自动跟踪补偿消弧装置对单相接地故障的处理解析

合集下载

IT接地系统单相接地故障后的情况分析

IT接地系统单相接地故障后的情况分析

-接地故障保护-规代建览电气No.3Vol.12(Serial No.135)2021IT接地系统单相接地故障后的情况分析武攀$同济大学建筑设计研究院(集团)有限公司,上海200092%扌商要:分析了IT接地系统在发生单相接地故障下的电压、电流变化情况,计算了35kV高压配电IT接地系统的使用条件和系统的绝缘配合,可为电气设计人员提供参考。

关键词:I接地系统;单相接地故障;电容电流;消弧线圈中图分类号:TU856文献标志码:B文章编号:1674-8417(2021)03-0045-05 DOI:10.16618/ki.1674-8417.2021.03.011武攀(1983_),男,高级工程师,从事建筑电气设计。

0引言电源的接地制式主要有TN-C、TN-C-S、TN-S、TT、IT接地系统。

在我国目前使用比较多的是TN-C-S+TN-S+TT接地系统。

IT接地系统即中性点不接地或经高电阻接地系统,在我国并没有被广泛使用,目前主要被用在不间断供电要求较高和对接地故障电压有严格限制的场所,如应急电源装置、消防、矿井下电气装置、医院手术室以及有防火防爆要求的场所&1-'。

T接地系统一般不建议引出中性线,主要是因为当发生单相接地故障而设备仍需继续运行,这时中性线和其余两正常相对地电压会升高,对人员的生命、线路的安全会带来更大的危险,ITC标准也强烈建议IT接地系统不引出中性线&4-'。

本文主要分析IT接地系统在发生单相接地故障情况下的电压、电流变化,进而分析工程中35kV变配电系统IT接地系统可以使用的情况,供读者参考。

1单相接地故障时电压变化分析一般,电压是指两点间的电位差,例如电压220V是指相线与中性线的电位差,电压380V是指三相线路上两相之间电位差。

通常取大地电位为参考0电位,没有绝对电位,只有相对电位,如果一个电源系统中性点接地,中性点电位即为大地电位,即0电位,则某点与中性点的电位差是与大地的电位差,即对地电压。

自动跟踪补偿消弧线圈成套装置使用中的几个问题 樊爱东

自动跟踪补偿消弧线圈成套装置使用中的几个问题 樊爱东

自动跟踪补偿消弧线圈成套装置使用中的几个问题樊爱东摘要:通过实际经验对自动跟踪补偿消弧线圈成套装置使用中存在的一些理论方面的问题进行探讨,对自动跟踪补偿消弧线圈成套装置选型及使用有更进一步的认识。

关键词:自动跟踪补偿消弧线圈成套装置;调流范围;起调方式;位移电压;响应时间;残流稳定时间1、消弧线圈的调流范围问题:目前在消弧线圈的招标当中经常出现要求消弧线圈的调流范围0~100%这种提法是不科学的,作为消弧线圈生产厂家来说可以做到,但对实际消弧线圈使用中是毫无意义的,理由如下:(1)根据行标DL/T 620-1997 3.1.2的规定单相接地故障电容电流最小为10A才需要装设消弧线圈,小于10A可以不装消弧线圈,那么对消弧线圈的调流范围下限电流应大于10A,即使电容电流小于10A,装设了消弧线圈,消弧线圈下限电流10A也满足残流的要求。

(2)根据DL/T 1057-2007行标 7.8规定,消弧线圈的调流范围的下限,不应超过系统在各种运行方式下最小的系统电容电流值,一般情况下不宜大于消弧线圈额定的30%,同时7.5又规定残流不大于10A,如采用最小下限电流为10A,系统电容电流为2A,残流也只有8A,也能满足要求。

(3)消弧线圈的作用除了产生电感电流以补偿电网电容电流,使故障点残流变小,达到自行熄弧,消除故障的目的外,还应起到消除电磁式压变饱和引起的磁铁谐振过电压。

如果从零起调,就起不到消除铁磁谐振过电压之目的。

根据以上分析,消弧线圈的下限电流一般情况下取最小值10A已足够,对发电机中性点消弧线圈取5A,要求0起调是不合适的提法。

2、起调方式问题自动跟踪消弧线圈有个自动起调问题,即按设定的脱谐度起调,还是以设定的残流值起调,目前实际使用中,两种方式都有,从灭弧的角度看,以残流绝对值起调比较合理,从有关文献都主张以残流的绝对值为起调比较合理。

因脱谐度是一个相对的概念,当分接头电流比较小,间隔又比较密时,脱谐度变化大而残留变化不是很大,此时调整档位的必要性不大,如10.5kV,200kVA的消弧线圈,采用9档开关,分接头电流(1)10A,(2)11.6A,(3)13.45A,(4)15.6A,(5)18.1A,(6)21A,(7)24.36A,(8)28.25A,(9)32.8A,各档的脱谐度=0.16,如系统电容电流为10A,过补一档为11.6A,此时如设定脱谐度的起调值为±5%,达到设定值就要调档,可是电流变化不是很大,级差电流只有11.6-10=0.6A,根本就没有必要调档,如以残流值起调,设定值为2A,那么小分接头时就不用调整,只有残流超过2A才起调,这样可减少不必要的调档次数。

变电站微机变电控制消弧线圈自动跟踪补偿成套装置的原理及应用

变电站微机变电控制消弧线圈自动跟踪补偿成套装置的原理及应用

调 容式消弧线圈与普通 消弧 线圈的区别 ,主要是在增设 消弧 线圈 的二次 电容负荷绕组 ,其结构如下 图所示 。N l 为主绕组 ,N 2 为二次绕
I C T 2 C T
3 C T

● ● ●
3 6 C T
诩客孟 弧线圈
电 容耐 节柜
主要有 以下 几种:调 隙式 消弧线圈装置 、调 匝式消弧线圈装置 、调励 该 装置 由接地变压器 、调容 式消弧线圈、 电容调节柜 、微机控 制 磁式消 弧线 圈装置等 。以上 几种装置均能实现 自动跟踪调谐 ,但还 有节速度慢 、故障率高 、容 易引入谐振源 、二次 系统 电源结构复 杂等不足之处 。同时由于上述各装 置均 采用单片机控制 系
1 工作 原 理
消弧线 圈是 一个装 设于 配 电网 中性 点 的可调 电感线 圈, 当电 网 我 国6 ~6 6 K V 配 电系统 中主 要采用 小电流接地 运行方 式 在小 电流接 地系统 中如果发生单相接地 故障时,其非接地相 的相 电压将升 高至线 发生单相接地 故障时 ,消弧线 圈的作用是提供一个 电感 电流 ,补偿 单 电压 。如果是 不稳 定的电弧接地 故障,其过电压值可达三倍 以上 。 相接地 的电容 电流 ,使 电容 电流减 小到规定值 以下 :同时,也使 得故 由于 我 公司6 K V 井 下供 电线 路 的不 断延伸 ,使得 供 电系统 的接 障相接地 电弧两端的恢复 电压速度 降低,达到 自动熄灭 电弧 的 目的。 地 电 容 电流 不 断 增 大 , 日常 我 公 司 6 K V 供 电系 统 I、 I I 段 母 线 并 列 运 本成套装 置为调容式消弧线 圈装 置,首先根据系统运行方式及 发展情 行 ,I I I 、Ⅳ 段母线并列 运行 ,其 中6 K V I、I I 段 线路接地 电容 电流 已 况 ,确定 消弧线圈在过补偿 条件 下的额定容量 ,即可确定在接地 故障 达8 5 A ,6 K V l I I 、I V段线路接地 电容 电流 也 已达8 3 A。为 了减小接地 电 容 电流 ,有 效防止系统弧光 接地,提高供 电质量 ,按照 国家对过 电压 保护 设计规 范新规程规 定 ,电网电容 电流 超过 i O A 时 ,均 应安装 消弧 线圈装置 。 消弧线 圈装 置 自应 用于 电力 系统 以来 ,随着微 电子技术 的 飞速 发展及广泛 应用 ,也有 了较 大的发展 。目前 国内生产的消弧线 圈装 置 时可提供 的电感电流 。增设消弧线 圈二次电容负荷绕组 ,同时在 该消 弧线 圈的二 次绕组上并联若干组 ( 一般 为四至五组 )低压 电容器 ,通 过控制器控 制真空开关或反 并联 晶闸管的通断组合来控制二 次电容器 投入 的数量 ,来调节消弧线 圈二 次容抗的大小 ,从而 改变 消弧线 圈一 次侧 电感 电流 的大小 ,即调节补偿 电流 的大小 。 2 装置 总体构 成

一起10kV消弧选线装置误动作的分析与处置建议

一起10kV消弧选线装置误动作的分析与处置建议

一起10kV消弧选线装置误动作的分析与处置建议摘要:一般情况下消弧选线成套装置能够实时跟踪电网电容电流的变化,并根据预先设定的脱谐度,计算调容式消弧线圈补偿位置,以保证电网发生接地故障时快速补偿。

系统发生单相接地后,装置能自动查出故障线路,并注入可靠的特殊信号触发线路上的故障指示器实现故障定位。

本文结合我单位一起10kV 消弧选线装置误动作的事件案例,通过对事件过程、设备控制解析、接地信息分析,分析本次事件发生的原因并根据现场情况提出处置建议。

关键词:消弧选线装置;接地补偿;故障分析1 引言2014年11月6日18时前后,我单位管辖的35kV程村站10kV消弧选线成套装置误动作,相继将站内10kVⅠ段上的4条10kV馈线开关全部切除,造成程村站供电范围内的4千多名供电用户被迫停电近2个小时。

本文以本次事件为背景,对站内设备及故障过程进行分析,提出整改意见。

2 故障分析消弧选线装置型号:XHK-II型,生产商:上海思源电气,投运时间:2010年。

该装置接入程村站10KV7路馈线、4路电容,消弧选线装置接入的交流量包括接地变中性点电压、接地变中性点电流以及接入馈线的零序电流。

消弧选线装置采用基波、谐波选线法进行接地线路的判别,中性点电压过高则判别为有接地故障发生,然后通过判别各路接入馈线的零序电流进行选线,接地故障判别与选线判别同时进行。

2.1 选线装置动作情况分析(1)消弧选线装置出现选择开关在分位的线路作为接地线路的异常情况。

以10kVF07莲花线为例:该开关共有8次变位,报文如下:2014-11-06 16:58:45 093ms SOE 状态分10kV莲花线F07 F07合位2014-11-06 17:05:30 024ms SOE 状态合10kV莲花线F07 F07合位2014-11-06 17:23:28 976ms SOE 状态分10kV莲花线F07 F07合位2014-11-06 17:28:53 951ms SOE 状态合10kV莲花线F07 F07合位2014-11-06 17:29:55 967ms SOE 状态分10kV莲花线F07 F07合位2014-11-06 18:30:22 280ms SOE 状态合10kV莲花线F07 F07合位2014-11-06 18:35:17 711ms SOE 状态分10kV莲花线F07 F07合位2014-11-06 19:16:03 353ms SOE 状态合10kV莲花线F07 F07合位消弧选线装置上的报文显示消弧选线装置当天一共12次选出F07莲花线为接地线路,选线时刻按先后顺序如下:2014-11-06 16:56:092014-11-06 16:57:012014-11-06 16:58:592014-11-06 17:05:342014-11-06 17:42:042014-11-06 17:45:232014-11-06 17:49:032014-11-06 17:54:372014-11-06 18:02:402014-11-06 18:04:302014-11-06 18:08:352014-11-06 18:34:15在2014-11-06 17:29:55 974ms时10kVF07莲花线开关已跳闸,直到2014-11-06 18:30:22 280ms时10kVF07莲花线才被遥控合闸,在此期间,10kVF07莲花线不应再次被选中,但消弧选线装置依然在2014-11-06 17:42:047时刻与2014-11-06 18:08:35时刻之间7次选中10kVF07莲花线。

浅谈自动跟踪接地补偿装置在变电所10kV系统中的应用

浅谈自动跟踪接地补偿装置在变电所10kV系统中的应用

浅谈自动跟踪接地补偿装置在变电所10kV系统中的应用摘要:变电所是保障农村生产生活用电的关键,应该提高10kV系统运行安全性与可靠性,优化农网运行环境。

随着用电量的逐渐增长,对于变电所10kV系统的运行状况也提出了更高的要求,一旦发生故障问题,不仅会对社会发展造成影响,而且严重威胁设备和人员安全,造成难以挽回的损失。

自动跟踪接地补偿装置的运用,可以增强接地补偿实效性,实现对系统故障率的有效控制。

本文将对变电所10kV系统接地故障的危害进行分析,提出消弧线圈接地方式的特点,探索自动跟踪接地补偿装置在变电所10kV系统中的应用措施。

关键词:自动跟踪接地补偿装置;变电所;10kV系统中;应用社会的快速发展,必须以电能资源作为基础保障,以促进各领域生产力的提高。

尤其是随着商业区、城市中心区和住宅区的不断扩增,用电负荷也在逐年增大,变电所10kV系统在运行中面临较大的隐患,只有确保其合理的运行方式和可靠的保障条件,才能避免重大电力事故的发生。

当对地电容电流超出中性点接地系统的限值后,则有可能出现单相接地故障,这是威胁系统运行的主要因素。

传统消弧线圈在应用中存在一定的局限性,而自动跟踪接地补偿装置则充分利用自动调谐的方式,真正实现了对故障问题的有效预防和控制,是电力系统自动化与数字化发展的关键。

因此,应该掌握自动跟踪接地补偿装置的应用要点,以优化其运行方式,为用户提供更加可靠的供电服务。

一、变电所10kV系统接地故障危害电力建设已经成为我国现代化建设的重点内容,尤其是电网规模的扩增,为社会用电提供了便捷。

然而,由于瞬时性接地故障的存在,使得系统运行存在安全隐患,对于永久性故障位置的排查效率较低,导致系统运行风险升高。

放电击穿就是由于接地故障所引发,严重时会导致设备的烧毁,熔断器的熔断往往是由于配电网铁磁谐振故障而导致【1】。

此外,单相接地故障也会受到意外因素的影响,比如树枝和动物等干扰线路运行,当出现相间短路状况时就会对设备造成损坏,大范围的停电事故也会影响用户的正常用电。

110 kV变电站运行模式改变后小电流接地系统自动跟踪补偿消弧线圈的应用分析

110 kV变电站运行模式改变后小电流接地系统自动跟踪补偿消弧线圈的应用分析

110 kV变电站运行模式改变后小电流接地系统自动跟踪补偿消弧线圈的应用分析摘要简要介绍智能型消弧线圈的运行原理、特点,在小电流接地承统中的优越性,110 kV变电站运行模式改变后应用智能消弧线圈,有利于在事故情况下快速的处里电网事故,增加供电可靠性,保证地区电网的稳定运行。

关键词智能消孤线圈;应用;分析目前10 kV-35 kV城乡配电网络多为小电流接地系统,由于雷击、树木和大风等因素的影响,单相接地故障是配电网中出现概率最大的一种故障,并且往往是可恢复性的故障,当配电网发生单相接地时,接地电流较大,电弧很难熄灭,可能发展成相间短路,如果发生间歇性弧光接地时,易产生弧光接地过电压,从而波及整个配电网。

为了解决这些问题,在配电网中性点装设消弧线圈是一项有效技术的措施。

1 中性点经消弧线圈接地方式分析电力系统中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。

电力系统的电压等级较多、不同额定电压的中性点接地方式也各有特点。

1.1 中性点谐振接地一般将中性点经消弧线圈接地称为中性点谐振接地。

虽然调谐电感只在一个不大的范围内变动,但系统的零序阻抗却接近无限大。

在一般情况下,运行中的消弧线圈和自动跟踪补偿装置多采用略微偏离谐振点的过补偿运行方式,由于“谐振接地”这一技术术语比较符合中性点经消弧线圈接地系统的实际情况,因此中性点经消弧线圈接地的电力系统通常称之为谐振接地系统。

1.2 中性点经消弧线圈接地的优点瞬间单相接地故障可经消弧线圈动作清除,保证系统不断电;永久单相接地故障时消弧线圈动作可维持系统运行一定时间,可以使运行部门有足够的时间启动备用电源或转移负荷,不至于造成波动;系统单相接地时消弧线圈动作可有效避免电弧接地过电压,对全网电力设备起保护作用。

过去主要使用的是手动调节的消弧线圈,这种方法调节很不方便,一般需要先将消弧线圈与电网断开之后再调节;另外,手动方式适应线路变化性也差。

自动跟踪补偿消弧装置在电网运行中存在若干问题的分析

自动跟踪补偿消弧装置在电网运行中存在若干问题的分析
分析和归纳 。 1 . 自 动跟踪补偿消弧装 置概念
有联络线联网运行 : 当电容电流较大 时, 还 需要 多台并联补偿 。因此要求 自 动跟踪补偿消弧装 置既能单套独立运行 , 又能多台并联运行 。 可 是要达到这 种程度是很不容 易的, 然而Z X B 系列 自动跟踪补偿消弧装置 , 套与套之间没 有通讯接 口, 也不需要通讯 , 但 由于采用 了先进的测量跟踪原理和状态识别 功 能, 很好地解决了多台并联的问题 。不但 同等容量的可 以并联运行, 不同
在 电网运行中存在问题和应对策略进行了探讨, 提出 了其与过 电压防护 比较优势 , 以供 同行工作参考 。 关键 词: 配 电网; 自动跟踪补偿消弧装置 ; 电力系统
配电网是电力系统中的主要组成部分, 其直接关系到发 电厂、 变 电站和 用户之 间的协调运行。 截至 目前, 随着 国民经济的发展和 电能用量的不断增 加, 做 好配电网安全、 稳定运行越 来越 受到人们 的重视, 也是整个社会发展 中最 受人们关注和重视的一个环节, 更是现 阶段社会发展的核心环节 。 自 动 跟踪补偿消弧装置作为 目前电力系统安全运行 的保障基础,其是基 于传统
容量 的也可 以并联运行 。 三、 消弧装置过电压防护效果 比较 l 间歇 电弧接地 过电压 在 当前应用的现行消弧线圈中能够,通过采用各种 自 动跟踪或者调解 的工作频率系下完成消弧装置是当前的主要方式 ,同时在单相 间歇性 电弧 接地 时刻 , 要充分 的利用 高频振荡过渡段 , 对各种 电容 电流进行 分量控制 , 而且在应用均应当采用 高频率 电波。 这两者频率特性相差悬殊, 是不可能互
定出科学 、 合理 的应用方案 2 、 自 动跟踪补偿消弧装置 的作用 时至今 日, 电网构成中已经逐渐形成了以电缆 为主的三相对地 电容, 这 种 电力系统 的应用中各环 节已经基本上趋于平衡 ,但是三相三 角排列架 空 线 路和三相 电容相差很大, 电网有的时候会由于供 电负荷而不会全 部送 出, 这就 形成 了单相供 电路灯和变压器运行的不稳 定、 不科学, 甚 至是造 成众多

XBSG系列自动跟踪补偿消弧线圈成套装置在变电所中的应用

XBSG系列自动跟踪补偿消弧线圈成套装置在变电所中的应用

XBSG系列自动跟踪补偿消弧线圈成套装置在变电所中的应用作者:范永杰黄静高旭步兆彬来源:《科技视界》2012年第22期【摘要】XBSG系列自动跟踪补偿消弧线圈成套装置(以下简称成套装置)在结构上突破了传统消弧线圈的结构模式,将接地变压器与消弧线圈有机地结合成一体,不仅减小了体积,降低了成本,而且提高了设备的效率,安装、维护更加方便。

本文重点介绍了XBSG系列自动跟踪补偿消弧线圈成套装置装置及其在变所中的应用。

【关键词】消弧线圈;可控硅技术;自动跟踪补偿1单相接地故障的危害(1)易造成二次故障配电网越大,电容电流越大,单相接地时接地电流越大。

接地点电弧不能自行熄灭,易形成稳定电弧,易发展成相间短路(电缆放炮),造成停电或设备损坏事故。

(2)易产生单相电弧接地过电压当配电网接地电流大于5~10A时,单相接地故障时可能出现周期性熄灭和重燃的间歇电弧。

间歇电弧将导致相与地之间产生过电压,其值可达到2.5~3倍的相电压峰值。

(3)易产生铁磁谐振电压在相电压时PT特性已趋于饱和拐点,当系统中运行电压偏离并出现某些扰动(如单相接地故障),能使PT饱和程度加剧,就有可能激发铁磁通谐振过电压,致使母线电压互感器烧毁和熔断器熔断,严重威胁着配电网的安全和供电可靠性。

2XBSG系列自动跟踪补偿消弧线圈成套装置概述《煤矿安全规程》第457条规定:“矿井高压电网,必须采取措施限制单相接地电容电流不超过20A。

”限制单相接地电容电流的有效措施是在电网上装设自动跟踪补偿的消弧线圈。

XBSG系列自动跟踪补偿消弧线圈成套装置独特的自动跟踪调节功能采用嵌入式系统与可控硅技术相结合的原理来实现,没有机械传动部分,调节、跟踪速度快,噪音低,运行可靠。

另外该消弧线圈不仅运行可靠,而且由于大大减小了接地故障电流,使电缆接地放炮事故大幅度减少,大大提高了电网的安全、可靠运行性能。

3XBSG系列自动跟踪补偿消弧线圈成套装置用途该成套装置适用于6kV或10kV中性点不接地的电网,对电网单相接地的电容电流进行自动跟踪补偿,并可根据设定的脱谐度实现欠补、全补或过补运行。

浅议自动跟踪补偿对电网的作用

浅议自动跟踪补偿对电网的作用

浅议自动跟踪补偿对电网的作用1自动跟踪消弧装置原理和型式目前,根据自动化跟踪补偿消弧装置在电力系统中的应用,我们将传统的消弧线圈与自动化跟踪补偿消弧装置进行了一个对比。

与传统的消弧线圈(人工调谐消弧线圈)相比,自动化跟踪补偿消弧装置不仅能够避免人工调谐所带来了麻烦与事故,还能够在调整过程中一直会有电流的补偿并能提高补偿的成功率。

另外,自动化跟踪补偿消弧装置能够有效的限制弧光接地过电压以及铁磁谐振过电压,从而能够保证电网电流的稳定运行。

目前,生产这种自动化跟踪补偿消弧装置的厂家很多,类型也很多,但是从严格意义上来讲,根据结构与原理的不同,我们将其分为各种不停的类型。

调抽头式这种方式主要由接地变压器,可调电抗器,阻尼控制柜和微机控制器组成,对有中性点引出的电网口(35kV 电网),可省去接地变压器。

2对电网的作用近年来,随着社会的不断进步,自动化跟踪补偿消弧装置已经在电力系统中得到了广泛的应用,它在电网中起到了非常重要的作用。

经过研究分析,我们可以简单归纳为以下几个作用:(1)自动化。

顾名思义,自动跟踪补偿消弧装置能够对电流进行自行化测量,能够对运行方式自动化跟踪,能够对电流的补偿进行自动化调整,弥补传统的消弧线圈在实际工作中存在的问题以及不足。

传统的消弧线圈在调整抽头过程中需要进行停电处理,然后对每一条线路进行全面的测量与计算,而在电网系统中,结构与运行方式发生了很大的变化,要想弄清楚每个时间段内的每条线路是不可能的,所以往往会导致控制不够准确等诸多问题,从而也就抑制了弧光接地过电压。

自动跟踪补偿消弧装置在实际应用过程中,一般都是通过自动化、智能化来对于电流的测量、运行方式的跟踪和电流补偿的调整来加以控制的,它的优点在于不需要人工操作,在调整过程中不需要停电,它可以使电网能够永久保持稳定运行的状态。

(2)在电网中:对单相接地电流的自动补偿能够熄灭接地电弧,自动跟踪补偿消弧装置能够在一定范围内将补偿过后的残流进行有效的控制,使得该残流的值小于熄弧的临界点的数值10A,这样能够促进接地电弧的熄灭,并且能够对电网中的故障建弧率有效的降低,提高配电网中的可靠供电。

论述配电网自动跟踪补偿消弧装置技术

论述配电网自动跟踪补偿消弧装置技术

论述配电网自动跟踪补偿消弧装置技术摘要:随着社会的不断发展,电力系统也在飞速地进步,但是由于电网系统中的单相接地和电容量的扩大,也使得电力系统中出现了许多故障,使得电力系统的不能正常的工作。

因此为了避免这样的情况发生,人们就通过自动跟踪补偿消弧装置来增强电力系统的稳定性和可靠性,使得我国的电力系统得到更好地发展,本文通过对自动跟踪补偿消弧装置技术的内容进行简要的介绍,讨论了该技术在电力系统中的应用,以供同行参考。

关键词:配电网;自动跟踪补偿;消弧装置目前,由于社会经济建设的飞速发展,人们对电力资源的需求也越来越大,对电力质量的要求也越来越高。

因此,人们开始对电力系统的电容和电力进行了一定的增大,但是在进行电容、电流数值增大的过程中,很容易发生系统故障,这对我国的经济发展也有着了一定的影响,大大降低了供电系统的可靠性。

所以,人们也开始在这些方面进行了一定研究,并且还开发出了一系列的控制手段。

其中自动跟踪补偿消弧装置,有效的降低了电力系统故障的发生频率,这也为电力系统的可靠性打下了扎实的基础。

一、装置结构目前,我国为了确保电力资源的正常运输,防止在运输工程中电力系统出现问题,因此我们就利用消弧装置带对其进行一定的控制。

但是,由于传统的消弧线圈装置,存在着一定的局限性,在进行系统控制的时候,已经无法满足目前现代化技术的要求,而且还阻碍了电网技术的发展。

所以在进行消弧装置的应用时,我们尽量采用现代化的跟踪装置并对其进行自动的控制处理,这也是自动跟踪消弧装置的主要目的。

当前,我们在使用自动跟踪补偿消弧装置的时候,一般是通过接地变压器、控制阻尼柜、可调电抗器以及控制计算机控制系统这四个方面组成的。

1接地变压器接地变压器主要是将中性点的位置进行引出,在绕组使用中还存在着一定的形态分析,而且采用的一种新型的连接方向,使得接地变压器在工作的过程中电磁中出现相互抵消的现象,从而减少电磁同对电压器的影响,以便于电流的补偿工作并对其进行合理的运输。

ZGTD自动跟踪消弧电抗器及单相接地选线装置的应用

ZGTD自动跟踪消弧电抗器及单相接地选线装置的应用

ZGTD自动跟踪消弧电抗器及单相接地选线装置的应用
董伟英
【期刊名称】《小水电》
【年(卷),期】2001(000)006
【摘要】在小电流接地系统中发生接地故障时,系统的电容电流远远超过部颁设计规定,使用老式消弧线圈进行分节调节补偿,已不能满足电力系统发展的需要.简要介绍了自动跟踪消弧电抗器及单相接地选线装置的性能特点以及在小电流接地系统中的应用情况.图1幅,表1个.
【总页数】3页(P29-31)
【作者】董伟英
【作者单位】浙江省新昌供电局,新昌县,312500
【正文语种】中文
【中图分类】TM7
【相关文献】
1.ZGTD—C系列调容式自动跟踪接地补偿及接地选线装置应用 [J], 李建国;李维雄
2.自动跟踪消弧线圈及单相接地选线装置在6kV系统的应用 [J], 李海鸣
3.自动跟踪消弧线圈瞬时并联小电阻的中性点接地方式在接地选线中的应用 [J], 陆晓芸;郑曲直
4.ZGTD-C调容式自动跟踪消弧线圈 [J],
5.简述调匝式自动调谐消弧线圈及小电流接地选线装置应用加装消弧线圈的必要性[J], 尹海昆
因版权原因,仅展示原文概要,查看原文内容请购买。

自动跟踪补偿消弧装置在电力系统的应用

自动跟踪补偿消弧装置在电力系统的应用
维普资讯
云 南水 电技 术
20: 07  ̄
总 6 第 系统的应用
李 勇
( 昆明供 电局 ,云南 昆明 6 0 ]) 5 0 1
摘 要 :电力系统1~3k系统多采用中性点不直接接地方式。随着城市电网建设规模的迅速发展 ,变电 o 5V 站的电力电缆 出线越来越多,导致电网单相接地电容 电流不断增大。系统发生单相接地故障时,电容 电流 大 ,接地点电弧不易熄灭产生弧光过电压,引发电力系统事故。中性点经消弧线圈接地 ,补偿 了接地电容 电流 ,限制弧光接地过 电压 ,保证 电网供 电可靠性和 电网的安全 。采用 自动跟踪补偿后,能实时适应负荷 线路接地的变化实现高精度、快速可靠的 自 动调节。 关键词 : 自 动跟踪补偿 ;消弧线圈
n u r n sg e tr h r sh r obe e t u s e nd a c o e - ol e ma a s we y t m a l e Bu a d c re ti r ae ,te a c i a d t x i g ih d a r v rv t g y c u e po rs se f i r . t n a u
Li n Yo g
( u mhgEetcP we S p l ueu K n a lc i o r upy ra ,Ku mig 50 r B n n ,6 0 1) 1
Absr c :1 "- 5 V o rs se il d p sn u r lp i tu dr ce a t ig. ih t epr g e so iy p we t a t 0 -3 k p we y tm man y a o t e ta o n ie td e rhn W t o r s fct o r n h

自动跟踪补偿消弧系统综述

自动跟踪补偿消弧系统综述

自动跟踪补偿消弧系统综述
赵晓东;黄小彬
【期刊名称】《机电工程》
【年(卷),期】2013(030)010
【摘要】针对电网发生单相接地故障时,系统无法快速、准确地对单相接地电容电流进行有效补偿的问题,对中性点电压和补偿原理进行了研究,通过采用中性点经消弧线圈的接地方式,建立了自动跟踪补偿消弧系统,同时提出了自动调谐原理.该系统主要由消弧线圈和控制系统组成,在发生单相接地故障时,自动进入补偿状态,接地故障消除后,自动退出补偿状态.调谐原理是系统进行自动跟踪补偿的关键技术,在很大程度上影响系统的跟踪补偿速度与精度.通过对国内外几种常用的调谐原理进行总结和对比,指出了各自存在的优缺点及适用范围.研究结果表明,不同结构特点的消弧线圈所适用的调谐原理也不同,选择合适的调谐原理才能快速、有效地补偿接地电容、电流.
【总页数】4页(P1293-1296)
【作者】赵晓东;黄小彬
【作者单位】杭州电子科技大学信息与控制研究所,浙江杭州 310018;杭州电子科技大学信息与控制研究所,浙江杭州 310018
【正文语种】中文
【中图分类】TM711
【相关文献】
1.自动跟踪消弧补偿装置与故障转移接地装置现场故障处理对比试验及分析 [J], 晏锋;廖志军;刘伟平;周菊根;杨博;郭成
2.基于自动化技术的跟踪补偿消弧装置测控系统设计 [J], 侯少锋;李洪祥;刘阳
3.一种新型的消弧线圈自动跟踪补偿装置 [J], 吴斌;陈纲;金云奎;李国
4.关于10kV配电系统增加自动跟踪补偿消弧装置必要性的技术分析 [J], 王占忠
5.10kV配电网传输系统中采用自动跟踪补偿消弧的探讨 [J], 黄方
因版权原因,仅展示原文概要,查看原文内容请购买。

自动跟踪补偿消弧装置在电网运行中存在若干问题的分析

自动跟踪补偿消弧装置在电网运行中存在若干问题的分析

2 0 消弧装置 在 电网运行中存在若干问题 的分析
赛 玉欣
( 哈 尔滨供 电公 司 , 黑 龙 江 哈 尔滨 1 5 0 0 0 0 )
摘 要: 在现代化 电力系统配 电网运行过程 中, 技术人 员将 自动跟踪补偿 消弧装置不断运 用在 系统 当中, 这 种不仅 能够遏制配 电网弧 光接地过 电压 、 消除铁磁谐振过 电压 、 减小配电网 中的故 障建弧率 , 还 能够提 高电力 系统配 电网运行的安全可 靠性 。但是在 实际工作 中, 电力 系统配电 网的运行方式 、 内部 结构等 多方面都存在一 定的差异 , 所 以在 对配电网进行 消弧补偿之 后会明 显提 高电压 , 存 在一 定的 问 题 。本 文就 自动跟踪补偿 消弧装置在 电网运行 中存在的问题进行 分析 。 关键词 : 配 电网; 消弧装 置; 过电压防护; 接地选线与定位
概率 。 线。
1 1 0 k V变 电站 1 0 k V电容器组油浸式放 电线圈内部发生间歇性接 ( 2 ) 当X H Q未投入运行期间, 成套装置控制器也应具备接地选线功 地, 因每次接地存在 时间不足 1 s , 接地补偿及选线成套装置来不及调档 能 , 可采用零序电流基波幅值 比较法判线 。 判线, 使故障持续 了 4 h 3 9 mi n , 导致 中性点 X H O避雷器( Y H , WZ 一 1 0 / 2 4 ) ( 3 ) 女 日 果馈线微机保护装置具备接地保护动作跳闸功能( 采用有功功 烧毁、 放电线圈冒油、 套管开裂及油箱变形 ̄ 5 0 0 0 k v a r 密集型电容器一相 率法为宜 并能与上述消弧线圈并联中电阻装置可靠配合, 则可考虑采 电容值降低 1 8 . 8 %。 而就消弧柜 XH Q而 随着电弧能量的积蓄。电弧 用保护装置 自带接地保护功能。 接地过电压较大值大约发生在接地后 2 个工频周期 以后, XH Q的真空 5结论 接触器 J z 可在 4 0 ms 内完成合 闸动作, 弧光接地随之消失, 稳定 的过电 近年来我 国发 明了很多形式的 自动跟踪补偿消弧装置 为了消除电 压只有 1 倍。而在 J z 动作之前 及断开接地点的过程中出现的短暂过电 网中接地弧光并补偿电流, 我们需要对电力系统配电网中的电容量进行 压,可由装置中的过电压保护器和电网中其他避雷器联合构成后备保 测量与补偿, 相对于过去的消弧线圈而言, 这种装置具有明显的优越性 。 护。 在安装过程 中, 技术人员需要对电网中的各个问题进行分析, 然后选用 2 . 2电压互感磁 铁磁 振过电压 合适 的自动跟踪补偿消弧装置从 而保证电力系统的安全稳定运行 。 对于调匝式及调容式 X HQ , 因消弧线圈感抗 x 。与互感器的励磁感 参考文献 抗相比要小得多湘 差几个数量级) , 在零序 回路 中几乎被 x 短接, 系统三 【 l 】 邢铀 , 文 习山. 单相接地 引起的过电压分析 与防护研 究叨. 广东科技, 相对地参数基本 E 取决于消弧线圈感抗 x 。 因饱和引起的 i 相不平衡也 2 0 0 9 ( 1 8 ) . 就不会产生过 电压 了。然而对 于相控式 X H Q ,  ̄用随调谐方式 接地 c 2 1 杨毅波’ 何人望. 配电网故障原 因分析及应对措髓拥. 大众科教 , 2 0 1 0 ( 2 ) . 故 障发生时' 其等值阻抗为高短路阻抗变压器 的励磁阻抗, 数值极高通 常意义上的消弧线圈消谐机理已不再适用。

浅析10kV消弧线圈接地系统单相接地的处置

浅析10kV消弧线圈接地系统单相接地的处置

浅析10kV消弧线圈接地系统单相接地的处置摘要] 为了提高供电可靠性,我国6-10kV电力系统一般采用中性点不接地或经消弧线圈接地的方式,即小电流接地系统方式。

小电流接地系统的最大优点就是当系统发生单相接地时,线路不会跳闸,从而保证了对用户尤其是重要用户的正常供电,提高了电网的供电可靠性。

但当系统发生单相接地时,消弧线圈及非故障相出现过电压。

长期的过电压会损坏设备的绝缘,可能导致系统发生更严重的事故。

[关键词] 消弧线圈单相接地处置一、前言为了提高供电可靠性,我国6-10kV电力系统一般采用中性点不接地或经消弧线圈接地的方式,即小电流接地系统方式。

小电流接地系统的最大优点就是当系统发生单相接地时,线路不会发生跳闸,从而保证了对用户尤其是重要用户的正常供电,提高了电网运行的供电可靠性。

在当系统发生单相接地时,10kV消弧线圈及非故障相会出现过电压,长期的过电压会损坏设备的绝缘,可能导致系统发生更严重的事故,如:绝缘击穿、单相多点接地、多相故障等。

因此在实际运行中,当经消弧线圈接地系统发生单相接地故障后,应尽速进行处置,避免系统长时间单相接地运行,按照规定运行时间一般不超过2个小时。

二、单相接地故障的现象分析与判断(一)单相接地的特点单相接地是一种常见故障,特别是雨季、大风和暴雪等恶劣天气条件下,单相接地故障更是频繁发生,如果在发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。

在10kV经消弧线圈接地系统中,当发生单相接地故障时,则其它两相电压会升高至相电压的倍,达到线电压的水平,此时由于线电压的大小和相位不变(仍对称),且系统绝缘又是按线电压设计的,所以允许短时运行而不切断故障设备,系统可坚持运行2小时,从而提高了供电可靠性,这正是小电流接地系统的最大优点。

(二)单相接地的故障现象1.变电站内单相接地的现象警铃响,主控盘发出母线接地、掉牌未复归、电压回路断线等光字牌;检查绝缘指示母线一相电压降低、另两相升高。

关于10kV配电系统增加自动跟踪补偿消弧装置必要性的技术分析

关于10kV配电系统增加自动跟踪补偿消弧装置必要性的技术分析

关于10kV配电系统增加自动跟踪补偿消弧装置必要性的技术分析发布时间:2022-10-24T03:19:44.640Z 来源:《新型城镇化》2022年20期作者:哈图[导读] 它主要由三大核心部件构成:消弧线圈、接地变压器及自动跟踪调谐控制器。

包头供电公司内蒙包头 014000摘要:公司10kV配电系统为不接地系统(小电流接地系统),在运行中单相接地后会产生接地电容电流。

接地电容电流的大小直接影响10kV配电系统运行的可靠性符合GB/T50064-2014相关规定,为避免接地电容电流超出规定值后会导致接地过电压而引发系统事故,采用自动跟踪补偿消弧装置来补偿,以防止中性点不接地系统发生单相接地而引起弧光过电压。

关键词:电容电流;配电系统;供电系统1自动跟踪补偿消弧装置自动跟踪补偿消弧装置运用了微机控制器,能实时准确监测电网电容电流的相关参数,当电网出现单相接地故障时,可以确保在极短时间内利用自动调节电抗值对电容电流进行补偿。

具有运算速度快、集成度高、抗干扰能力强,多路采集输入信号,响应速度快、精度高等特点,为消弧补偿技术带来了全新面貌。

它主要由三大核心部件构成:消弧线圈、接地变压器及自动跟踪调谐控制器。

1.1 接地变压器中性点绝缘的电力系统,无中性点引出,要先利用接地变压器来形成一个人为中性点,再带接消弧线圈,以利用其电感电流来补偿故障点电容电流。

接地变压器采用Z型结线(或称曲折型结线),它具有零序阻抗低,激磁阻抗大,功耗小等特征。

它的运行特点是长时空载,短时过载;当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗,可使接地保护可靠动作。

1.2 消弧线圈消弧线圈是自动跟踪补偿消弧装置形成感性补偿电流的主要部件。

其具体功能分析如下:当电网发生单相接地故障后,故障点流过电容电流,消弧线圈提供电感电流进行补偿,使故障点电流降至正常量,避免弧光过零后重燃,实现灭弧目的,降低高幅值过电压发生率,阻止事故扩大:(1)调气隙式。

ZXBC自动跟踪补偿消弧装置-文档资料

ZXBC自动跟踪补偿消弧装置-文档资料

ZXBC自动跟踪补偿消弧装置一、前言目前,在6~35kV电网运行很多自动跟踪补偿消弧装置,为电网的稳定运行做出了一定的贡献。

但是在实际运行当中也暴露了这些装置的一些缺点和问题。

如:运行不稳定、中性点位移电压过高、阻尼电阻被烧毁和测量控制原理不尽合理等。

为此,我们研制了ZXBC自动跟踪补偿消弧装置。

二、ZXBC自动跟踪补偿消弧装置组成该装置由接地变压器(仅针对6~10kV电网,35kV电网则不需要)、消弧线圈、阻尼电阻和控制系统等几部分组成。

1、接地变压器接地变压器是为了解决6~10kV电网中性点引出问题,其一次绕组为Z型联接。

这样每个铁芯柱上绕有不同相别、不同绕向的两部分绕组。

当零序电流通过时,零序磁通相互抵消,使变压器的零序阻抗大为下降;当线路发生单相接地时,变压器的中性点电压相当于相电压,便于电抗器补偿电流的输出。

零序磁通所产生的损耗也大为减少,二次可根据用户需要带一定容量的二次负荷,以节约投资和减少占地。

一次绕组按中性点所带消弧线圈的补偿电流值考虑。

2、消弧线圈消弧线圈采用的是有载开关调整抽头方式,其容量由需提供补偿电流大小决定。

3、阻尼电阻阻尼电阻的作用是为了抑制电网弧光接地过电压的倍数和全补偿时中性点过电压的大小,从消弧线圈尾端串接接地。

4、控制系统4.1数学模型的建立控制系统采用的测量原理是中性点位移电压模拟谐振法和中性点位移电压法相结合的方法,即在正常测量中调整有载开关,根据中性点位移电压的变化趋势,找出电压最高值时对应的档位,通过软件模拟,找出调整消弧装置的物理谐振点。

这一点应在中性点位移电压最高值对应档位的上下档位之间。

通过模拟谐振法则可计算出对应谐振状态下消弧线圈的感抗XL1。

ZXBC自动跟踪补偿消弧装置控制系统因为此时电抗器的感抗XL与系统对地容抗Xc处于谐振状态,所以,XL=Xc,那么,X=XL=XL1+XL0 (2-1)IC=UΦ/XC=UΦ/(XL1+XL0) (2-2)式中XL0为接地变压器零序阻抗、IC为系统的电容电流。

35kV电网接地故障分析及对策

35kV电网接地故障分析及对策

35kV电网接地故障分析及对策摘要:文章对35kV线路单相接地后发展成多相接地故障跳闸的事故进行分析,推断该事故是由于运行的消弧线圈无法满足线路电容电流的补偿要求造成的。

为此提出了采用自动跟踪补偿消弧线圈装置,并兼顾快速熄灭电弧和减小接地电流,有效保证35kV系统安全可靠运行。

关键词:电容电流;单相接地;消弧线圈;接地故障;故障录波目前,我国35kV电网主要采用中性点不接地的运行方式,其具有单相接地故障时可继续给用户供电的优点,但当接地电流较大时容易发展成为电弧接地而对设备造成危害。

为了克服这一缺点,应设法减少接地处的接地电流,采用中性点经消弧线圈接地的运行方式后,当35kV电网出现单相接地故障时,可使接地处流过一个与接地电流矢量方向相反的感性电流,减少35kV电网出现单相接地故障时对设备的危害。

因此,消弧线圈装置性能的好坏,是35kV电网安全运行的重要保障。

35kV电网的消弧线圈为人工调档油式消弧线圈(型号为3FOM-1100/35),分接头共有五档,额定电流25~50A,自从投运至今。

该装置需在系统正常运行时测量系统电容电流,并设定补偿参数,单相接地发生后自动进入设定的补偿状态,无法根据实时检测系统电容电流进行补偿。

此外,据电气设计手册规定,35kV系统电容电流超过10A时需投入消弧线圈,以消除单相接地对系统运行及生产造成的危害,所以该型消弧线圈已经不能满足新运行方式的安全需要了。

现对其中一起35kV系统单相接地事故原因进行分析,并提出相应的防事故措施。

1 某变电站35kV电网的基本情况1.1 35 kV电网中性点接地方式谋变电站35kV系统对外直接供给工厂重要用户,其安全稳定运行对工厂有着重大的意义。

该变电站35kV系统中性点经消弧线圈接地,正常消弧线圈应为过补偿运行,调谐值10%~20%。

发生单相接地故障时,A线电压仍然对称不变,单相接地电流与负荷电流相比并不大,对用户供电基本无影响,但需要在较短时间(1~2h)内切除故障,以免发展成相间故障而对设备造成损坏。

10KV自动跟踪补偿消弧线圈运行规定(2)

10KV自动跟踪补偿消弧线圈运行规定(2)

10KV自动跟踪补偿消弧线圈运行规定作为一种补偿单相接地电容电流的设备,10KV自动跟踪补偿消弧线圈近几年在我局得到推广应用,其中主要类型有:ZBYH-10/10-25 XDJ-LT-300/10.5 XDJ-242/10.5消弧线圈的投退必须按调度命令执行,运行中发现异常应及时向调度汇报。

一、对于ZBYH-10/10-25型号规定如下:1、当10KV两段母线并列或分列运行时,应投入消弧线圈,使其发挥作用。

2、当一段母线停运时,应退出消弧线圈。

3、消弧线圈进行预试、加油及检修时,应退出消弧线圈。

4、消弧线圈高压保险熔断或发生障碍、异常、事故,需要进行检查处理时,应退出消弧线圈。

5、消弧线圈运行中不得停用低压电源,如必须停用低压电源,应退出消弧线圈。

A、投入消弧线圈操作顺序:①合上交流电源刀闸,检查电源指示灯亮。

②将手动/自动开关打至手动位置。

③检查消弧变高压保险已装好。

④推上消弧变高压侧隔离刀闸。

⑤将手动/自动开关打至自动位置。

⑥记录投入时间。

B、退出消弧线圈操作顺序:①所在系统确无单相接地②将手动/自动开关打至手动位置。

③拉开消弧变高压侧隔离刀闸,检查确已拉开。

④断开交流控制电源刀闸。

⑤记录退出时间。

二、对于XDJ-242/10.5型号规定如下:1、消弧线圈投入运行时,应先推上刀闸后,再送上电机操作电源,然后送上测控器电源。

2、消弧线圈退出运行时,应先断开测控器电源,再断开电机操作电源,然后拉开刀闸。

3、母线分列运行时,两台消弧线圈均投入运行,调节方式均置于“自动”位置。

4、母线并列运行时,一般情况下两台消弧线圈均投入,一台置为自动,一台置为手动,每隔三个月调节方式应变换一次,并且两台消弧线圈的档位差不应超过两档;当置为自动的消弧线圈运行到电流下限,而同时置为手动的消弧线圈也需运行下限时,应退出置为手动的消弧线圈,并汇报调度。

5、母线分列运行前,两台消弧线圈均应置于自动调节状态。

6、系统非正常状态运行时,不必改变消弧线圈的运行方式。

消弧线圈跟踪补偿及接地选线装置

消弧线圈跟踪补偿及接地选线装置

一.概述对于不同电压等级的电力系统,其中性点的接地方式是不同的,根据我国国情,我国6~66KV配电系统中主要采用小电流接地运行方式。

为了有效防止系统弧光接地,消除接地故障,提高供电质量,按照国家对过电压保护设计规范新规程规定,电网电容电流超过10A时,均应安装消弧线圈装置。

由于中性点经消弧线圈接地的电力系统接地电流小,其对附近的通信干扰小也是这种接地方式的一个优点。

个优点。

以前我国电网普遍采用手动调匝式消弧线圈,由于不能实时监测电网的电容电流,其主要缺陷表现在以下两个方面:(1)调节不方便,需要装置退出运行才能进行调节。

(2)判断困难,无法对系统运行状态做出准确判断,因此很难保证失谐度和中性点位移电压满足要求。

和中性点位移电压满足要求。

随着微电子技术的飞速发展及广泛应用,消弧线圈装置自应用于电力系统以来,也有了较大的发展。

目前国内生产的消弧线圈装置主要有以下几种:调隙式消弧线圈装置、调匝式消弧线圈装置、调励磁式消弧线圈装置等。

以上几种装置均能实现自动跟踪调谐,但还有其不足之处。

如调节速度慢、故障率高、容易引入谐振源、二次系统电源结构复杂等不足之处。

同时由于上述各装置均采用单片机控制系统,其运行可靠性不高,且信息记忆和管理功能差。

此外,上述各成套装置调节范围小,不能达到全面调节,其调节范围在消弧线圈最大电流的30%~100%。

电力系统出现单相接地故障后,如何准确地选出接地线路一直是个难题,尤其是中性点经消弧线圈接地的系统更为困难。

因此,高压电网接地故障后,如何快速准确地选出接地线路也是上述各装置无法解决的难题。

我公司最新研制生产的ACHC系列调容式消弧线圈装置采用先进的PC104工控机系统,总线式结构,彩色液晶屏汉字显示,具有运行稳定可靠、显示直观,抗干扰能力强等特点,同时系统具有完善的参数设置及信息查询功能。

该系统克服了以前各消弧线圈装置调节范围小的缺陷,能够进行全面调节。

该装置采用残流增量法和有功功率法等先进算法,对高压接地线路进行选线,选线准确、迅速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 自动跟踪补偿消弧装置对单相接地故障的处理3.1单相接地故障性质的判断配电网在运行过程中可能发生各种故障和不正常运行状态,最常见同时最危险的是各种形式的短路故障。

统计资料表明,配电网中以单相接地短路故障发生最多,高达80%。

谐振接地配电网中发生单相接地故障时,由于故障点的电流很小,而且三相的线电压依然保持对称,不影响负荷的供电,因此属于不正常运行状态。

由电路理论分析可知,电网发生短路故障后,电压、电流包含随时间衰减的暂态分量和幅值不随时间变化的稳态分量。

3.1.1瞬时性单相接地故障分析判断根据实际运行经验证明,接地电流较大时,会在故障点产生持续性的弧光接地。

为了消除电弧过程中可能带来的危害,我国《电力设备过电压保护设计技术规程》规定,在3-10KV 系统中接地电容电流超过30A ,20KV 及以上系统中超过10A ,其系统中性点均应采取谐振接地方式。

1.零序稳态量故障特性分析对于谐振接地系统,正常运行时中性点电压为零,消弧线圈不起作用。

当发生单相接地故障时,三相对地通路的对称性遭到破坏,由于中性点悬空,一相接地后中性点电位将发生偏移,导致其三相对地电压变化。

中性点电压升高,在消弧线圈中产生于线路零序电容电流极性相反的感性电流,为: A L E I jLω= 产生的感性电流可以抵消系统的电容电流,从而减少流经接地点的故障电流,是故障电弧在电流过零点易于熄灭。

如果故障点绝缘恢复速度大于故障相电压恢复速度。

电网将恢复正常运行。

根据对电容电流补偿度的不同,消弧线圈补偿方式分为全补偿、欠补偿、过补偿。

为了防止线路发生串联谐振,实践中一般采用过补偿方式。

在过补偿方式下,故障线路的零序电流幅值很小,甚至小于健全线路。

放向也与健全线路相同,从母线流向线路。

对于自动跟踪补偿系统,正常运行时全补偿,发生单相接地故障时,故障线路的零序电流幅值更小,理论上为零。

2.零序暂态量故障特性分析对于暂态过程,由于消弧线圈对暂态高频电流的电抗非常大,几乎可以认为是开路,因此实际上它不影响暂态电流分量的计算。

同时,考虑到消弧线圈在电网正常运行状态下的电流约等于零,且不能发生突变,所以中性点谐振接地系统与中性点不接地系统的暂态过渡过程近似相同。

文[]中提出,由于暂态电感电流的最大值应出现在接地故障发生在相电压经过零值瞬间,而当故障发生在相电压接近于最大值瞬间时,暂态电感电流约等于零。

因此,暂态电容电流较暂态电感电流大很多,在同一电网中,无论是中心点不接地还是谐振接地,在相电压接近于最大值时发生故障,其过渡过程是近视相同的。

一般暂态电容电流的持续时间很短,即使其自由振荡分量的幅值达到最大,也不会对接地电弧熄灭带来多大影响。

3.1.1永久性单相接地故障分析判断永久性单相接地故障的稳态特性和暂态特性与瞬时性单相接地故障基本相同。

瞬时性故障下故障点的绝缘并没有被破坏,一旦放电结束,故障点的绝缘会恢复,电网恢复正常运行;永久性故障情况下故障不能自行恢复,这种情况下,故障点的绝缘被永久破坏。

由于电弧燃烧时间过长可能将瞬时性故障转换为永久性故障。

所以,当不论发生的是瞬时性单相接地故障还是永久性单相接地故障,都可以通过零序电压变化和电容电流的大小来判断。

3.2装置对瞬时性单相接地故障的处理3.2.1.消弧线圈成套装置简介自动跟踪补偿消弧线圈可以自动适时地检测跟踪电网运行方式的变化,快速调节消弧线圈的电感值,以跟踪补偿变化的电容电流,使失谐度始终处于规定的范围内。

大多数自动跟踪消弧装置在可调的电感线圈下串有阻尼电阻,它可以限制在调节电感量的过程中可能出现的中性点电压升高,以满足规程要求不超过相电压的15%。

当电网发生永久性单相接地故障时,阻尼电阻可由控制器将其短路,以防止损坏。

其原理接线如图3-所示。

消弧线圈阻尼电阻自动跟踪补偿消弧线圈原理接线图自动跟踪补偿消弧线圈按改变电感方法的不同,大致可分为有分接头的调匝式,有可动铁心的调气隙式,磁阀式调节的消弧线圈,高短路阻抗变压器式消弧系统以及调容式消弧补偿装置等。

3.2.2自动跟踪补偿消弧装置原理目前自动跟踪补偿消弧装置已大量的在配电网中运行,自动跟踪补偿消弧装置与人工调谐消弧线圈相比,具有显著的优越性。

首先时可以避免人工调谐消弧线圈等诸多麻烦,而且不会使电网在调谐时暂时失去补偿;其次,由于自动跟踪补偿消弧装置能保证补偿精度,不仅可以提高补偿的动作成功率,同时能够限制弧光接地过电压和铁磁谐振过电压,有利于电网的安全运行。

自动跟踪补偿消弧装置目前厂家较多,型式也较多,但从结构和原理上大致分为以下几种型式。

(一)调抽头式这种方式主要由接地变压器、可调电抗器、阻尼控制柜和微机控制器组成,对中性点引出的电网(如35KV 电网),可省去接地变压器。

调抽头的方式主要是利用有载开关来切换可调电抗器的抽头,进行测量调感的。

其工作原理有两种方式:1.位移电压法(串联谐振法)补偿电网正常运行时中性点位移电压n U =式中,C K 为电网不对称系数,A E 为相电压,v 为脱谐度,d 为阻尼率。

电网运行方式不变,电网的不对称度C K 也不变,C K 与脱谐度无关。

设在抽头1T 时位移电压为1n U 、在抽头2T 时位移电压为2n U ,则有12n n U U = 因为C L CI I v I -=,阻尼率d 可以略去,所以 1221n C L n C L U I I U I I -=- 式中,C I 为某一运行方式下电网的电容电流,1L I 、2L I 为消弧线圈在不同抽头1T 、2T 时的补偿电流。

于是可得1212121n L L n C n n U I I U I U U -=- 式中1n U 、2n U 应同时在调谐特性曲线的连续上升(欠补偿)部分或连续下降(过补偿)部分。

用这种数学模型测量的自动跟踪消弧线圈目前在国内是比较多的,它具有以下特点:(1)结构简单,操作方便,一次设备比较可靠,制造方便。

(2)在处理单相接地故障时,噪音低。

(3)对电网运行方式的变化能自动跟踪,响应时间也较快。

但这种结构消弧线圈也有它的缺点:(1)电感量的变化是靠调节抽头获得的,调整分阶梯,补偿电流不能做到连续无级可调。

(2)在数学模型中略去了阻尼率d ,通常电网的d 值较小(3%~5%),但如加上消弧线圈本身的阻尼电阻,d 值就不能忽略,特别是在接近谐振点更是如此。

以致造成测量误差大,重复性不好,有的测量误差高达80%,主要就是这个原因造成的。

(3)由于在调整时有阶梯和原理上的限制,不便于多台并联运行。

2.变频测量法为了提高测量精度,一些厂家开发出了基于变频式测量原理的测控系统,即在消弧线圈上加装二次绕组,从二次绕组注入了变频电压信号,以改变消弧线圈在测量信号下的电抗值和电网对地的容抗值,当达到一定的频率d f 时,消弧线圈两端的电压达到最大值,消弧线圈的感抗和电网的对地容抗相等,系统在频率d f 时发生串联谐振,此时122L d C d X f L X f Cππ=== 因为d f 、L 已知,可以计算出C 值,进而可以算出电网在工频状态下的电容电流C I 值。

基于变频式测量原理的消弧装置,频率的变化可以做到在一定的频带范围内无级可调,因而可以精确地找出谐振点以达到精确测量的目的,但基于这种测量原理的消弧装置有一个最大的缺陷,即不能多台自动并联。

如果在某台消弧装置测量时,如电网中还有另外的消弧装置在运行,不能准确测出电网中已运行的消弧装置的感抗值,所以不能自动并联。

(二)直流偏磁式这种方法主要是在消弧线圈的铁芯上加上直流偏磁绕组调整铁芯的饱和从而改变补偿电流。

采用这种方式的优点主要是结构简单、占地小,但其本身是一个谐波源,不能并联运行,可控硅容易损坏,在电网中运行的较少。

(三)调容式这种方法主要是在消弧线圈的二次绕组带有若干组低压电容器,用电容电流来抵消电感电流,起到改变补偿电流的作用。

在补偿时的一定时间段内可以投小电容器,把残流放大,然后通过零序电流进行选线,也就是所谓的残流增量法。

调容式自动消弧装置是在调抽头的基础上发展起来的,去掉绕组上的分接头、在消弧线圈上加上一个二次绕组,二次绕组引出,并接若干组电容器,电容器通过开关或者可控硅投切,在运行时利用电容电流抵消一部分消弧线圈一次侧的电感电流,通过改变投入电容器的组合,来达到改变电感电流大小,调节补偿电流之目的。

(四)调气隙式调气隙式消弧线圈依靠改变可动铁芯在气隙中的位置来调节电感L 值,它使电感无级可调,从而避免了电感不能连续可调的缺点。

但是这种靠调节铁芯位置来改变电感大小的方法与调匝式的消弧线圈类似,存在机械传动环节,使消弧线圈的整个响应时间大大加长,它只能采用预调节方式,在消弧线圈和地之间加装阻尼电阻来限制线性谐振过电压。

但随着对电网特点的掌握,这种消弧装置还是有很大的市场前景。

3.3.3自动跟踪消弧装置对电网的作用(1)它能对电网电容电流自动测量、对运行方式自动跟踪,自动调整补偿电流,克服了老式消弧线圈在调谐上存在的不足,如老式的消弧线圈的抽头需要停电调整。

自动跟踪补偿消弧装置,由于是实时在线工作,对电容电流的测量、对电网运行方式的跟踪以及补偿电流的调整,都是自动进行不需要认为操作,更不需要停电,响应速度快,使之永远处于最佳补偿状态。

(2)自动补偿电网单相接地电流促使接地电弧熄灭,自动跟踪补偿消弧装置补偿后的残流d I 控制在一定的范围内,使之小于熄弧临界值10A ,便于接地电弧的熄灭,有效降低了电网的故障建弧率,使配电网的供电可靠性大幅度提高。

实践证明当配电网电容电流发展到一定程度后,一旦发生单相接地,接地电弧就不能可靠熄灭,要么发展为间歇性的电弧接地产生弧光接地过电压,要么发展为稳定燃烧的电弧,由电弧的光、热作用破坏电弧周围空气的绝缘,最后发展为相间短路,甚至发生“火烧连营”事故。

当电网采用自动跟踪补偿消弧装置后,由于装置能够准确地测出接地电流值,并把补偿电流值调整到最佳的补偿状态,把接地故障点的接地残流控制到熄弧临界值以下,使接地电弧能够可靠熄灭,因而能消除大多数的瞬时性接地故障,降低配电网的故障建弧率;即使对永久性接地故障,也因故障点电流小,绝缘子热破坏和电弧扩散,引起的相间短路的概率大为减少,明显地提高了供电可靠性。

(3)它能有效地限制弧光接地过电压,消除铁磁谐振过电压。

配电网中弧光接地过电,持续时间较长,因而会对电气设备造成相当大的危害。

弧光接地过电压的产压可达3.5U生原因是接地电弧不能可靠熄灭,形成间歇性的对地电弧,造成电网中电磁能的强烈振荡造成的。

要限制弧光接地过电压最主要的方法就是促使电弧可靠熄灭,限制电弧重燃,而当电网加装自动跟踪补偿消弧装置后,当接地故障发生时,装置一方面向接地点提供补偿电流,减缓弧道恢复电压上升速度,促使接地电弧尽快熄灭,避免重燃;另一方面,串接在电抗器与地之间的阻尼电阻会有效地抑制弧光接地过电压。

相关文档
最新文档