第4讲 核辐射探测器的进展
2024年核辐射检测仪市场发展现状
![2024年核辐射检测仪市场发展现状](https://img.taocdn.com/s3/m/59947e67ec630b1c59eef8c75fbfc77da269979b.png)
2024年核辐射检测仪市场发展现状一、引言核辐射检测仪是一种用于检测核辐射水平的仪器设备。
随着核能的广泛应用和核辐射对环境和人体健康的影响日益凸显,核辐射检测仪的需求量逐渐增加。
本文将对2024年核辐射检测仪市场发展现状进行分析。
二、市场规模与趋势2.1 市场规模核辐射检测仪市场规模逐年增长。
目前,全球核辐射检测仪市场规模已达到XX 亿元,并呈现继续增长的趋势。
2.2 市场趋势2.2.1 技术创新随着科技的进步,核辐射检测仪的技术不断创新。
新型的核辐射检测仪器具有更高的灵敏度、更低的误报率和更方便的使用方式,受到市场的青睐。
2.2.2 高需求行业推动市场增长核辐射检测仪在核电站、医疗机构、核工业以及科研领域等高辐射环境下的应用需求巨大,这些行业的发展推动了核辐射检测仪市场的增长。
2.2.3 全球核能发展随着全球核能的不断发展,核辐射检测仪的需求也在全球范围内增长。
尤其是在新兴经济体和发展中国家,核辐射检测仪的市场潜力巨大。
三、市场竞争格局核辐射检测仪市场存在着激烈的竞争格局。
目前,市场上主要的竞争者包括以下几个方面:3.1 公司A公司A作为核辐射检测仪市场的领先者,其产品具有稳定的性能和良好的口碑,占据了市场的主要份额。
3.2 公司B公司B主要侧重于技术创新,其研发团队不断改进现有产品,并推出了一系列新型的核辐射检测仪,受到了市场的关注。
3.3 公司C公司C凭借其良好的售后服务和价格竞争优势,不断扩大市场份额,挑战着市场的领导者。
四、市场前景与发展机遇4.1 市场前景随着核能的广泛应用以及核辐射对环境和人体健康的影响日益凸显,核辐射检测仪市场前景广阔。
预计未来几年,市场规模将进一步扩大。
4.2 发展机遇4.2.1 技术创新带来机遇随着科技的进步,新材料、新技术的引入为核辐射检测仪市场带来了机遇。
利用新技术,可以提高核辐射检测仪的性能,满足不断增长的市场需求。
4.2.2 新兴市场的发展机遇近年来,新兴经济体和发展中国家对核能的需求不断增长。
《核辐射与探测技术》课件
![《核辐射与探测技术》课件](https://img.taocdn.com/s3/m/76f717c303d276a20029bd64783e0912a3167c57.png)
这个《核辐射与探测技术》PPT课件将带你了解核辐射的基本概念、辐射剂量 率的测量、辐射探测器的分类和特点、辐射安全控制、核事故的应对处理, 并分享学习心得和思考。
核辐射的基本概念
1 电离辐射
2 辐射源
了解不同类型的电离辐射,比如阿尔法、 贝塔和伽马射线。
探索核辐射的来源,如自然辐射和人为 辐射。
3 辐射相互作用
4 辐射的影响
研究辐射与物质之间的相互作用,如散 射和吸收。
了解辐射对生物和环境的影响,以及辐 射保护的重要性。
辐射剂量率及其测量
剂量率
解释剂量率的概念,并探 讨单位及其测量方法。
剂量计
介绍常见的剂量计类型, 如电离室和探针。
剂量测量技术
探索剂量测量的先进技术, 如闪烁体和核电子学。
3
辐射安全标准
介绍辐射安全标准的制定和实施。
核事故的应对处理
应急响应
探讨核事故发生时的应急响应程序和措施。
辐射监测
解释核事故后的辐射监测方法和相关技术。
核污染清理
介绍核污染清理的方法和技术。
食品和水源监测
讨论核事故后的食品和水源监测措施。
学习心得和思考
• 深入学习与核辐射和探测技术相关的论文和研究。 • 参加相关的学术会议和讲座,与其他专家交流经验。 • 自主实践,通过实验和模拟训练提升技术实力。
辐射探测器的分类和特点
盖革-穆勒计数管
了解盖革-穆勒计数管的原理和应用。
闪烁体探测器
探索闪烁体探测器的工作原理和优势。
半导体探测器
介绍半导体探测器在核辐射测量中的应用。
电离室
讨论电离室作为辐射测量标准的重要性。
辐射安全控制
核辐射物位仪表的技术进展和未来发展趋势
![核辐射物位仪表的技术进展和未来发展趋势](https://img.taocdn.com/s3/m/4cbd1c7cdc36a32d7375a417866fb84ae45cc331.png)
核辐射物位仪表的技术进展和未来发展趋势核辐射物位仪表是一种用于测量含辐射性物质的容器内辐射源的设备。
它在核工业、医疗、环境监测和核废料处理等领域中起着至关重要的作用。
本文将探讨核辐射物位仪表的技术进展以及未来的发展趋势。
随着核工业的快速发展,核辐射物位仪表的技术也在不断进步。
首先,传统的核辐射物位仪表主要采用闪烁体探测器,它通过探测器中的闪烁发光来检测辐射水平。
然而,传统的闪烁体探测器不仅成本高昂,而且对于辐射源的探测灵敏度有限。
为了克服这些问题,研究人员开始探索新的核辐射物位仪表技术。
一种新的技术是利用半导体材料作为核辐射物位仪表的探测器。
半导体探测器具有高响应速度和较高的辐射灵敏度,因此可以更准确地测量核辐射水平。
此外,半导体探测器还具有较低的功耗和较小的尺寸,使其更适合于便携式辐射监测设备的制造。
然而,半导体探测器也存在一些挑战,如他们的灵敏度易受温度和湿度等环境因素影响。
另一种新的技术是利用光纤传感器作为核辐射物位仪表的探测器。
光纤传感器具有高灵敏度和高可靠性,可以实时监测辐射源的辐射水平。
与传统的探测器相比,光纤传感器具有更小的尺寸和更灵活的安装方式,可以应用于复杂环境中。
此外,光纤传感器还可以通过光纤网络将数据传输到远程监测站点,实现远程访问和监控。
未来,核辐射物位仪表的发展趋势将主要集中在几个方面。
首先,随着人们对辐射防护的要求越来越高,核辐射物位仪表需要具备更高的灵敏度和更准确的测量能力。
这将需要技术上的突破,如提高探测器的灵敏度和分辨率,以及改进数据处理算法。
其次,随着技术的进一步发展,核辐射物位仪表将具备更多的功能,如辐射源位置定位、辐射源类型识别和辐射水平趋势预测等。
这将为用户提供更多的信息和决策支持,帮助他们更好地管理和控制辐射源的风险。
此外,随着物联网和大数据技术的兴起,核辐射物位仪表将与其他设备和系统进行更紧密的集成。
通过与其他监测设备和系统的无缝连接,核辐射物位仪表可以实时共享数据,并与其他设备实现联动控制。
核物理实验中的探测器技术进展
![核物理实验中的探测器技术进展](https://img.taocdn.com/s3/m/8d03ca03302b3169a45177232f60ddccdb38e663.png)
核物理实验中的探测器技术进展在探索微观世界的奥秘、深入研究核物理现象的征程中,探测器技术的不断发展和创新始终扮演着至关重要的角色。
核物理实验旨在揭示原子核的结构、性质以及各种核反应过程,而探测器则是获取这些宝贵信息的关键工具。
近年来,随着科学技术的飞速进步,核物理实验中的探测器技术也取得了显著的进展,为核物理研究带来了前所未有的机遇和挑战。
传统的核物理探测器主要包括气体探测器、闪烁探测器和半导体探测器等。
气体探测器,如正比计数器和盖革计数器,通过测量入射粒子在气体中产生的电离效应来探测粒子。
闪烁探测器则利用闪烁体材料在受到粒子激发时发出的闪光来实现探测。
半导体探测器,如硅探测器,凭借其高分辨率和良好的能量线性响应,在核物理实验中得到了广泛应用。
然而,随着核物理研究的深入和实验要求的不断提高,传统探测器在某些方面逐渐显露出局限性。
例如,在对高能粒子的探测中,传统探测器的能量分辨率和位置分辨率可能无法满足要求;在大规模实验中,探测器的计数率和抗辐射能力也面临着严峻的考验。
为了克服这些问题,科研人员不断探索和创新,推动了新型探测器技术的发展。
一种重要的新型探测器技术是时间投影室(Time Projection Chamber,TPC)。
TPC 可以同时提供粒子的三维径迹和能量信息,具有出色的空间分辨率和能量分辨率。
它通过在充满气体的腔体中施加电场,使入射粒子电离产生的电子在电场作用下漂移,并在探测器的端面上被收集和测量。
通过分析电子的漂移时间和位置,可以重建粒子的径迹和能量。
TPC 在重离子碰撞实验、中微子实验等领域发挥了重要作用。
另一个引人注目的进展是微结构气体探测器(Micro Pattern Gas Detector,MPGD)的出现。
MPGD 结合了气体探测器和半导体探测器的优点,具有高计数率、高位置分辨率和良好的时间分辨率。
其中,气体电子倍增器(Gas Electron Multiplier,GEM)和微网格气体探测器(Micromegas)是 MPGD 的典型代表。
核辐射探测仪器基本原理及及指标课件
![核辐射探测仪器基本原理及及指标课件](https://img.taocdn.com/s3/m/8d488a93d05abe23482fb4daa58da0116d171f42.png)
这些仪器通过测量放射性药物的分布 和代谢,以及放射性粒子的释放,为 医生提供准确的诊断和治疗方案,提 高治疗效果。
核辐射探测仪器在安全检测领域的应用
核辐射探测仪器在安全检测领域主要用于检测放射性物质、爆炸物和毒品等违禁品,保障公共安全。
研究。
环境监测
用于检测核设施周围的 环境放射性水平,保障
公众健康和安全。
02
核辐射探测仪器基本原理
核辐射基本知识
核辐射定义
核辐射是指由原子核内部 释放出的射线,包括α射 线、β射线和γ射线等。
核辐射来源
核辐射主要来源于放射性 物质、核反应堆、核武器 等。
核辐射特性
核辐射具有穿透性强、能 量高、电离能力强等特点 。
按测量原理分类
可分为计数型和能量型两 类,计数型主要测量射线 的数量,能量型主要测量 射线的能量。
核辐射探测仪器应用领域
医学诊断和治疗
用于检测肿瘤、癌症和 其他疾病,以及放射治
疗中的剂量监测。
工业检测和控制
用于检测产品的放射性 污染、无损检测、工艺
控制等。
科研实验
用于物理、化学、生物 学和医学等领域的实验
核辐射探测仪器基本原理及指标课 件
目录
• 核辐射探测仪器概述 • 核辐射探测仪器基本原理 • 核辐射探测仪器性能指标 • 核辐射探测仪器发展现状与趋势 • 核辐射探测仪器实际应用案例
01
核辐射探测仪器概述
核辐射探测仪器定义
01
核辐射探测仪器是一种用于测量
核辐射的设备,能够检测和测量
放射性物质发出的各种射线,如α
05
2024年核辐射探测器市场分析现状
![2024年核辐射探测器市场分析现状](https://img.taocdn.com/s3/m/42e90c840408763231126edb6f1aff00bed570f9.png)
2024年核辐射探测器市场分析现状核辐射探测器是一种广泛应用于核能领域的关键设备,用于测量和监测核辐射水平。
随着核能行业的不断发展壮大以及核辐射安全的重要性日益凸显,核辐射探测器市场也呈现出快速增长的趋势。
本文将对核辐射探测器市场的现状进行分析。
市场规模与增长趋势根据市场研究数据显示,核辐射探测器市场在过去几年里保持了稳定的增长态势。
预计到2025年,核辐射探测器市场规模将达到XX亿美元,年复合增长率约为XX%。
这主要得益于核能行业的快速发展以及核辐射安全意识的提高。
市场驱动因素核辐射探测器市场的增长主要受到以下几个驱动因素的影响:1. 核能行业的发展核能作为清洁能源的重要组成部分,得到了广泛应用和推广。
随着越来越多的国家投资于核能项目,对核辐射探测器的需求也相应增加。
2. 核辐射安全意识的提高核辐射对人类健康和环境安全造成潜在威胁,因此核辐射安全意识的提高成为推动核辐射探测器市场增长的重要因素。
政府对核辐射监测的规定和要求也促使核辐射探测器的需求增长。
3. 技术进步和创新随着科技的进步,核辐射探测器的性能不断提高。
新型的探测器具有更高的灵敏度、更广的测量范围以及更低的误差率,使其在核能行业中得到更广泛的应用。
市场份额与竞争格局目前,核辐射探测器市场呈现出一定的集中度。
少数大型公司占据了市场的主导地位,它们通过产品创新、技术合作和市场扩张来不断保持竞争优势。
然而,随着市场的不断扩大和新型技术的涌现,市场竞争也在逐渐加剧。
一些新进入市场的公司通过提供具有竞争力的产品和不断改善客户服务来争夺市场份额。
此外,市场中还存在着一些小型公司和地区性企业,它们主要通过定制化需求和细分市场来获取利润空间。
市场区域分布核辐射探测器市场的地理分布主要集中在发达国家和新兴市场。
美国、中国、日本、德国等国家是市场的主要贡献者,这些国家在核能领域的发展和核辐射安全方面投入巨大。
新兴市场国家,如印度、巴西和韩国等,正逐渐加大对核能行业的投资,推动了核辐射探测器市场的增长。
核辐射探测器(完整版)ppt资料
![核辐射探测器(完整版)ppt资料](https://img.taocdn.com/s3/m/5365401ec8d376eeafaa3136.png)
电压-电流曲线〔气体探测器〕
气体探测器的原理
• 气体受放射源照射产生电离,外加电压收 集电离电荷
• 电离室:工作在饱和区上 • G-M管:工作在G-M区上
医用活度计(dose calibrator)
盖革-弥勒监测仪(G-M survey meter)
半导体探测器(semiconductor)
• The interval between the time when a ray interacts with a detector and the time when the detector responds and the event is recorded
• The shorter, the better
• Another way to look at FWHM is to consider it as a measure of error in the energy determination of an x- or γ–ray by a detector
其它方面〔性能指标〕
• The ability of a detector not to be appreciably affected by the fluctuations in line voltage and environment temperature
核辐射探测的对象
• 核辐射的质→射线的能量〔特征量〕→ 〔放射性〕核素的种类
• 核辐射的量→射线的强度〔累加量〕→ 〔放射性〕核素的活度
核辐射探测的实质
• 能量转换过程
• 即:将辐射能转变成可以记录的电信号的 过程
核辐射探测器的分类
• 按作用原理〔工作方式〕 • 带电粒子(α、β)探测器→电离和激发 • 非带电粒子(γ)探测器→通过三种效应产
核辐射探测仪器基本原理及及指标
![核辐射探测仪器基本原理及及指标](https://img.taocdn.com/s3/m/99c3c3715b8102d276a20029bd64783e09127db6.png)
核辐射探测仪器基本原理及及指标1.光电效应探测:当γ射线入射到闪烁晶体或闪烁闪耀液体中时,会产生光电效应,即γ射线与物质相互作用,产生能量沉积,并使物质中的电子跃迁到高能级。
高能级的电子会向下跃迁,释放出能量,产生光子。
通过光电倍增管放大光信号,可以得到γ射线的能量和强度信息。
2.离子化室探测:当粒子入射到离子化室中时,会引起气体分子的电离,产生正离子和电子。
正离子在电场的作用下向阳极漂移,电子则向阴极漂移。
通过测量电离室中的电荷量,可以得到电离室中的粒子辐射强度。
3.闪烁探测:当粒子入射到闪烁晶体或液体中时,会产生能量沉积,激发晶体中的原子或分子。
激发态的原子或分子会向基态跃迁,释放出能量,产生光子。
通过光电倍增管或光电乘成功能,可以放大闪烁光信号,得到探测粒子的能量和强度信息。
1.探测效率:指探测器对入射辐射的探测能力。
即单位时间内探测器能探测到的辐射事件数与实际入射辐射事件数的比值。
探测效率高表示探测器对辐射事件的敏感度高。
2.清除时间:指探测器上的靶核或电子由高激发态跃迁回稳定态的时间,也即探测器释放出的光子停止闪烁的时间。
清除时间短表示探测器能快速恢复可探测状态。
3.能量分辨率:指探测器对不同能量辐射的分辨能力。
当辐射能量变化时,能量分辨率低会导致探测器无法准确测量。
4.阈值:指探测器开始探测辐射的最小能量。
低阈值可使探测器对低能辐射更敏感。
5.线性范围:指探测器能够准确测量的辐射强度范围。
超出线性范围可能导致读数不准确。
6.响应时间:指探测器从辐射入射到输出响应的时间。
响应时间短表示探测器对短脉冲辐射的探测能力强。
7.选择性:指探测器对不同类型辐射的选择能力。
选择性好意味着探测器能够区分不同类型的辐射。
综上所述,核辐射探测仪器的基本原理是根据辐射粒子与物质相互作用的方式来进行探测和测量,主要包括光电效应、离子化室和闪烁探测。
其指标主要有探测效率、清除时间、能量分辨率、阈值、线性范围、响应时间和选择性。
核辐射探测器的现状及其展望
![核辐射探测器的现状及其展望](https://img.taocdn.com/s3/m/80728e72f524ccbff021843a.png)
核辐射探测器的现状及其展望文章主要阐述了核辐射探测仪器的发展历史和国内外发展现状,并介绍了几款探测仪器及其相关技术,最后阐述了其技术的改进与发展趋势。
标签:核辐射探测;研究现状;展望一、核辐射探测器的发展历史核辐射探测器是通过使核辐射在气体、液体或者固体中发生电离效应、发光现象、物理变化或者化学变化来监测核辐射的仪器。
1896年法国科学家A.H.贝可勒尔研究含铀矿物质的荧光现象时,偶然发现铀盐能放射出穿透力很强可使照相底片感光的不可见射线。
不久人们在加有磁场的云室中研究这种射线时,证明它是由3种射线成分组成:α射线、β射线和γ射线。
贝可勒尔在发现放射性现象的同时使用照相底片(最初的核乳胶)实现了人类历史上的第一次核辐射探测。
云室、核乳胶等成为了最早的核辐射探测方法。
1908年,出现了气体电离探测器,但是还存在快速计数的问题。
而1931年由于脉冲计数器的出现,解决了快速计数问题。
1947年出现的闪烁计数器,利用物质密度远大于气体而提高了对粒子的探测效率。
例如使用的碘化钠(铊)闪烁体,对γ射线具有较高的能量分辨能力。
到了60年代初,半导体探测器的发明,促使能谱测量技术的发展。
对于现代用于核物理、高能物理等其他科学技术领域的各种探测器件和装置,都是以上面三种类型探测器件为基础经过不断改进创新而实现的。
现如今人们对核能利用的日益广泛,促进核监测能力不断发展。
迄今为止,核辐射探测仪器衍生了很多种类,所运用的原理也不尽相同,其与核辐射探测技术共同发展,相辅相成,都经历了计数、测谱以及图像显示等发展阶段。
能给出电信号的辐射探测器已不下百余种。
二、核辐射探测器的研究现状目前国内外针对不同场合、不同辐射种类、不同能量范围的辐射探测器有很多,其主要是利用粒子与物质之间的相互作用来进行工作,下面就对以下五大类探测器加以介绍。
(1)气体探测器:气体探测器作为一种核辐射探测器,其中最常用的比如有正比计数器(Proportional Counter)、盖革-弥勒(G-M)计数管等。
2023年核辐射探测器行业市场分析现状
![2023年核辐射探测器行业市场分析现状](https://img.taocdn.com/s3/m/3409744202d8ce2f0066f5335a8102d276a26191.png)
2023年核辐射探测器行业市场分析现状核辐射探测器是一种用于检测和量化环境中的核辐射水平的设备。
核辐射探测器行业市场分析现状如下所述:1. 市场规模:核辐射探测器市场规模巨大,据预测,全球核辐射探测器市场预计将在2025年达到50亿美元。
此外,随着核能和医疗设备的增加,核辐射探测器市场有望继续增长。
2. 应用领域:核辐射探测器可广泛应用于核电站、医疗设备、辐射治疗、核科学研究以及核辐射监测等领域。
其中,核电站是最大的应用领域之一,因为核电站需要定期监测并控制辐射水平。
3. 市场驱动因素:核辐射探测器市场的增长受到多个因素驱动。
首先,随着核电站的建设和运营数量的增加,对核辐射探测器的需求也在增长。
其次,核能的广泛应用和核医学领域的发展也推动了核辐射探测器市场的增长。
4. 技术创新:近年来,核辐射探测器领域出现了一些技术创新,例如无线通信技术、高灵敏度探测器和多功能探测器等。
这些新技术的引入不仅提高了核辐射探测器的性能,还提高了其应用范围。
5. 地区分布:核辐射探测器市场主要集中在北美地区和欧洲。
这是因为这些地区的核电站数量众多,并且有严格的核辐射监管法规。
然而,亚太地区的核辐射探测器市场也在迅速增长,这是由于该地区核能的快速发展。
6. 竞争态势:核辐射探测器市场竞争激烈,主要厂商包括湖北新宇天宇科技有限公司、Mirion Technologies、Thermo Fisher Scientific等。
这些公司之间的竞争主要通过产品创新、价格竞争和市场拓展展开。
7. 市场挑战:核辐射探测器市场面临一些挑战。
首先,技术的复杂性和高成本限制了产品的普及。
其次,核辐射探测器的使用需要专业人员进行操作和维护,这也限制了市场的发展。
总体而言,核辐射探测器市场前景广阔,受到多个因素的驱动。
随着核能和医疗设备的发展,核辐射探测器市场有望继续增长,并呈现出技术创新和地区扩展的趋势。
然而,市场竞争激烈和技术复杂性仍然是核辐射探测器行业面临的挑战。
核辐射探测原理pdf
![核辐射探测原理pdf](https://img.taocdn.com/s3/m/f6497cdfdc88d0d233d4b14e852458fb770b38bc.png)
核辐射探测原理pdf全文共四篇示例,供读者参考第一篇示例:核辐射是一种高能辐射,常见的核辐射包括α、β、γ射线以及中子辐射。
核辐射对人体健康有较大危害,因此在核辐射探测方面起着非常重要的作用。
本文将探讨核辐射探测原理以及其在实际应用中的重要性。
一、核辐射探测原理核辐射探测原理是利用辐射入射到某些物质中,通过测量辐射对物质的作用产生的电离效应,来探测并测定核辐射的性质、强度和能量分布。
核辐射探测的基本原理可以分为以下几种方法:1. 光电探测技术光电探测技术是通过光电倍增管等光电器件,将入射的γ射线能量转化为光子,并经过电子乘法器件,使得原始的能量能够被测量出来。
光电探测技术具有高分辨率、高灵敏度和较好的线性响应等优点,是目前较为常用的核辐射探测方法之一。
2. 闪烁探测技术闪烁探测技术利用某些晶体或液闪材料,当核辐射入射到其表面时,会产生闪烁光,通过测量闪烁光的强度和时间等参数,来确定核辐射的性质。
闪烁探测技术具有高抗干扰能力和高能量分辨率等优点,被广泛应用于核辐射测量。
3. 半导体探测器技术二、核辐射探测在实际应用中的重要性核辐射探测在核工业、医疗诊断、环境监测等领域都有着重要应用。
下面将分别探讨核辐射探测在不同领域中的应用重要性:1. 核工业核工业是核能应用的主要领域之一,核辐射探测在核电站、核燃料生产及辐射监测等方面发挥着重要作用。
通过核辐射探测可以对核反应堆进行状态监测和辐射剂量测量,确保核电站的运转安全。
核辐射探测还可以用于核燃料的检测、测定和辐射保护等工作。
2. 医疗诊断核辐射在医疗领域的应用主要是核医学,如正电子发射断层扫描(PET)和单光子发射计算机断层摄影(SPECT)等。
核辐射探测可以用于医学显像和诊断,帮助医生准确判断患者的病情和疾病发展的情况,提高医疗治疗的准确性。
3. 环境监测核辐射探测在环境监测中的应用主要是通过辐射监测站测定环境中的核辐射水平,对环境的辐射水平进行监测和评估。
核辐射探测的原理
![核辐射探测的原理](https://img.taocdn.com/s3/m/230d6a64bf23482fb4daa58da0116c175e0e1e45.png)
核辐射探测的原理一、核辐射的基本原理核辐射是指放射性物质在衰变过程中释放出的能量或粒子。
常见的核辐射有α粒子、β粒子和γ射线。
核辐射具有穿透力强、能量高等特点,对人体和环境具有一定的危害性。
二、核辐射的探测方法1. 闪烁体探测器闪烁体探测器是一种常见的核辐射探测器,它利用放射性粒子与闪烁体相互作用产生闪烁光信号来检测辐射。
闪烁体探测器的原理是将待测辐射与闪烁体相互作用,使闪烁体中的原子或分子被激发,然后通过荧光转换器将激发能量转换为可见光信号,最后由光电倍增管或光电二极管转换为电信号进行测量和分析。
2. 电离室探测器电离室探测器是利用电离室原理测量核辐射的一种设备。
它由一个金属外壳和一个中心电极组成,内部充满了气体。
当核辐射穿过电离室时,会产生电离效应,使气体中的离子和电子产生。
通过测量电离室中的电离电流大小,可以间接测量核辐射的强度。
3. 半导体探测器半导体探测器是利用半导体材料的电离效应测量核辐射的仪器。
常见的半导体探测器有硅探测器和锗探测器。
当核辐射穿过半导体材料时,会与材料中的原子或分子发生相互作用,产生电子空穴对。
通过测量半导体材料中的电流变化,可以确定核辐射的能量和强度。
4. 闪烁体探测器+光电倍增管闪烁体探测器结合光电倍增管可以提高探测灵敏度。
闪烁体探测器将辐射能量转换为闪烁光信号,然后通过光电倍增管放大光信号,最后转换为电信号进行测量。
5. 电离室探测器+放大器电离室探测器结合放大器可以提高测量精度。
电离室探测器测量的是电离电流信号,通过放大器对电离电流信号进行放大和处理,可以提高测量的灵敏度和精确度。
三、核辐射探测的应用核辐射探测技术广泛应用于核工业、医疗、环境监测等领域。
在核工业中,核辐射探测用于核电站的安全监测和辐射防护;在医疗领域,核辐射探测用于医学影像学、癌症治疗等;在环境监测中,核辐射探测用于监测环境中的放射性物质,保障公众的健康和安全。
总结:核辐射探测的原理是基于核辐射与物质相互作用的特性,通过测量辐射与探测器的相互作用所产生的效应,来间接测量核辐射的能量和强度。
第2讲-核辐射探测器的发展
![第2讲-核辐射探测器的发展](https://img.taocdn.com/s3/m/c1c5c92390c69ec3d5bb759b.png)
3.3 部分探测器的新老更迭
核辐射探测器研制发展到中期阶段之后,形成了各种核 探测器横向竞争的局面。经过较量,其中部分已研制成功 的探测器最终被淘汰,而另一部分探测器逐步发展成公认 的支柱探测器。还有一部分核探测器被性能改进后的新型 探测器替代
4 完善阶段
4.1 探测器取舍-----舍弃的“成功”探测器 电解质晶体探测器、 结型半导体探测器、 硼玻璃闪烁体、 有机晶体闪烁体等 BaF2 、6LiI(Eu)闪烁体
3.2探测器性能指标的测定
所有核辐射探测器在研制成功之后,随即便开始 对其性能,诸如坪特性、壁效应、效率、寿命、幅 度分辨、时间与能量分辨、能量响应、温度效应及 耐辐照等的系统、全面的测量,并累积了大量实验 结果[1]。此处不可能一一列举。应当指出的是,这 其中不乏难度、容量很大、周期很长的复杂实验。
4.3光电倍增管------位臵灵敏、抗外磁场、耐高温
谢谢
2.1 几种早期探测器的问世
硫化锌闪烁屏是最早的闪烁体。人们发现α粒子(或质子)射到硫 化锌闪烁屏上,硫化锌晶粒会产生荧光,用放大镜或低倍显微镜, 甚至用已适应了黑暗的眼睛,可以观测到这一荧光。这样便可计数 单个粒子。在1903年,伊尔斯特和盖伊太尔就利用ZnS荧光屏观察 了由放射性引起的单个闪光。 用这种方法,观察者非常吃力,且粒子来得多了,就来不及计数。 后来发明了光电倍增管,代替人眼,并用电子学方法自动计数,逐 步完善成为现代的闪烁探测器。利用荧光物质的闪烁现象探测核辐 射是最早的核探测方法之一。
2.2 NaI(Tl)的成功
1948年3月,Robert Hofstadters进行了一个类似于居里夫人发现镭的实验。他在 黑暗中将蒽、萘、NaI(Tl)、KI(Tl)、NaCl(Tl)、KBr(Tl)及CaWO4等 样品依次排列在照相底片上,然后用黑纸把它们包起来,再把它们放入薄纸板箱 内。用镭源从纸箱上方半米处照射半小时。移走放射源,然后将照相底片冲出, 在原先放臵NaI(Tl)粉末的位臵下面,底片很黑。而其它样品下面,即便是KI (Tl)下面也几乎未受到影响。 之后,用NaI(Tl)在试管中制出多晶,外面又包上铝箔,留出光学窗与光电倍 增管相接。接上高压、放大器,第一次在示波器上得到了很大的脉冲。就这样, NaI(Tl)闪烁探测器便问世了。 有趣的是“Phys.Rev”发表文章报道这一激动 人心的成果时,编辑部将第一个NaI(Tl)闪烁计数器配臵图示的文字说明,与 另外一个图颠倒了。一个星期以后才又登文更正。NaI(Tl)闪烁体,核辐射探 测器的中流砥柱在问世时竟闹出了这样的笑话。 后来,用发现NaI(Tl)相同的设备,在意、美发现了液体闪烁体。晚些时候又 研制出Ge(Li)半导体探测器。
核辐射探测器教学课件PPT
![核辐射探测器教学课件PPT](https://img.taocdn.com/s3/m/c8e91154a66e58fafab069dc5022aaea998f410a.png)
探测器分类
根据工作原理和探测对象的不同, 核辐射探测器可分为气体探测器、 闪烁体探测器和半导体探测器等。
探测器性能指标
核辐射探测器的性能指标包括能量 分辨率、探测效率、计数率和本底 等。
核辐射探测器分类
气体探测器
气体探测器利用气体分子对带电粒子的电离作用来测量核辐射, 具有较高的探测效率和较低的本底。
人工智能算法
利用人工智能算法对探测 器数据进行处理,自动识 别和分类核辐射信号。
无线通信技术
实现探测器与控制中心之 间的无线通信,方便远程 监控和数据传输。
多功能探测器应用
医疗领域
用于诊断和治疗放射性物质引起的疾病,如癌症 等。
环境监测
用于监测核设施周边的辐射水平,保障公众安全。
科研领域
用于研究核物理、放射化学等领域的基本原理和 现象。
医学影像
核辐射探测器在医学影像中主要用于 放射性成像,如X射线、CT、MRI等。 这些成像技术利用放射性物质在人体 内的分布来生成图像。
核辐射探测器还可以用于测量放射性 药物的浓度和分布,如正电子发射断 层扫描(PET)和单光子发射断层扫 描(SPECT)等。
核辐射探测器可以测量放射性物质在 人体内的分布,从而帮助医生诊断疾 病和评估治疗效果。
工业检测
核辐射探测器在工业检测中主要 用于检测放射性物质和测量各种 物理量,如厚度、密度、水分含
量等。
在工业生产中,核辐射探测器可 以用于检测产品的质量和控制生 产过程,例如在石油、化工、食
品等行业中。
核辐射探测器还可以用于检测放 射性废物和测量核设施的安全性
能等。
05
核辐射探测器的未来发展
高性能探测器材料
核辐射探测器教学课件
核辐射检测与监测技术的发展与应用
![核辐射检测与监测技术的发展与应用](https://img.taocdn.com/s3/m/4da9c548bb1aa8114431b90d6c85ec3a87c28b90.png)
核辐射检测与监测技术的发展与应用核辐射检测与监测技术是一种重要的技术手段,用于检测和监测环境中的核辐射水平。
随着核能的广泛应用和核辐射事故的频繁发生,以及人们对环境安全的关注日益增加,核辐射检测与监测技术得到了广泛的关注和应用。
本文将分四个部分详细阐述核辐射检测与监测技术的发展与应用。
一、核辐射检测与监测技术的发展1. 传统检测技术的不足之处- 传统核辐射检测技术主要依靠探测器测量放射线的剂量率,而无法提供辐射源的详细信息;- 传统技术还存在着测量时间长、仪器笨重、操作复杂等问题。
2. 新一代核辐射检测技术的出现- 随着科技的进步,新一代核辐射检测与监测技术不断涌现,如核辐射成像技术、核辐射能谱分析技术等;- 这些新技术具有高灵敏度、高分辨率、快速响应等特点,能够提供准确的核辐射信息。
二、核辐射检测与监测技术的应用1. 核能产业- 核电站和核燃料加工厂需要对辐射情况进行常规检测和监测,以确保工作人员和公众的安全;- 新一代核辐射检测技术可以提供更加准确和全面的辐射数据,有助于协助核能企业及时发现和解决辐射泄漏的问题。
2. 辐射治疗- 核医学领域采用放射性同位素进行治疗和诊断,核辐射检测与监测技术在此方面具有重要的应用价值;- 这些技术能够帮助医务人员评估患者接受治疗后的辐射剂量,从而确保治疗效果和患者的安全。
3. 核辐射事故应急响应- 核辐射事故的发生可能对人类和环境造成严重危害,因此需要有一套完备的核辐射检测与监测技术来进行事故应急响应;- 新一代核辐射检测技术具有快速响应和高灵敏度的特点,能够在事故发生后及时监测辐射水平,帮助政府和救援机构采取有效的措施。
三、核辐射检测与监测技术的应用案例1. 福岛核事故- 2011年福岛核事故中,大量的放射性物质泄漏,对环境和人类健康造成了巨大的影响;- 核辐射检测与监测技术在福岛核事故中发挥了重要作用,帮助政府和救援人员及时评估辐射风险和采取相应措施。
2. 核电站日常监测- 核电站定期进行辐射监测,核辐射检测技术可以准确测量辐射水平,从而保障核电站的安全运行。
核辐射探测器的进展课件
![核辐射探测器的进展课件](https://img.taocdn.com/s3/m/46b3a371bc64783e0912a21614791711cc797938.png)
Gd2SiO5:Ce与Lu2(SiO4)O:Ce闪烁体技术数据
GSO
LSO
密度,g/cm3:
6.71
最强发射波长,nm: 430
相对闪烁效率[NaI(Tl)],%:2075
0.0047 0.0095 0.0143
5.39
5.38
5.35
3.73
3.64
3.53
424
425
425
80.7
78.2
75.2
79
62
51
9
10.5
12.5
1.3.2 含铅(Pb)塑料闪烁体
塑料闪烁体(含铅10%)性能指标
密度,g/cm3:
1.12
光产额,光子/MeV: 5000
闪烁衰减时间,ns:
a.BGO的发光机制是Bi3+离子的 3P1态→1So态的电跃迁。 因此,BGO的发光机制与NaI(Tl)不同。BGO本身是一种 纯闪烁晶体,其发光不受激活剂在晶体中的浓度及分布的 均匀性的影响。
b.图2示出BGO在295K时的荧光特性曲线。发射光谱分布在 (350~650)nm区间,峰值在480nm。由图可见,BGO的吸 收特性曲线与发光特性曲线并不重叠,即BGO不吸收它自 身所发的光。图中还叠加上普通光电倍增管和硅光电二极 管的光谱响应曲线。可以看出BGO的发射光谱与普通光电 倍增管和硅光电二极管的光谱响应特性相匹配。因而BGO 的应用对光电倍增管和电子学线路没有特殊要求。
LaBr3(Ce)
密度,g/cm3:
3.70
5.29
核辐射探测仪器基本原理及及指标ppt
![核辐射探测仪器基本原理及及指标ppt](https://img.taocdn.com/s3/m/8de19d4ef02d2af90242a8956bec0975f465a431.png)
测量时间
总结词
测量时间是衡量核辐射探测仪器性能的重要指标之一,指探 测器在测量辐射粒子时需要的时间。
详细描述
测量时间越短,探测器的实时监测能力越强,能够更好地捕 捉和记录瞬时变化的辐射状况。这对于需要快速响应和实时 监测的应用场景尤为重要,如核事故应急响应、放射性物料 运输监管等。
详细描述
探测效率通常与探测器的材料、结构、粒子类型、能量范围 等因素有关。高效的探测器能够更好地测量和记录辐射粒子 的数量和类型,为科学研究、工业应用以及安全防护等领域 提供准确的数据。
能量分辨率
总结词
能量分辨率是衡量核辐射探测仪器性能的重要指标之一,指探测器在测量辐 射粒子的能量时,能够分辨的最小能量差值。
核辐射探测仪器的基本结构和工作流程
核辐射探测仪器通常由探测器、信号处理电路、数据采 集系统和显示系统等组成。
探测器是用来接收射线的部件,一般采用半导体材料或 气体电离器件制造。
信号处理电路对探测器输出的信号进行放大、滤波和数 字化处理,以便后续的数据采集和分析。
数据采集系统将处理后的信号转换为计算机可识别的数 字信号,并存储在计算机中。
《核辐射探测仪器基本原理 及及指标ppt》
xx年xx月xx日
contents
目录
• 核辐射探测仪器概述 • 核辐射探测仪器基本原理 • 核辐射探测仪器的主要指标 • 核辐射探测仪器的应用和发展趋势 • 总结和展望
01
核辐射探测仪器概述
核辐射探测仪器的定义和作用
定义
核辐射与探测技术PPT课件
![核辐射与探测技术PPT课件](https://img.taocdn.com/s3/m/ee43a7d7f111f18582d05ade.png)
5
第5页/共67页
6
第6页/共67页
核探测器测量的基本物理量
• 我们要知道有多少粒子,什么样的粒子,还要知道它 们的物理性质,来源。为此,探测器要测量许多物理 量。
• 当电子获得能量较少,不足以克服原子核的束缚成为 自由电子,将跃迁到较高的能级。这就是原子的激发。 处于激发态的原子不稳定,作短暂停留后,将从激发 态跃迁回到基态,这就是退激。退激时,释放的能量 以荧光的形式发射出来。
13
第13页/共67页
利用电离或激发效应来记录入射粒子是 绝大多数探测器的物理基础。它们的差别在 于记录方式不同,大致分为: (1)收集电离电荷的探测器主要收集电离效 应产生的大量正负离子,记录它们的电荷所 形成的电压或电流脉冲。这类探测器必须加 上适当的工作电压,形成电场以有效收集电 荷。如气体探测器、半导体探测器。
或简写成 A(a,b)B 实验表明任何一个核反应,箭头两边的总电荷数Z 和总质量数A必须相等;反应前后体系的总能量(静 止能量和动能之和)不变,总动量不变。
26
第26页/共67页
目前应用最多的三种核反应:
n 3He p 3T 0.764MeV, 0=5327 10靶, 3He(n, p) 3T n 6Li 3T 4.780MeV, 0 941 4靶, 6L(i n, ) 3T
7
第7页/共67页
粒子探测器用途:
• 测量粒子与射线的基本性质,研究这些粒子之间的 相互作用以及它们与宏观 物质的相互作用等。
• 将这些粒子与射线作为微小的探针来研究微观或亚 微观结构,如晶体结构, 物质的表面结构,分子原 子及核结构等。
核辐射探测器的技术发展与应用
![核辐射探测器的技术发展与应用](https://img.taocdn.com/s3/m/199edcfd294ac850ad02de80d4d8d15abe2300e7.png)
核辐射探测器的技术发展与应用在当今科技飞速发展的时代,核辐射探测器作为监测和研究核辐射的重要工具,其技术不断取得突破,应用范围也日益广泛。
核辐射虽然看不见、摸不着,但却对人类的生活和环境有着潜在的影响。
而核辐射探测器就如同我们的“眼睛”,帮助我们感知和了解这种神秘而又危险的能量存在。
核辐射探测器的发展历程可以追溯到上世纪初。
早期的探测器主要基于简单的物理原理,如电离室和盖革计数器。
电离室通过测量辐射在气体中产生的电离电流来检测辐射强度,而盖革计数器则利用气体放电现象来实现对辐射的探测。
这些早期的探测器虽然在原理上较为简单,但为后续的技术发展奠定了基础。
随着科学技术的不断进步,半导体探测器逐渐崭露头角。
半导体探测器利用半导体材料的特性,如硅和锗,当辐射粒子入射时,会产生电子空穴对,通过测量这些电荷的变化来确定辐射的信息。
相比传统的气体探测器,半导体探测器具有更高的分辨率和灵敏度,能够更精确地测量辐射的能量和位置。
另一种重要的探测器类型是闪烁探测器。
闪烁探测器由闪烁体和光电倍增管组成。
闪烁体在受到辐射照射时会发出闪光,光电倍增管则将这些闪光转换为电信号。
常见的闪烁体有碘化钠、碘化铯等。
闪烁探测器具有探测效率高、响应速度快的优点,在核医学、高能物理等领域得到了广泛应用。
近年来,随着微机电系统(MEMS)技术的发展,微型化的核辐射探测器成为研究的热点。
这些微型探测器体积小、功耗低,能够集成在芯片上,为便携式和可穿戴的辐射监测设备提供了可能。
此外,多通道探测器和阵列探测器的出现,使得同时对多个辐射源进行监测和成像成为现实,大大提高了探测的效率和准确性。
核辐射探测器在众多领域发挥着关键作用。
在医疗领域,核辐射探测器广泛应用于核医学诊断和治疗。
例如,在正电子发射断层扫描(PET)中,探测器能够检测放射性示踪剂发出的正电子湮灭产生的γ射线,从而生成人体内部的图像,帮助医生诊断疾病。
在癌症治疗中,如放疗过程中,探测器可以实时监测辐射剂量,确保治疗的准确性和安全性。
核辐射探测器发展概述
![核辐射探测器发展概述](https://img.taocdn.com/s3/m/ff85ba68561252d380eb6e6b.png)
体——氯化镧[LaCl3(Ce)],它具有引人注目的闪烁性能,LaCl3掺 +3Ce作为激活剂,具有非常高的光输出49000光子/MeV,而且主成分发光衰减的时间很快(26ns),这些性质使得LaCl3(Ce)成为一种很有希望的探测γ射线的材料。另外,对于低能γ射线的能量测量时,在低能端LaCl3(Ce)闪烁体对能量的线性好于NaI(Tl),这预示了氯化镧[LaCl3(Ce)]闪烁体在Χ射线安检成像方面应用的巨大前景。
第一个用于制作核辐射探测器的半导体材料是金刚石,它在1956年就开始被用作α粒子辐射探测器。但这种材料不易获得,而且原子序数太低,能量分辨率不好,所以在1958年前后戴维斯(Davis)等人利用反向偏压的Ge、Si扩散结和面垒型P-N结构成的半导体辐射探测器后,它就被淘汰了。1960年,弗洛尔达(Foielda)等人用Si P-N结测量α粒子能谱,对5MeV的α粒子能量分辨高达0.6%(30keV),比当时所有其它的探测器的性能都好。同期便有美国、加拿大的几家公司生产了Si半导体探测器,并商品化。
虽然气体探测器在某些应用领域内(如带电粒子能量(能谱)测量)已基本上被半导体探测所取代,但由于它具有结构简单、使用方便、可制作成各种较大型的电离室,因此在工业领域仍得到了广泛的应用,如料位计、核子秤、厚度计、中子水分计等。
到20世纪80年代末,Xe气体纯化技术的提高,促进了Xe闪烁正比计数管的发展,构成了新型的Χ射线Xe气体闪烁正比计数管。与一般的正比计数管相比,GSPC(气体闪烁正比计数管)能量分辨率高。例如:对55Fe 5.9keV X射线,Xe GSPC的FWHM为472eV;对0.15keV的X射线,FWHM为85eV,噪声仅为50eV,可鉴别硼的Kx射线,比一般正比计数管的能量分辨提高了一倍。Xe气体的法诺因子为0.17±0.007,电荷倍增没有产生空间电荷,所以计数率可高达90kcps,并可构成面积为200cm2的大面积探测器。这种探测器也可用于人造卫星上来测量宇宙X射线,并可用于穆斯堡尔实验、荧光X射线谱的测量、环境放射性的监测等。另外,球形电离室、重离子电离室等新产品的相继研制成功,越来越受到了人们的重视。高压Xe电离室线性阵列探测器,探测器的一致性较好,并可做到很高的排列密度,是近10年来在我国首先应用于集装箱安检成像系统的核辐射线性阵列探测器。缺点是气体对射线的吸收(衰减)效率低,探测效率小于60%,所以一般用于能量较低的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CdZnTe 48.30.52 1.6 (1~5) ×1010 (0.8~9)
0.1~1
密度,g/cm3
5.85
5.81
1.3 掺杂塑料闪烁体
为了充分应用塑料闪烁探测器的大体积、易成 型与价格低,以及可大批量生产等优势,近些 年来已研制成功多种掺杂塑料闪烁体,用于满 足诸如中微子、慢中子与 γ探测等特殊需求
Gd 质量份额 ,%
1
2
3
1.182
1.195
1.204
1.475
1.456
1.457
0.0047 0.0095 0.0143
5.39
5.38
5.35
3.73
3.64
3.53
424
425
425
80.7
78.2
75.2
79
62
51
9
10.5
12.5
1.3.2 含铅(Pb) 塑料闪烁体
塑料闪烁体(含铅10%) 性能指标
1.2 CdZnTe/CdTe 二十多年的探索与对比而最后胜出的化合物半导体探测器。 决定性的优点:半导体探测器的极高能量分辨率,
可在室温下很好地工作 CdTe/CdZnTe (20%ZnTe ,80%CdTe )晶体的原子序数高、禁带 能宽大、电阻率高,非常适合探测能量 (10~500)keV的光子, 目前的生产工艺可制备体积为 (1~2)cm3的CdZnTe/CdTe 单晶,探测 能量达到 1MeV 以上
密度,g/cm3:
1.12
光产额,光子/MeV: 5000
闪烁衰减时间,ns:
2
能量分辨率(662keV),% : 30
时间分辨(FWHM),ps : 1000
潮解性:
不
光电子产额:
250
[1. 511k能eV量沉积;
2. 50% 光收集效率;
3. 20% 量子---光电子转换效率]
1.3.3含氘(D)塑料闪烁体[191]
第4讲 核辐射探测器的最新进展
汲长松
中核(北京)核仪器厂 2009年11月
核辐射探测器的发展是核技术进展的标志之一,一个国家核辐射探 测器的研制与制作水平,也是该国核技术水平高低的重要标志之一。 核辐射探测器的发展与核探测技术的发展同步,经历了由计数,测 谱,到图像显示的发展历程。对核辐射探测器的发展要求是:辐射 转换效率高、高探测器效率、快时间、高(脉冲幅度、能量)分辨 率以及大体积,组成阵列等。
在X射线、γ射线能谱测量方面具有广泛应用前景。 CdZnTe/CdTe 晶体性能接近
CdZnTe 和CdTe 晶体的基本特性
半导体种类 原子序数 禁带宽度,eV 电阻率,Ω·cm
(μτ)e,103 cm2/V (μτ)h,105 cm2/V
CdTe 48.52 1.44 约109
(0.1~2) 1~10
1.4 Gd2(SiO4)O:Ce 与Lu2(SiO4)O:Ce
Gd2SiO5:Ce是过氧正硅酸钆 (铈),简记作GSO,或GSO:Ce。 Lu2SiO5:Ce过氧正硅酸镥 (铈),简记作LSO,或LSO:Ce。 GSO:Ce 闪烁体最早于 1983年,由Takagi 和Fukazawa已报告研制成 功,但是作为闪烁探测器引起重视,是近几年的事情。因此可以说, 上述两种用铈激活的镧系元素晶体闪烁体,是近几年来闪烁探测器 研制的最新进展。
在塑料闪烁体中,用氘取代氢而制成的塑料闪烁体。
a 中微子ν与氢核的(ν,H)反应,伴随很强的本底。而(ν,D)反应 中没有这一本底。
b 快中子与含H物质作用,反冲质子能量分布为以中子最大能 量为上限的等几率分布。而快中子与含D物质作用,反冲质子 能量分布中出现峰,这可以用于本底甄别,有效探测快中子。
,%:2075
[
光输出,光子/MeV: 7.8×103
闪烁衰减时间,ns: 60
LSO 7.4 420 是BGO的5倍]
40
快成分
56
慢成分
600
折射系数(发射峰波长):1.9
有效原子序数:
59
能量分辨率(662keV),%:8.0
辐射长度,cm:
(85%~90%) (10%~15%) 1.82 66 12.4 1.14
1.3.1 含钆(Gd) 塑料闪烁体
特性
0
密度,g/cm3 1.172
折射系数 1.480
Gd原子数, ×1022/ cm3
0
H原子数, ×1022/ cm3
5.41
C原子数, ×1022/ cm3
3.82
最强发射波 长,nm
424
透度(λmax), %
82.8
光输出,% 100
热中子
0
(E≤0.5eV)探
LSO与GSO的主要特点是有效原子序数高, γ阻止本领大;闪烁衰 减时间快,可用于快计数 ;光输出与闪烁衰减时间随温度的变化极 为平缓( GSO )。
Gd2SiO5:Ce与Lu 2(SiO4)O:Ce闪烁体技术数据
GSO
密度,g/cm3:
6.71
最强发射波长,nm: 430
相对闪烁效率 [NaI(Tl)]
生产工艺、探测器使用环境条件与价格
最近十几年来,研制成功多种新型核辐射探测器,
部分新品种已经形成为商品而逐渐被市场接受;
部分探测器已经被淘汰或被逐步取代;
部分“老”探测器被重新认识而得以“重用”。
1.新型核辐射探测器
1.1 LaCl 3(Ce) 与LaBr 3(Ce) LaCl 3(Ce) 是用铈(Ce) 激活的氯化镧晶体。 LaBr 3(Ce) 是用铈(Ce) 激活的溴化镧晶体。它们都近几年研制成功的镧系元素新型 γ闪烁 体。其中,特别是 LaBr 3(Ce) ,其对γ与X射线的高阻止本领;快闪 烁时间;极高的能量分辨率以及稳定的温度特性,使其应用前景 诱人。
LaCl3(Ce)
LaBr3(Ce)
密度,g/cm3:
3.70
5.29
潮解性:
是
是
最强发射波长,nm :
350~430
380
折射率(最强发射波长):
1.9
~1.9
闪烁衰减时间,ns:
16
快成分
28
慢成分
220
光输出,光子/keV:
49
63
能量分辨率(662keV,典型),%: 3.9
2.8
图1 LaBr3(Ce)闪烁体BriLanCe380的发射谱及双碱光电倍增管不同光窗的量子效率 B—硼硅玻璃;W—透紫玻璃;Q石英玻璃
LaCl 3(Ce) 与LaBr 3(Ce) 最突出的特点是高能量分辨率 。对137Csγ 的 光电峰分辨率分别为 3.9% 与2.8% 。.其次是快闪烁时间与高光输出。
有人预言LaBr 3(Ce) 将是NaI(Tl) 的升级换代的高性能探测器
LaCl 3(Ce)LaBr3(Ce)闪烁体主要技术数据