A a -,则 直线1A A 的方程为 ()11=++y y x a x a① 直线2A B 的方程为()11=y y x a x a--- ②(步骤一) 由①②得 ()22221221=y y x a x a--- ③(步骤二) 由点()11,A x y 在椭圆0C 上,故可得221122+=1x y a b ,从而有222112=1x y b a ⎛⎫- ⎪⎝⎭,代入③得()2222=1<,<0x y x a y a b--(步骤三)(2)证明:设()22',A x y ,由矩形ABCD 与矩形''''A B C D 的面积相等,得2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以2222221212221=1x x b x b x a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭(步骤四)由12t t ≠,知12x x ≠,所以22212+=x x a .(步骤五)从而22212+=y y b ,因而222212+=+t t a b 为定值(步骤六) 21. (本小题满分12分)设()()()=ln +1+,,,f x x ax b a b a b ∈R 为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切.(1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x 【测量目标】导数的几何意义,均值不等式,利用导数解决不等式问题.【考查方式】通过曲线与直线相切求函数表达式中未知数;再限定x 的定义域证明不等式. 【难易程度】较难 【试题解析】(1)由()=y f x 的图象过()0,0点,代入得=1b - 由()=y f x 在()0,0处的切线斜率为32,又=0=013'==++12x x y a a x ⎛⎫⎪⎝⎭,得=0a (步骤一)(2)(证法一)由均值不等式,当>0x 时,+1+1=+2xx +12x(步骤二)记()()9=+6xh x f x x -, 则()()()()()22215454+654=<+14+1+6+6+6x h x x x x x x '-- ()()()()32+6216+1=4+1+6x x x x -,(步骤三) 令()()()3=+6216+1g x x x -,则当0<<2x 时,()()2=3+6216<0g x x '-因此()g x 在()0,2内是减函数,又由()0=0g ,得()<0g x ,所以()<0h x '(步骤四) 因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,于是当0<<2x 时,()9<+6xf x x (步骤五) (证法二)由(1)知()()=ln +1+1f x x ,由均值不等式,当>0x 时,+1+1=+2x x,故+12x(步骤一)令()()=ln +1k x x x -,则()()10=0,'=1=<0+1+1xk k x x x --,故()<0k x ,即()l n +1<x x ,由此得,当>0x 时,()3<2f x x ,记()()()=+69h x x f x x -,(步骤二) 则当0<<2x 时,()()()()()31=++69<++692+1h x f x x f x x x x ⎛''-- ⎝()()()(()()()()()11=3+1++618+1<3+1++63+18+12+12+12x x x x x x x x x x x ⎡⎤⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()()=718<04+1xx x -(步骤三)因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,即()9<+6xf x x (步骤四) 22. (本小题满分10分)选修4-1:几何证明选讲如图,O 和'O 相交于A ,B 两点,过A 作两圆的切线分别交两圆于,C D 两点,连结DB 并延长交O 于点E .证明:(1)=AC BD AD AB ; (2)=AC AE第22题图【测量目标】圆的性质的应用. 【考查方式】给出两圆中直线位置关系,证明直线的比例关系. 【难易程度】中等 【试题解析】 证明:(1)由AC 与O 相切于A ,得=CAB ADB ∠∠,同理=ACB DAB ∠∠,(步骤一)所以ACB DAB △∽△.从而=AC ABAD BD,即=AC BD AD AB (步骤二) (2)由AD 与O 相切于A ,得=A E D B A D ∠∠,又=A D E B D A ∠∠,得EA D AB D △∽△(步骤三)从而=AE ADAB BD,即=AE BD AD AB ,(步骤四) 综合(1)的结论,=AC AE (步骤五)23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆221:+=4C x y ,圆()222:2+=4C x y -(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示)(2)求圆1C 与圆2C 的公共弦的参数方程【测量目标】极坐标与参数方程.【考查方式】给出直角坐标系下两圆的方程,求极坐标方程,并求出两圆公共弦的参数方程. 【难易程度】容易 【试题解析】圆1C 的极坐标方程为=2ρ,圆2C 的极坐标方程为=4cos ρθ,(步骤一) 解=2=4cos ρρθ⎧⎨⎩得π=2,=3ρθ±,故圆1C 与圆2C 交点的坐标为ππ2,,2,33⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭(步骤二)注:极坐标系下点的表示不唯一(2)(解法一)由=cos =sin x y ρθρθ⎧⎨⎩,得圆1C 与圆2C 交点的直角坐标为((,1,故圆1C 与圆2C 的公共弦的参数方程为=1=x t y t⎧⎨⎩(或参数方程写成=1=x y y y ⎧⎨⎩(步骤三) (解法二) 将=1x 代入=cos =sin x y ρθρθ⎧⎨⎩,得cos =1ρθ,从而1=cos ρθ(步骤三)于是圆1C 与圆2C 的公共弦的参数方程为=1ππ=tan 33x y θθ⎧-⎨⎩剟(步骤四) 24. (本小题满分10分)选修4-5:不等式选讲已知()()=+1f x ax a ∈R ,不等式()3f x …的解集为{}21x x -剟(1)求a 的值 (2)若()22x f x f k ⎛⎫-⎪⎝⎭…恒成立,求k 的取值范围 【测量目标】不等式恒成立问题.【考查方式】给出不等式的函数表达式及其解集,求函数式中的未知数;给出不等关系求k 的取值范围.【难易程度】中等 【试题解析】(1)由+13ax …得42ax -剟,又()3f x …的解集为{}21x x -剟,所以当0a …时,不合题意当>0a 时,42x a a-剟,得=2a (步骤一) (2)记()()=22x h x f x f ⎛⎫- ⎪⎝⎭,则()1,11=43,1<<211,2x h x x x x ⎧⎪-⎪⎪----⎨⎪⎪--⎪⎩……,所以()1h x …,因此1k …(步骤二)。

2011年全国统一高考数学试卷(理科)(新课标)(含解析版)

2011年全国统一高考数学试卷(理科)(新课标)(含解析版)

【解答】解:根据题意可知:tanθ=2,
所以 cos2θ=
=
=,
则 cos2θ=2cos2θ﹣1=2× ﹣1=﹣ .
故选:B. 【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系
化简求值,是一道中档题. 6.(5 分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )
为 C 的实轴长的 2 倍,则 C 的离心率为( )
A.
B.
C.2
D.3
【考点】DA:二项式定理. 菁优网版权所有
【专题】11:计算题. 【分析】给 x 赋值 1 求出各项系数和,列出方程求出 a;将问题转化为二项式的系数和;利用二项
C.2
D.3
8.(5 分)
的展开式中各项系数的和为 2,则该展开式中常数项为( )
A.﹣40
B.﹣20
C.20
D.40
9.(5 分)由曲线 y= ,直线 y=x﹣2 及 y 轴所围成的图形的面积为( )
A.
B.4
C.
D.6
10.(5 分)已知 与 均为单位向量,其夹角为 θ,有下列四个命题 P1:| + |>1⇔θ∈[0, );
2011 年全国统一高考数学试卷(理科)(新课标)
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)复数 的共轭复数是( )
A.
ቤተ መጻሕፍቲ ባይዱ
B.
C.﹣i
D.i
2.(5 分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )
A.y=2x3
B.y=|x|+1
C.y=﹣x2+4
第 3 页(共 15 页)

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、选择题(1)、复数131ii-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算 【难度】容易 【答案】C 【解析】13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3.},B ={1,m } ,A U B =A , 则m =A. 0B. 0或3C. 1D. 1或3 【考点】集合 【难度】容易 【答案】B 【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m ⋃=∴⊆==∴∈∴=====或舍去Q .【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为A. 216x +212y =1B. 212x +28y =1C. 28x +24y =1D. 212x +24y =1【考点】椭圆的基本方程【难度】容易 【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a=22=184x y+【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

在高考精品班数学(文)强化提高班中有对圆锥曲线相关知识的总结讲解。

2012年高考理科数学北京卷(含详细答案)

2012年高考理科数学北京卷(含详细答案)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共6页,150分.考试时长120分钟.考试生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{320}A x x =∈+>R |,{|(1)(3)0}B x x x =∈+->R ,则A B =( )A . (,1)-∞-B . 2(1,)3-- C . 2(,3)3-D . (3,)+∞2. 设不等式组02,02x y ⎧⎨⎩≤≤≤≤表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π22-C . π6D . 4π4-3. 设,a b ∈R .“0a =”是“复数i a b +是纯虚数”的 ( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 ( )A . 2B . 4C . 8D . 165. 如图,90ACB ∠=,CD AB ⊥于点D ,以BD 为直径的圆与BC 交于点E ,则( )A . CE CB AD DB = B . CE CB AD AB =C . 2 AD AB CD =D . 2 CE EB CD =6. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+ B .30+C .56+D .60+8. 某棵果树前n 年的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 值为( )A . 5B . 7C . 9D . 11第Ⅱ卷(选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡相应位置上.9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos ,3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为________.10. 已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a =________; n S =________.11. 在ABC △中,若2a =,7b c +=,1cos 4B =-,则b =________.12. 在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则OAF △的面积为________.13. 已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则 DE CB 的值为________;DE DC 的最大值为________.14. 已知()(2)(3)f x m x m x m =-++,()22x g x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题共13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递增区间.E BDAC34正(主)视图侧(左)视图俯视图姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)16.(本小题共14分)如图1,在Rt ABC △中,90C ∠=,3BC =,6AC =.D ,E 分别是AC ,AB 上的点,且DE BC ∥,2DE =,将ADE △沿DE 折起到1A DE △的位置,使1AC CD ⊥,如图2.(Ⅰ)求证:1A C ⊥平面BCDE ;(Ⅱ)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(Ⅲ)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?请说明理由.17.(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中0a >,600a b c ++=.当数据a ,b ,c 的方差2s 最大时,写出a ,b ,c 的值 (结论不要求证明),并求此时2s 的值.(求:2222121[()()()]n s x x x x x x n=-+-++-,其中x 为数据1x ,2x ,,n x 的平均数)18.(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求a ,b 的值; (Ⅱ)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题共14分)已知曲线C :22(5)(2)8()m x m y m -+-=∈R .(Ⅰ)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M ,N ,直线1y =与直线BM 交于点G .求证:A ,G ,N 三点共线.20.(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和(1)i m ≤≤,()j c A 为A 的第j 列各数之和(1)j n ≤≤;记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A中的最小值.(Ⅰ)对如下数表A ,求()k A 的值;(Ⅱ)设数表(2,3)A S ∈形如求()k A 的最大值;(Ⅲ)给定正整数t ,对于所有的(2,21)A S t ∈+,求()k A 的最大值.ACDEBA 1MCBE D图1图22012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷{|AB x x =A B .2CE CB CD =90,CD ⊥AD DB ,所以CE CB AD DB =.【提示】由题中三角形和圆的位置关系,通过条件求解即可.【考点】几何证明选讲.第Ⅱ卷【解析】23S a =,所以【提示】由{}n a 是等差数列23S a =,解得60,所以直线的斜率为603=1⎛【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用.)()0g x <,恒成立3)0+>在综上可得①②成立时42m -<<-.)()0g x <,而【考点】指数函数的性质,二次函数的性质.(Ⅰ)证明CD 1CDA D D =,,又A ⊥DE ,又CD DE D =⊥平面BCDE (Ⅱ)如图建立空间直角坐标系C xyz -,则,23),(0B ∴1(0,3,2A B =-,(2,2,A E =-法向量为(,,)n x y z =100A B n A E n ⎧=⎪⎨=⎪⎩∴3223y ⎧⎪⎨---⎪⎩2⎪⎩∴(1,2,3)n =-又∵M ∴(1,0,CM =-cos 2||||1313222CM n CM n θ====++∴CM 与平面1A BE 所成角的大小45(Ⅲ)设线段上存在点P ,设则(0,A P a =,(2,DP a =设平面A DP 法向量为(,n x y =∴1(,,n x y =垂直,则10n n =, DE ,即证明DE ⊥平面1A CD 法向量(1,2,n =-,(1,0,CM =-A DP 法向量为(3n a =-垂直,则10n n =,可求得【考点】平面图形的折叠问题,立体几何.(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱(Ⅱ)a a∴3AG⎛= ,(AN x=三点共线,只需证AG,AN共线3(6Mxx k+成立,化简得:从而可得3AG⎛= ,(AN x=三点共线,只需证AG,AN共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.1(1)(1t t++数学试卷第19页(共21页)数学试卷第20页(共21页)数学试卷第21页(共21页)。

2012年高考数学试题及答案(全国卷理数2套)

2012年高考数学试题及答案(全国卷理数2套)
2012 年全国统一高考数学试卷(理科)(新课标)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符
合题目要求的.
1.(5 分)(2012•新课标)已知集合 A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A}, 则 B 中所含元素的个数为( )
A.
B.
C.
D.
12.(5 分)(2012•新课标)设点 P 在曲线
上,点 Q 在曲线 y=ln(2x)上,则|PQ|
最小值为( )
A.1﹣ln2
B.
C.1+ln2
二.填空题:本大题共 4 小题,每小题 5 分.
13.(5 分)(2012•新课标)已知向量
夹角为 45°,且


D. ,则
14.(5 分)(2012•新课标)设 x,y 满足约束条件:
A.A+B 为 a1,a2,…,an 的和 B. 为 a1,a2,…,an 的算术平均数
C.A 和 B 分别是 a1,a2,…,an 中最大的数和最小的数 D.A 和 B 分别是 a1,a2,…,an 中最小的数和最大的数 7.(5 分)(2012•新课标)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的 三视图,则此几何体的体积为( )
21.(12 分)(2012•新课标)已知函数 f(x)满足 f(x)=f′(1)ex﹣1﹣f(0)x+ x2;
(1)求 f(x)的解析式及单调区间;
(2)若
,求(a+1)b 的最大值.
四、请考生在第 22,23,24 题中任选一题作答,如果多做,则按所做的第一题计分,作答 时请写清题号. 22.(10 分)(2012•新课标)如图,D,E 分别为△ABC 边 AB,AC 的中点,直线 DE 交△

(推荐)2012高考全国2卷数学理科试题及答案详解

(推荐)2012高考全国2卷数学理科试题及答案详解

2012年普通高等学校招生全国统一考试数学理科数学(全国二卷)一、选择题1、 复数131i i-++= A 2+i B 2-i C 1+2i D 1- 2i2、已知集合A =},B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列1n a 1+n a 的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a CB =→,b CA=→,a ·b=0,|a|=1,|b|=2,则=→AD (A)b a 31-31(B )b a 32-32 (C)b a 53-53 (D)b a 54-54(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) (B ) (8)已知F 1、F 2为双曲线C :2-x 22=y 的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012年山东高考数学理科试卷 (带详解)

2012年山东高考数学理科试卷    (带详解)

2012年普通高等学校招生全国统一考试(山东卷)理科数学一选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z满足z(2i)=11+7i(i为虚数单位),则z为 ( )A.3+5iB.35iC.3+5iD.35i【测量目标】复数的四则运算.【考查方式】给出含复数z的一个等式,化简求复数z.【难易程度】容易【参考答案】A【试题解析】.答案选A.另解:设,则,根据复数相等可知,解得,于是.2.已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则为 ( )A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}【测量目标】集合间的关系,集合的基本运算.【考查方式】给出三个集合,考查它们之间补集与并集.【难易程度】容易【参考答案】C【试题解析】由题意可知,,故而选择答案C.3.设a>0 ,a≠1 ,则“函数f(x)= a x在R上是减函数 ”,是“函数g(x)=(2a)在R上是增函数”的 ( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【测量目标】充分、必要条件.【考查方式】给出两个命题,判断它们之间的关系.【难易程度】容易【参考答案】A【试题解析】由题意可知,在R上单调递减,故而所以故在R上单调递增,(步骤1)反之,由于在R上单调递增,可知,(步骤2)当时,,函数并不单调递减,故而“函数f(x)= a3在R上是减函数”,是“函数g(x)=(2a) 在R上是增函数”的充分不必要条件,答案选A.(步骤3)4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为 ( )A. B.9 C.10 D.15【测量目标】系统抽样.【考查方式】构造数学模型,利用系统抽样解决问题.【难易程度】容易【参考答案】C【试题解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即,(步骤1)第k组的号码为451,令451,而,解得,(步骤2)则满足的整数k有10个,故答案应选C.(步骤3)5.设变量x,y满足约束条件则目标函数的取值范围是()A. B. C. D.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出二元不等式组,画出可行域求目标函数的最值.【难易程度】中等【参考答案】A【试题解析】由所给的不等式组可知所表示的可行域如图所示,第5题图(步骤1)而目标函数可以看做,截距最小时值最大,当截距最大时值最小,根据条件,故当目目标函数过时,取到的最大,,(步骤2)由,当目标函数经过时,取到最小值,,故而答案为A.(步骤3)6.执行下面的程序图,如果输入a=4,那么输出的n的值为()第6题图A.2 B.3 C.4 D.5【测量目标】循环型程序框图.【考查方式】给出程序框图的输入值,求输出值.【难易程度】容易【参考答案】B【试题解析】;(步骤1);(步骤2).(步骤3)答案应选B.7.若,,则sin= ( )A.B.C.D.【测量目标】二倍角.【考查方式】给出一个角的取值范围及其二倍正弦值,求此角在范围内的正弦值.【难易程度】容易【参考答案】D【试题解析】由可得,,,答案应选D.另解:由及可得,(步骤1)而当时,结合选项即可得.答案应选D.(步骤2)8.定义在R上的函数f(x)满足f(x+6)=f(x),当3x<1时,f(x)=,当1x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)= ( )A.335B.338C.1678D.2012【测量目标】函数的周期性.【考查方式】给出分段函数周期性及其解析式,求此函数一系列函数值的和.【难易程度】中等【参考答案】B【试题解析】根据条件可知函数是周期为6的周期函数,由因为当3x<1时,f(x)=,当1x<3时,f(x)=x可知,,(步骤1)故而,故而f(1)+f(2)+f(3)+…+f(2012)=(步骤2)故选B.9.函数的图象大致为 ( )A B C D【测量目标】三角函数的图象.【考查方式】给出三角函数解析式判断其图象.【难易程度】中等【参考答案】D【试题解析】函数,为奇函数,(步骤1)当,且时;当,且时;(步骤2)当,,;当,,.答案应选D.(步骤3)10.已知椭圆C:的离心率为,双曲线x²y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为 ( )A. B. C. D.【测量目标】椭圆的简单几何性质.【考查方式】给出椭圆的离心率及与已知抛物线形成的位置关系,求椭圆方程.【难易程度】中等【参考答案】D【试题解析】双曲线x²y²=1的渐近线方程为,(步骤1)代入可得,则,(步骤2)又由可得,则,于是.椭圆方程为,答案应选D.(步骤3)11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 ( )A.232B.252C.472D.484【测量目标】排列组合.【考查方式】给出数学模型利用排列组合判断取法的种数.【难易程度】中等【参考答案】C【试题解析】由题意可知,抽取的三张卡可以分为两类,一类为不含红色的卡,一类是含一张红色的卡片,(步骤1)第一类的抽取法的种数为,第二类抽取法的种数为,故而总的种数为(步骤2)12.设函数(x)=,g(x)=ax2+bx若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是 ( )A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时, x1+x2>0, y1+y2<0C.当a>0时,x1+x2<0, y1+y2<0D.当a>0时,x1+x2>0, y1+y2>0【测量目标】函数图象的应用.【考查方式】给出含参量的两个函数解析式,讨论参量的不同取值,通过两图象的交点判断交点坐标的关系.【难易程度】较难【参考答案】B【试题解析】令,则,(步骤1)设,令,则,(步骤2)要使y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点只需,整理得,于是可取来研究,(步骤3)当时,,解得,此时,此时;当时,,解得,此时,此时.答案应选B.(步骤4)另解:令可得.(步骤 1)设(步骤2)不妨设,结合图形可知,当时如右图,第12题图此时,即此时,即;同理可由图形经过推理可得当时.答案应选B.(步骤3)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若不等式的解集为,则实数k=__________.【测量目标】绝对值不等式.【考查方式】通过含参量的绝对值不等式的解集判断未知参量的值.【难易程度】容易【参考答案】2【试题解析】,(步骤1)根据解集为,故而,这是故而得(步骤2)另解:由题意可知是的两根,则解得.14.如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1EDF的体积为____________.第14题图【测量目标】立体几何空间几何体的体积.【考查方式】给出正方体的棱长,求正方体内几何体的体积.【难易程度】中等【参考答案】【试题解析】由题意可知,15.设a>0.若曲线与直线x=a,y=0所围成封闭图形的面积为a,则a=______.【测量目标】微积分的应用.【考查方式】给出曲线与直线函数解析式,求图象所围成的面积.【难易程度】中等【参考答案】【试题解析】.16.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为______________.第16题图【测量目标】弧度制.【考查方式】通过三角函数与向量知识,求平面点坐标的变化.【难易程度】较难【参考答案】【试题解析】根据题意可知圆滚动了2单位个弧长,点P旋转了弧度,此时点的坐标为另解1:根据题意可知滚动自圆心为(2,1)时的圆的参数方程为且,(步骤1)则点P的坐标为,即.(步骤2)三、解答题:本大题共6小题,共74分.17.(本小题满分12分)已知向量m=(sin x,1),函数的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图象向左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在上的值域.【测量目标】向量的坐标运算,函数的图象及变换.【考查方式】给出两向量,通过它们的乘积运算得三角函数关系式,讨论图象及值域.【难易程度】中等【试题解析】(Ⅰ),则;(步骤1)(Ⅱ)函数y=f(x)的图象向左平移个单位得到函数的图象,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数.(步骤2)当时,.故函数g(x)在上的值域为.(步骤3)另解:由可得,(步骤1)令,则,(步骤2)而,则,于是,故,即函数g(x)在上的值域为.(步骤3)18.(本小题满分12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.第18题图(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F-BD-C的余弦值.【测量目标】立体几何线面垂直及二面角.【考查方式】给出几何体中线线、线面关系,求证线面垂直及二面角的余弦值.【难易程度】中等【试题解析】(Ⅰ)在等腰梯形ABCD中,AB∥CD,∠DAB=,CB=CD,由余弦定理可知,即,(步骤1)在中,∠DAB=,,则为直角三角形,且.(步骤2)又AE⊥BD,平面AED,平面AED,且,故BD⊥平面AED;(步骤3)(Ⅱ)由(Ⅰ)可知,设,则,(步骤4)建立如图所示的空间直角坐标系,,向量为平面的一个法向量.(步骤5)设向量为平面的法向量,则即(步骤6)取,则,则为平面的一个法向量.(步骤7),而二面角F-BD-C的平面角为锐角,则二面角FBDC的余弦值为.(步骤8)第18题图19.(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.【测量目标】简单的随机抽样,用样本数字特征估计总体数字特征.【考查方式】给出数学模型,运用随机变量、分布列和数学期望求解事件概率及数学期望.【难易程度】容易【试题解析】(Ⅰ);(步骤1)(Ⅱ)(步骤2)X012345P20.(本小题满分12分)在等差数列{a n}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N,将数列{a n}中落入区间(9m,92m)内的项的个数记为,求数列{b m}的前m项和S m.【测量目标】等差数列的通项及数列的前n项和.【考查方式】给出等差数列几项的和及某一项的值,求等差数列的通项,并求新定义的数列的前n项和.【难易程度】中等【试题解析】(Ⅰ)由a3+a4+a5=84,=73可得(步骤1)而a9=73,则,于是即.(步骤2)(Ⅱ)对任意m∈N﹡,,则,即,(步骤3)而,由题意可知,(步骤4)于是,即.(步骤5)21.(本小题满分13分)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当时,的最小值.【测量目标】抛物线的简单几何性质,圆锥曲线中的探索性问题.【考查方式】给出含未知参量的抛物线方程及点线之间的位置关系,求抛物线方程,并探索点的存在问题和线段最短问题.【难易程度】较难【试题解析】(Ⅰ)F抛物线C:x2=2py(p>0)的焦点F,(步骤1)设M,,由题意可知,则点Q到抛物线C的准线的距离为,解得,于是抛物线C的方程为.(步骤2)(Ⅱ)假设存在点M,使得直线MQ与抛物线C相切于点M,而,,(步骤3),,(步骤4)由可得,,则,即,解得,点M的坐标为.(步骤5)(Ⅲ)若点M的横坐标为,则点M,.(步骤6)由可得,(步骤7)设,(步骤8)圆,,(步骤9)于是,令,(步骤10)设,,当时,,即当时.故当时,.(步骤11)22.(本小题满分13分)已知函数f(x) =(k为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x),其中为f(x)的导函数,证明:对任意x>0,.【测量目标】导数的几何意义,利用导数求函数的单调区间,利用导数解决不等式问题.【考查方式】给出含参量的函数解析式及函数图象上某点的切线,通过导数的应用求未知参量及函数单调区间.【难易程度】较难【试题解析】由f(x) = 可得,而,即,解得;(步骤1)(Ⅱ),令可得,当时,;当时,.于是在区间内为增函数;在内为减函数.(步骤2)(Ⅲ),(步骤3)当时,.当时,要证.只需证,然后构造函数即可证明.(步骤4)。

2012年高考数学试题

2012年高考数学试题

2012年全国统一高考数学试卷(新课标版)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种考点:排列、组合及简单计数问题.专题:计算题.分析:将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果解答:解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A点评:本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4考点:复数的基本概念;命题的真假判断与应用.专题:计算题.分析:由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.解答:解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.解答:解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.点评:本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题5.(5分)已知{a n} 为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数考点:循环结构.专题:计算题.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.解答:解:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12 D.18考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.解答:解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选B.点评:本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8考点:圆锥曲线的综合.专题:计算题.分析:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.解答:解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)(2012•黑龙江)已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.解答:解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.点评:本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数;则y=f(x )的图象大致为()A.B.C.D.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题.分析:考虑函数f(x )的分母的函数值恒小于零,即可排除A,C,D,这一性质可利用导数加以证明解答:解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,D故选B点评:本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径,∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.考点:点到直线的距离公式;反函数.专题:计算题.分析:由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求解答:解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称函数上的点到直线y=x的距离为设g(x)=,(x>0)则由≥0可得x≥ln2,由<0可得0<x<ln2∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增∴当x=ln2时,函数g(x)min=1﹣ln2由图象关于y=x对称得:|PQ|最小值为故选B点评:本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].考点:简单线性规划.专题:计算题.分析:先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围解答:解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]点评:平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.考点:解三角形.专题:计算题.分析:(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA 可求b+c,进而可求b,c解答:解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2点评:本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点:概率的应用;离散型随机变量的期望与方差.专题:综合题.分析:(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.解答:解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7X的分布列为X 60 70 80P 0.1 0.2 0.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4 ∵76.4>76,∴应购进17枝点评:本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:综合题.分析:(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.解答:(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.考点:圆锥曲线的综合;圆的标准方程;抛物线的简单性质.专题:综合题.分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD 的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;探究型;转化思想.分析:(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值解答:解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为点评:本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,难度较大,计算量也大,易马虎出错四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•黑龙江)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.考点:综合法与分析法(选修).专题:证明题.分析:(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,根据等弧对等角,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.解答:证明:(1)∵AB∥CF,∴∠DAE=∠ECF.根据等弧对等角可知,,∴∠BDC=∠ADF.∵D,E分别为△ABC边AB,AC的中点∴DE∥BC∴∠ADF=∠DBC.∴∠BDC=∠DBC∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.点评:本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.考点:椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:综合题.分析:(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解答:解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]点评:本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:计算题.分析:(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.解答:解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;刘长柏;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2013年5月30日。

2012年辽宁省高考理科数学试题word版含答案

2012年辽宁省高考理科数学试题word版含答案

2012年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8}, 则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}。

故选B【解析二】 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B 【点评】本题主要考查集合的交集、补集运算,属于容易题。

采用解析二能够更快地得到答案。

(2)复数22ii -=+ (A)3455i - (B)3455i +(C) 415i-(D) 315i+【答案】A 【解析】2(2)(2)34342(2)(2)555ii i i iii i ----===-++-,故选A【点评】本题主要考查复数代数形式的运算,属于容易题。

复数的运算要做到细心准确。

(3)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是 (A) a ∥b (B) a ⊥b (C){0,1,3} (D)a +b =a -b 【答案】B【解析一】由|a +b |=|a -b |,平方可得a ⋅b =0, 所a ⊥b ,故选B【解析二】根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b ,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y ∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D2.(5分)(2012•新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A3.(5分)(2012•新课标)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.9.(5分)(2012•新课标)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.10.(5分)(2012•新课标)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选B11.(5分)(2012•新课标)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,=,∴S△ABC∴V==.三棱锥S﹣ABC故选:C.12.(5分)(2012•新课标)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:314.(5分)(2012•新课标)设x,y满足约束条件:;则z=x﹣2y的取值范围为.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]15.(5分)(2012•新课标)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为16.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前60项和为15×2+(15×8+)=1830,故答案为:1830.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S=bcsinA=,所以bc=4,△ABCa=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝19.(12分)(2012•新课标)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D 是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的=,知距离,由△ABD的面积S△ABD=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。

2012江苏高考数学试卷(完整版)理科

2012江苏高考数学试卷(完整版)理科

绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ..【答案】 {1,2,4,6}【命题意图】本题考察集合中并集运算,意在考察学生对集合概念的掌握情况。

【解析】集合A,B 都是以列举法的形式给出,易得A B ={1,2,4,6}2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取的样本,则应从高二年级抽取 名学生.名学生.名学生.【答案】 15 【命题意图】本题考查统计中有关分层抽样的简单运算,意在考察考生应用统计知识解决实际问题的能力。

【解析】由题意得高二年纪的学生人数占该学校高中人数的103,利用分层抽样的有关知识得应从高二年纪抽取5050××103=15名学生。

名学生。

3.设a b ÎR ,,117i i 12ia b -+=-(i 为虚数单位),则a b +的值的值为 .. 【答案】 8【命题意图】本题考查复数的定义,复数相等及复数的四则运算等,意在考查考生对复数这部分内容的掌握情况注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分。

考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国统一高考数学试卷(理科)(新课标)
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只
有一项是符合题目要求的.
1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()
A.3B.6C.8D.10
2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()
A.12种B.10种C.9种D.8种
3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),
p1:|z|=2,
p2:z2=2i,
p3:z的共轭复数为1+i,
p4:z的虚部为﹣1.
A.p2,p3B.p1,p2C.p2,p4D.p3,p4
4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.
5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣7
6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,
a n,输出A,B,则()
A.A+B为a1,a2,…,a n的和
B.为a1,a2,…,a n的算术平均数
C.A和B分别是a1,a2,…,a n中最大的数和最小的数
D.A和B分别是a1,a2,…,a n中最小的数和最大的数
7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()
A.6B.9C.12D.18
8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准
线交于点A和点B,|AB|=4,则C的实轴长为()
A.B.C.4D.8
9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()
A.B.C.D.(0,2] 10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()
A.B.
C.D.
11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.
12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()
A.1﹣ln2B.C.1+ln2D.
二.填空题:本大题共4小题,每小题5分.
13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.
15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.
16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC ﹣b﹣c=0
(1)求A;
(2)若a=2,△ABC的面积为;求b,c.
18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由.
19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD
(1)证明:DC1⊥BC;
(2)求二面角A1﹣BD﹣C1的大小.
20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以
F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;
(1)求f(x)的解析式及单调区间;
(2)若,求(a+1)b的最大值.
四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题
计分,作答时请写清题号.
22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的
外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.
23.选修4﹣4;坐标系与参数方程
已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
24.已知函数f(x)=|x+a|+|x﹣2|
①当a=﹣3时,求不等式f(x)≥3的解集;
②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.。

相关文档
最新文档