2018年高中物理动量定理和动能定理专项练习题(供参考)

合集下载

高考物理动量定理题20套(带答案)及解析

高考物理动量定理题20套(带答案)及解析

高考物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。

质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。

现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。

已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。

求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s3.甲图是我国自主研制的200mm离子电推进系统,已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出.在加速氙离子的过程中飞船获得推力.已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q.(1)将该离子推进器固定在地面上进行试验.求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B.推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N.(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况.通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法.【答案】(1)(2)(3)增大S可以通过减小q、U或增大m的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力.【解析】试题分析:(1)根据动能定理有解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.4.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

高中物理动能与动能定理解题技巧分析及练习题(含答案)(1)

高中物理动能与动能定理解题技巧分析及练习题(含答案)(1)

高中物理动能与动能定理解题技巧分析及练习题(含答案)(1)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高三物理动量、能量计算题专题训练

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

2018版高考物理专题_动量与能量压轴题特训(含答案详解)

2018版高考物理专题_动量与能量压轴题特训(含答案详解)

2018年物理动量与能量压轴题特训 1.如以下图,一个轻质弹簧左端固定在墙上,一个质量为m 的木块以速度v 0从右边沿光滑水平面向左运动,与弹簧发生相互作用,设相互作用的过程中弹簧始终在弹性限度围,那么整个相互作用过程中弹簧对木块的冲量I 的大小和弹簧对木块做的功W 分别是< C >2. 物体A 和B 用轻绳相连挂在轻质弹簧下静止不动,如以下图,A 的质量为m,B 的质量为M,当连接A 、B 的绳子突然断开后,物体A 上升经某一位置时的速度大小为v,这时物体B 的下落速度大小为u,在这一段时间里,弹簧的弹力对物体A 的冲量为〔 D 〕A. mvB. mv-MuC. mv+MuD. mv+mu3. 如以下图,水平光滑地面上依次放置着质量mkg 的10块完全一样的长直木板.质量Mkg 、大小可忽略的小铜块以初速度vm /s 从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为vm /s .铜块最终停在第二块木板上.取g =10m /s 2,结果保存两位有效数字.求:①第一块木板的最终速度②铜块的最终速度.解答:①铜块和10个长木板在水平方向不受外力,所以系统动量守恒. 设铜块滑动第二块木板时,第一块木板的最终速度为v 2,由动量守恒定律得,Mv 0=Mv 1+10mv 2解得v 2②由题可知,铜块最终停在第二块木板上,设铜块的最终速度为v 3,由动量守恒定律得:Mv 1+9mv 2=<M+9m>v 3解得:v 34. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶,取重力加速度g =10 m/s 2,如此如下图中两块弹片飞行的轨迹可能正确的答案是< >4.B 设弹丸爆炸前质量为m,爆炸成甲、乙两块后质量比为3∶1,可知m甲=错误! m,m乙=错误!m.设爆炸后甲、乙的速度分别为v1、v2,爆炸过程中甲、乙组成的系统在水平方向动量守恒,取弹丸运动方向为正方向,有mv=错误!mv1+错误!mv2,得3v1+v2=8.爆炸后甲、乙两弹片水平飞出,做平拋运动.竖直方向做自由落体运动,h =错误!gt2,可得t=错误!=1 s;水平方向做匀速直线运动,x=vt,所以甲、乙飞行的水平位移大小与爆炸后甲、乙获得的速度大小在数值上相等,因此也应满足3x1+x2=8,从选项图中所给数据可知,B正确.[点拨] 爆炸后,一定有一块弹片速度增加,大于原来速度.5. 如以下图,方盒A静止在光滑的水平面上,盒有一小滑块B,盒的质量是滑块的2倍,滑块与盒水平面间的动摩擦因数为μ.假如滑块以速度v开始向左运动,与盒的左、右壁发生无机械能损失的碰撞,滑块在盒中来回运动屡次,最终相对于盒静止,如此此时盒的速度大小为________,滑块相对于盒运动的路程为________.5.[解析] 方盒A与小滑块B组成的系统动量守恒,m B v=<m A+m B>v1,又m A=2m B,所以v1=错误!,对系统由动能定理得-μm B g·x=错误!<m A+m B>v错误!-错误!m B v2,解得x=错误!.[答案] 错误!错误!6.如以下图,光滑冰面上静止放置一外表光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面 3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度h=0.3 m<h小于斜面体的高度>.小孩与滑板的总质量m1=30 kg,冰块的质量m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.<1>求斜面体的质量;<2>通过计算判断,冰块与斜面体别离后能否追上小孩?6.[解析] <1>规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m 2v20=<m2+m3>v①错误!m2v错误!=错误!<m2+m3>v2+m2gh②式中v20=-3 m/s为冰块推出时的速度,联立①②式并代入题给数据得m3=20 ③<2>设小孩推出冰块后的速度为v1,由动量守恒定律有m 1v1+m2v20=0④代入数据得v1=1 m/s ⑤设冰块与斜面体别离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v20=m2v2+m3v3 ⑥错误!m2v错误!=错误!m2v错误!+错误!m3v错误!⑦联立③⑥⑦式并代入数据得v2=1 m/s由于冰块与斜面体别离后的速度与小孩推出冰块后的速度一样且处在后方,故冰块不能追上小孩.[答案] <1>20 kg <2>见解析7.如以下图,三个质量一样的滑块A、B、C,间隔相等地静置于同一水平直轨道上.现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后A、B分别以错误! v、错误!v0的速度向右运动,B再与C发生碰撞,碰后B、C粘在一起向右运动.滑块A、B与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求B、C碰后瞬间共同速度的大小.7. [解析] 设滑块质量为m,A与B碰撞前A的速度为v A,由题意知,碰后A的速度v A′=错误!v0;碰后B的速度v B=错误!v0由动量守恒定律得mv A=mv A′+mv B ①设碰撞前A克制轨道阻力所做的功为W A,由功能关系得WA=错误!mv错误!-错误!mv错误!②设B与C碰撞前B的速度为v B′,B克制轨道阻力所做的功为W B,由功能关系得W B =错误!mv错误!-错误!mv B′2③由于三者间隔相等,滑块A、B与轨道间的动摩擦因数相等,如此有W A=W B ④设B、C碰后瞬间共同速度的大小为v,由动量守恒定律得:mv B′=2mv⑤联立①②③④⑤式,代入数据得v=错误!v0 ⑥[答案] 错误!v08. 如以下图,光滑水平轨道上放置长板A<上外表粗糙>和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v=5 m/s的速度匀速向右运动,A与C发生碰撞<时间极短>后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.8.[解析] 设A与C发生碰撞后瞬间,A的速度大小为v A,方向向右,C的速度大小为v C.A与C碰撞时间极短,由动量守恒定律得m A v0=m A v A+m C v C ①A与B相互作用,设最终达到的共同速度为v,由动量守恒定律得:m B v+m A v A=<m A+m B>v②A与B达到共同速度后恰不与C碰撞,如此应有v=vC③联立①②③解得v A=2 m/s[答案] 2 m/s[点拨] 此题分别对A、C和A、B的作用过程应用动量守恒定律,还要关注"恰好不再与C碰撞〞这一临界条件.9. 如以下图.一辆质量M=3kg的小车A静止在光滑的水平面上,将一轻质弹簧城压越缩并锁定,此时弹簧的弹性势能为Ep=6J,质量m=1kg的光滑小球B紧挨轻弹簧右端静止放置.解除轻弹簧的锁定.小球B被弹出并脱离弹簧,求小球脱离弹簧时小车的速度大小.解答:A. B组成的系统动量守恒,在解除锁定到A. B分开过程中,系统动量守恒,以向右为正方向,由动量守恒定律得:mB vB−mAvA=0,由能量守恒定律得:12mA v2A+12mBv2B=EP,联立并代入数据解得:vA=1m/s,vB=3m/s;答:小球脱离弹簧时小车的速度大小为1m/s.10. 如以下图,在光滑的水平面上有一长为L的木板B,上外表粗糙,在其左端有一光滑的1/4圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上外表相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以1/2V滑离B,恰好能到达C的最高点.A、B. C的质量均为m,试求:<1>木板B上外表的动摩擦因素μ;<2>1/4圆弧槽C的半径R;<3>当A滑离C时,C的速度.11. 如以下图,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离Lm,这段滑板与木块A<可视为质点>之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上外表光滑.小木块A以速度v0=10m/s由滑板B左端开始沿滑板B外表向右运动.木块A的质量m=1kg,g取10m/s2.求:<1>弹簧被压缩到最短时木块A的速度;<2>木块A到达弹簧C端时的速度v A<取两位有效数字><3>木块A压缩弹簧过程中弹簧的最大弹性势能.12. 如以下图,一个质量m=4kg的物块以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其它摩擦不计<取g=10m/s2>,求:<1>物块相对平板车静止时,物块的速度;<2>物块相对平板车上滑行,要使物块在平板车上不滑下,平板车至少多长?解答:<1>物块和平板车的相互作用过程中系统动量守恒,以物块初速度方向为正方向,由动量守恒定律得:mv=<M+m>v…①,共代入数据解得:v共m/s;<2>为了使物块不滑离平板车,设车长为L,由能量守恒定律得:12mv2−12<M+m>v2共<μmgL…②,由①②式得:Lm;13. 如以下图,光滑水平路面上,有一质量为m1=5kg的无动力小车以匀速率v0=2m/s向前行驶,小车由轻绳与另一质量为m2=25kg的车厢连结,车厢右端有一质量为m3=20kg的物体〔可视为质点〕,物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:〔1〕当小车、车厢、物体以共同速度运动时,物体相对车厢的位移〔设物体不会从车厢上滑下〕;〔2〕从绳拉紧到小车、车厢、物体具有共同速度所需时间.〔取g=10m/s2〕14. 如以下图,固定的光滑的弧形轨道末端水平,固定于水平桌面上,B球静止于轨道的末端.轨道最高点距轨道末端高度与轨道末端距地高度均为R.A球由轨道最高点静止释放,A球质量为2m,B球质量为m,A.B均可视为质点,不计空气阻力与碰撞过程中的机械能的损失.求:A.B两球落地点的水平距离?15. 一质量为2m的物体P静止于光滑水平地面上,其截面如以下图.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:<1>木块在ab段受到的摩擦力f;<2>木块最后距a点的距离s.16. Kˉ介子衰变的方程为K−→π−+π0,如以下图,其中Kˉ介子和πˉ介子带负的基元电荷,π0介子不带电.一个Kˉ介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP,衰变后产生的πˉ介子的轨迹为圆弧PB,两轨迹在P点相切,它们的半径RKˉ与Rπ−之比为2:1.π0介子的轨迹未画出.由此可知πˉ介子的动量大小与π0介子的动量大小之比为〔〕A.1:1B.1:2C.1:3D.1:617. 如以下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.18. 如以下图,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A一样的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管径,空气阻力与各处摩擦均不计,求<1>粘合后的两球从飞出轨道到落地的时间t;<2>A、B碰撞前瞬间A球的速度大小<3>小球A冲进轨道时速度v的大小.<4>小球A与小球B球碰撞前瞬间对轨道的压力多大?19. 一个宇航员连同装备的总质量为100kg,在空间跟飞船相距45m处相对飞船处于静止状态.他带有一个装有0.5kg氧气的贮氧筒,贮氧筒上有一个可以使氧气以50m/s的相对速度喷出的喷嘴.宇航员必须向着跟返回飞船方向相反的方向释放氧气,才能回到飞船上去,同时又必须保存一局部氧气供他在返回飞船的途中呼吸.宇航员呼吸的耗氧率为2.5×10-4kg/s.试求:〔1〕如果他在准备返回飞船的瞬时,释放0.15kg的氧气,他能安全地回到飞船吗?〔2〕宇航员安全地返回飞船的最长和最短时间分别为多少?20. 如以下图,两根足够长的固定的平行金属导轨位于同一水平面,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余局部的电阻可不计.在整个导轨平面都有竖直向上的匀强磁场,磁感应强度为B. 设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab有指向棒cd的初速度v0,假如两导体棒在运动中始终不接触,求:<1>在运动中产生的焦耳热最多是多少?<2>当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?21. 高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h<可视为自由落体运动>.此后经历时间t安全带达到最大伸长,假如在此过程中该作用力始终竖直向上,如此该段时间安全带对人的平均作用力大小为< >A.错误!+mgB.错误!-mgC.错误!+mgD.错误!-mg[解析] 下降h阶段v2=2gh,得v=错误!,对此后至安全带最大伸长过程应用动量定理,-<F-mg>t=0-mv,得F=错误!+mg,A正确.选A.22. 如以下图,方盒A静止在光滑的水平面上,盒有一个小滑块B,盒的质量是滑块质量的2倍,滑块与盒水平面间的动摩擦因数为μ.假如滑块以速度v开始向左运动,与盒的左右壁发生无机械能损失的碰撞,滑块在盒中来回运动屡次,最终相对盒静止,如此此时盒的速度大小为___,滑块相对于盒运动的路程为___.23. 〔2015.〕如图,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R 的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点,一质量为m的滑块在小车上从A点静止开始沿轨道滑下,重力加速度为g.〔1〕假如固定小车,求滑块运动过程中对小车的最大压力;〔2〕假如不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车,滑块质量,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:;①滑块运动过程中,小车的最大速度vm②滑块从B到C运动过程中,小车的位移大小s.解答:〔1〕由图知,滑块运动到B点时对小车的压力最大从A到B,根据动能定理:;在B点:联立解得:F N=3mg,根据牛顿第三定律得,滑块对小车的最大压力为3mg〔2〕①假如不固定小车,滑块到达B点时,小车的速度最大根据动量守恒可得:;从A到B,根据能量守恒:联立解得:②设滑块到C处时小车的速度为v,如此滑块的速度为2v,根据能量守恒:;解得:小车的加速度:;根据;解得:s=L/324.<2016·理综><1>动量定理可以表示为Δp=FΔt,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v,如图甲所示.碰撞过程中忽略小球所受重力.甲乙a.分别求出碰撞前后x、y方向小球的动量变化Δp x、Δp y;b.分析说明小球对木板的作用力的方向.<2>激光束可以看成是粒子流,其中的粒子以一样的动量沿光传播方向运动.激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用.光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒.一束激光经S点后被分成假如干细光束,假如不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图乙所示.图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行.请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向.a.光束①和②强度一样;b.光束①比②强度大.24.[解析] <1>a.x方向:动量变化Δp x=mv sin θ-mv sin θ=0y方向:动量变化Δp=mv cos θ-<-mv cos θ>=2mv cos θy方向沿y轴正方向.b.根据动量定理可知,木板对小球作用力的方向沿y轴正方向;根据牛顿第三定律可知,小球对木板作用力的方向沿y轴负方向.<2>a.仅考虑光的折射,设Δt时间每束光穿过小球的粒子数为n,每个粒子动量的大小为p.这些粒子进入小球前的总动量p1=2np cos θ从小球出射时总动量p2=2npp、p2的方向均沿SO向右.1根据动量定理有FΔt=p2-p1=2np<1-cos θ>>0可知,小球对这些粒子的作用力F的方向沿SO向右;根据牛顿第三定律,两光束对小球的合力的方向沿SO向左.b.建立如以下图的Oxy直角坐标系.x方向:根据<2>a同理可知,两光束对小球的作用力沿x轴负方向.y方向:设Δt时间,光束①穿过小球的粒子数为n,光束②穿过小球的粒子数为n2,n1>n2.1这些粒子进入小球前的总动量p1y=<n1-n2>p sin θ从小球出射时的总动量p2y=0根据动量定理有F yΔt=p2y-p1y=-<n1-n2>p sin θ可知,小球对这些粒子的作用力F y的方向沿y轴负方向;根据牛顿第三定律,两光束对小球的作用力沿y轴正方向.所以两光束对小球的合力的方向指向左上方.[答案] <1>;2mv cos θ,沿y轴正方向b.沿y轴负方向<2>a.沿SO向左b.指向左上方25.<2014·某某理综>如以下图,水平地面上静止放置一辆小车A,质量m A=4 kg,上外表光滑,小车与地面间的摩擦力较小,可以忽略不计,可视为质点的物块B置于A的最右端,B的质量m=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一B段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v1=2 m/s.求<1>A开始运动时加速度a的大小;<2>A、B碰撞后瞬间的共同速度v的大小;<3>A的上外表长度l.25.[解析] <1>以A为研究对象,由牛顿第二定律有a ①F=mA代入数据解得a=2.5 m/s2 ②<2>对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=<m+m B>v1-<m A+m B>v③A代入数据解得v=1 m/s ④<3>设A、B发生碰撞前,A的速度为v A,对A、B发生碰撞的过程,由动量守恒定律有m A vA=<m A+m B>v⑤A从开始运动到与B发生碰撞前,由动能定理有Fl=错误!mAv错误!⑥由④⑤⑥式,代入数据解得l=0.45 m ⑦[答案] <1>2.5 m/s2<2>1 m/s <3>0.45 m26.<2015·理综>实验观察到,静止在匀强磁场中A点的原子核发生β衰变,衰变产生的新核与电子恰在纸面做匀速圆周运动,运动方向和轨迹示意图如以下图,如此< >A.轨迹1是电子的,磁场方向垂直纸面向外B.轨迹2是电子的,磁场方向垂直纸面向外C.轨迹1是新核的,磁场方向垂直纸面向里D.轨迹2是新核的,磁场方向垂直纸面向里1.Dβ衰变方程:错误!X―→错误!e+错误!Y,由动量守恒定律知两粒子动量大小相等.因电子电量较小,由r=错误!,得r e>r Y,故轨迹1是电子的,轨迹2是新核的.由左手定如此知,磁场方向垂直纸面向里,D正确.[点拨] 动量守恒定律既适用于宏观,亦适用于微观;既适用于低速,亦适用于高速.27.[2014·新课标全国Ⅰ]如以下图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8m,A球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零.m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力与碰撞中的动能损失.求:<1>B球第一次到达地面时的速度;<2>P点距离地面的高度.27.[解析] <1>设B球第一次到达地面时的速度大小为v B,由运动学公式有:vB=错误!①将h=0.8 m代入上式,得v B=4 m/s ②<2>设两球相碰前后,A球的速度大小分别为v1和v1′<v1′=0>,B球的速度分别为v2和v2′,由运动学规律可得v1=gt③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变.规定向下为正方向,有m A v1+m B v2=m B v2′④错误!m A v错误!+错误!m B v错误!=错误!m B v2′2⑤设B球与地面相碰后的速度大小为v B′,由运动学与碰撞的规律可得v B′=v B设P点距地面的高度为h′,由运动学规律可得h′=错误!⑦联立②③④⑤⑥⑦式,并代入条件可得h′=0.75 m ⑧[答案] <1>4 m/s<2>0.75 m28.[2015·新课标全国Ⅱ]两滑块a、b沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x随时间t变化的图象如以下图.求:<1>滑块a、b的质量之比;<2>整个运动过程中,两滑块克制摩擦力做的功与因碰撞而损失的机械能之比.28.[解析] <1>设a、b质量分别为m1、m2,a、b碰撞前的速度分别为v1、v2.由题给图象得v1=-2 m/s,v2=1 m/sa、b发生完全非弹性碰撞,碰撞后两滑块的共同速度为v.由题给图象得v=错误! m/s由动量守恒定律有m1v1+m2v2=<m1+m2>v;解得错误!=错误!<2>由能量守恒定律得,两滑块因碰撞而损失的机械能ΔE=错误!m1v错误!+错误!m2v错误!-错误!<m1+m2>v2由图象可知,两滑块最后停止运动,由动能定理得,两滑块克制摩擦力所做的功W=错误!<m1+m2>v2;解得错误!=错误![答案] <1>错误!<2>错误!29. 如以下图,甲车质量m1=m,在车上有质量M=2m的人,甲车<连同车上的人>从足够长的斜坡上高h处由静止滑下,到水平面上后继续向前滑动,此时质量m2=2m的乙车正以速度v0迎面滑来,h=错误!,为了使两车不可能发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度<相对地面>应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看成质点.[解析] 设向左为正方向,甲车<包括人>滑下斜坡后速度为v1,由机械能守恒定律有错误!<m1+M>v错误!=<m1+M>gh,解得v1=错误!=2v0设人跳出甲车的水平速度<相对地面>为v,在人跳离甲车和人跳上乙车过程中各自动量守恒,设人跳离甲车和跳上乙车后,两车的速度分别为v1′和v2′,如此人跳离甲车时:<M+m1>v1=Mv+m1v1′人跳上乙车时:Mv-m2v0=<M+m2>v2′解得v1′=6v0-2v,v2′=错误!v-错误!v0两车不可能发生碰撞的临界条件是v1′=±v2′当v1′=v2′时,解得v=错误!v0当v1′=-v2′时,解得v=错误!v0故v的取值围为错误!v0≤v≤错误!v0[答案] 错误!v0≤v≤错误!v0导学导考"三个物体,两次作用〞是近几年考查动量守恒定律应用的模型之一,且常涉与临界问题.由于作用情况与作用过程较为复杂,要根据作用过程中的不同阶段,建立多个动量守恒方程,或将系统的物体按作用的关系分成几个小系统,分别建立动量守恒方程,联立求解.30.[2015·某某理综]如以下图,在光滑水平面的左侧固定一竖直挡板,A球在水平面上静止放置,B球向左运动与A球发生正碰,B球碰撞前、后的速率之比为3∶1,A球垂直撞向挡板,碰后原速率返回.两球刚好不发生第二次碰撞,A、B两球的质量之比为________,A、B 碰撞前、后两球总动能之比为________.30.[解析] 设A、B质量分别为m A、m B,B的初速度为v0,取B的初速度方向为正方向,由题意,刚好不发生第二次碰撞说明A、B末速度正好一样,都是-错误!,第一次碰撞时,动量守恒,有m B v0=m A·错误!+m B·错误!,解得m A∶m B=4∶1碰撞前、后动能之比E∶E k2=错误!m B v错误!∶错误!=9∶5k131.[2015·新课标全国Ⅰ]如以下图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.31.[解析] A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为v C1,A 的速度为v A1.由动量守恒定律和机械能守恒定律得mv=mv A1+Mv C1 ①错误!mv错误!=错误!mv错误!+错误!Mv错误!②联立①②式得v=错误!v0 ③A1v=错误!v0 ④C1如果m>M,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果m=M,第一次碰撞后,A停止,C以A碰前的速度向右运动,A不可能与B发生碰撞;所以只需考虑m<M的情况.第一次碰撞后,A反向运动与B发生碰撞.设与B发生碰撞后,A的速度为v A2,B的速度为v B1,同样有v=错误!v A1=错误!错误!v0 ⑤A2根据题意,要求A只与B、C各发生一次碰撞,应有v≤v C1 ⑥A2联立④⑤⑥式得m2+4mM-M2≥0 ⑦解得m≥<错误!-2>M⑧另一解m≤-<错误!+2>M舍去.所以,m和M应满足的条件为<错误!-2>M≤m<M⑨[答案] <错误!-2>M≤m<M32.[2014·理综]如以下图,光滑水平直轨道上两滑块A、B用橡皮筋连接,A的质量为m.开始时橡皮筋松弛,B。

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='-联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1Rg 2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.4.如图所示,质量m =2kg 的小物块从倾角θ=37°的光滑斜面上的A 点由静止开始下滑,经过B 点后进入粗糙水平面,已知AB 长度为3m ,斜面末端B 处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:6m/s B v ===;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:6m/s C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=- 解得22.5D v =-即小车无法到达D 点.设小车恰能到D 点时对应发动机开启的时间为2t ,则有:()20Pt f l s -+=,解得20.35s t =.6.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D ,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L =8m 。

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。

【解析】 【分析】 【详解】(1)小球离开台面到达A 点的过程做平抛运动,故有02 3m/s tan y v ghv θ=== 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为201 4.5J 2p E mv ==; (2)小球在A 处的速度为5m/s cos A v v θ== 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得221111sin cos 22C A mgL mgL mv mv θμθ-=- 解得()212sin cos 10m/s C A v v gL θμθ=+-=;(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;那么对小球能通过最高点时,在最高点应用牛顿第二定律可得21v mg m R≤;对小球从C 到最高点应用机械能守恒可得2211152222C mv mgR mv mgR =+≥ 解得202m 5Cv R g<≤=;对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得212C mv mgh mgR =≤ 解得2=5m 2C v R g≥;故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=Hx由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h 3=1.8m②当离传送带高度为h 4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m5.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。

高考物理动能与动能定理真题汇编(含答案)含解析

高考物理动能与动能定理真题汇编(含答案)含解析

高考物理动能与动能定理真题汇编(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D ,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L =8m 。

质量m =1kg 的物块(可视为质点)从P 点静止开始下滑,已知物块与斜面PO 间的动摩擦因数μ=0.25,g 取10m/s 2, sin37°=0.6,cos37°=0.8。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F .【答案】(1)0.32μ= (2)F =130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv ,代入数据解得:F=130N .3.滑冰是青少年喜爱的一项体育运动。

2018年全国统一高考物理试卷(新课标ⅱ)(含解析版)

2018年全国统一高考物理试卷(新课标ⅱ)(含解析版)

2018年全国统一高考物理试卷(新课标Ⅱ)一、选择题:本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定( )A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功2.(6分)高空坠物极易对行人造成伤害。

若一个50g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2ms,则该鸡蛋对地面产生的冲击力约为( )A.10N B.102N C.103N D.104N3.(6分)2018年2月,我国500m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19ms。

假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10﹣11N•m2/kg2.以周期T稳定自转的星体的密度最小值约为( )A.5×104kg/m3B.5×1012kg/m3C.5×1015kg/m3D.5×1018kg/m3 4.(6分)用波长为300nm的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10﹣19J,已知普朗克常量为6.63×10﹣34J•s,真空中的光速为3.00×108m•s﹣1,能使锌产生光电效应的单色光的最低频率约为( )A.1×1014Hz B.8×1014Hz C.2×1015Hz D.8×1015Hz5.(6分)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下,一边长为l的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间变化的正确图线可能是( )A.B.C.D.6.(6分)甲、乙两汽车在同一条平直公路上同向运动,其速度﹣时间图象分别如图中甲、乙两条曲线所示,已知两车在t2时刻并排行驶,下列说法正确的是( )A.两车在t1时刻也并排行驶B.在t1时刻甲车在后,乙车在前C.甲车的加速度大小先增大后减小D.乙车的加速度大小先减小后增大7.(6分)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流方向向左,L2中的电流方向向上,L1的正上方有a,b两点,它们相对于L2对称。

动量定理与动能定理练习题

动量定理与动能定理练习题

动量定理与动能定理练习题1、如图1重物G压在纸带上。

用水平力F慢慢拉动纸带,重物跟着一起运动,假设迅速拉动纸带,纸带会从重物下抽出,如下说法正确的答案是A.慢拉时,重物和纸带间的摩擦力大 B.快拉时,重物和纸带间的摩擦力小 C.慢拉时,纸带给重物的冲量大 D.快拉时,纸带给重物的冲量小2、A 、B 、C 三个质量相等的小球以一样的初速度v 0分别竖直上抛、竖直下抛、水平抛出.假设空气阻力不计,设落地时A 、B 、C 三球的速度大小分别为v 1、v 2、v 3,如此A .经过时间t 后,假设小球均未落地,如此三小球动量变化大小相等,方向一样B .A 球从抛出到落地过程中动量变化的大小为mv 1-mv 0,方向竖直向下C .三个小球运动过程的动量变化率大小相等,方向一样D .三个小球从抛出到落地过程中A 球所受的冲量最大3.甲、乙两物体质量相等,并排静止在光滑水平面上。

现用一个水平恒力推动甲物体,同时在与F 力一样的方向给物体乙一个瞬时冲量I ,使两个物体开始运动,当两个物体重新相遇时,经历的时间为A.I FB.2I FC.2F ID.I F 24.物体的质量为m ,在受到某方向的冲量后,它的速度大小未改变,在方向上改变θ角,如此这个冲量的大小是A.2mv sin θB.22mv sinθC.2mv cos θD.22mv cosθ5.质量为50g 的球,以6m/s 的水平向右的速度垂直打在墙上距地面4.9m 高处,反弹后落在离墙角4m 远处。

球跟墙撞击的时间0.02s ,如此〔 〕 A. 小球受到墙给的平均冲击力为5N ,方向水平向左 B. 小球受到墙给的平均冲力是25N ,方向水平向右C. 球由墙壁反弹后直到落地,小球受到的冲量是0.49N ·s ,方向竖直向下D. 球由墙壁反弹后直到落地,小球受到的冲量是5N ·s ,方向竖直向下6.一子弹水平地穿过两个前后并排静止地放在光滑水平面上的木块,木块质量分别为m 1和m 2,子弹先后穿过木块的时间为t 1和t 2,子弹受木块阻力恒为f 。

高中物理动能与动能定理及其解题技巧及练习题(含答案)

高中物理动能与动能定理及其解题技巧及练习题(含答案)

高中物理动能与动能定理及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫4.如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。

高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx

高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx

高中物理动量守恒定律的技巧及练习题及练习题( 含答案 ) 含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有m的压缩气体,每级总2质量均为M,点火后模型后部第一级内的全部压缩气体以速度v o从底部喷口在极短时间2内竖直向下喷出,喷出后经过2s时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。

喷气过程中的重力和整个过程中的空气阻力忽略不计, g 取 10 m / s2,求两种模型上升的最大高度之差。

【答案】 116.54m【解析】对模型甲:0 M m v甲mv0v甲21085m200.56 m h甲 =92g对模型乙第一级喷气:0M m v乙1m v022解得:v乙130ms2s 末:v乙‘1=v乙1gt10msh乙1= v乙21v '乙2140m2 g对模型乙第一级喷气:Mv乙‘1 =(M m)v乙2mv02222解得:v乙2=670 m9sh乙2= v乙2222445m277.10 m 2g81可得:h h乙1+h乙2h甲 =9440m116.54m 。

高中物理动能定理的综合应用解题技巧及练习题(含答案)及解析

高中物理动能定理的综合应用解题技巧及练习题(含答案)及解析

高中物理动能定理的综合应用解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N ≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 35(2) -3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

高考物理动量定理的技巧及练习题及练习题(含答案)含解析

高考物理动量定理的技巧及练习题及练习题(含答案)含解析

高考物理动量定理的技巧及练习题及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt1-I=0,∴I=mgt 1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

高考物理动量定理常见题型及答题技巧及练习题(含答案)

高考物理动量定理常见题型及答题技巧及练习题(含答案)

高考物理动量定理常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。

求: ①A 与B 撞击结束时的速度大小v ;②在整个过程中,弹簧对A 、B 系统的冲量大小I 。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4、动量定理和动能定理典型例题【例1】如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0; (2)木板的长度L .【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求: (1)落水物体运动的最大速度; (2)这一过程所用的时间.【例3】一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【例4】.如图所示,固定的半圆弧形光滑轨道置于水平方向的匀强电场和匀强磁场中,轨道圆弧半径为R ,磁感应强度为B ,方向垂直于纸面向外,电场强度为E ,方向水平向左。

一个质量为m 的小球(可视为质点)放在轨道上的C 点恰好处于静止,圆弧半径OC 与水平直径AD 的夹角为α(sin α=0.8).⑴求小球带何种电荷?电荷量是多少?并说明理由.⑵如果将小球从A 点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力的大小是多少?【例5】.如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为L 的绝缘细杆,沿电场线放置在虚线上方的场中,b 端在虚线上.将一套在杆上的带正电的小球从a 端由静止释放后,小球先做加速运动,后做匀速运动到达b 端.已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L /3,求带电小球从a 到b 运动过程中克服摩擦力所做的功与电场力所做功的比值.B E【例6】.(16分)如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端分别与电源(串有一滑动变阻器R )、定值电阻、电容器(原来不带电)和开关K 相连。

整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B 。

一质量为m ,电阻不计的金属棒ab 横跨在导轨上。

已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R 0,不计导轨的电阻。

(1)当K 接1时,金属棒ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值R 多大? (2)当K 接2后,金属棒ab 从静止开始下落,下落距离s 时达到稳定速度,则此稳定速度的大小为多大?下落s 的过程中所需的时间为多少?(3)先把开关K 接通2,待ab 达到稳定速度后,再将开关K 接到3。

试通过推导,说明ab 棒此后的运动性质如何?求ab 再下落距离s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器还没有被击穿)训练题(18分)如图1所示,两根与水平面成θ=30︒角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨两端各接一个电阻,其阻值R 1=R 2=1Ω,导轨的电阻忽略不计。

整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。

现有一质量为m =0.2kg 、电阻为1Ω的金属棒用绝缘细绳通过光滑滑轮与质量为M =0.5kg 的物体相连,细绳与导轨平面平行。

将金属棒与M 由静止释放,棒沿导轨运动了6m 后开始做匀速运动。

运动过程中,棒与导轨始终保持垂直且接触良好,图示中细绳与R 2不接触。

(g=10m/s 2)求:(1)金属棒匀速运动时的速度;(2)棒从释放到开始匀速运动的过程中,电阻R 1上产生的焦耳热; (3)棒从释放到开始匀速运动的过程中,经历的时间;(4)若保持磁感应强度为某个值B 0不变,取质量M 不同的物块拉动金属棒,测出金属棒相应的做匀速运动的速度值v ,得到v -M 图像如图2所示,请根据图中的数据计算出此时的B 0。

a bM v 0 0.1 0.2 0.3 0.4 0.57.如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。

质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin37°=0.6,cos37°=0.8,g =10m/s 2)(1)物块滑到斜面底端B 时的速度大小。

(2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。

8.一质量为500kg 的汽艇,在静水中航行时能达到的最大速度为10m/s ,若汽艇的牵引力恒定不变,航行时所受阻力与航行速度满足关系f =kv ,其中k =100Ns/m 。

(1)求当汽艇的速度为5m/s 时,它的加速度;(2)若水被螺旋桨向后推动的速度为8m/s ,则螺旋桨每秒向后推动水的质量为多少?(以上速度均以地面为参考系)9.如图所示,两块竖直放置的平行金属板A 、B ,两板相距为d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度υ0进入两板间匀强电场内运动,当它达到电场中的N 点时速度变为水平方向,大小变为2υ0,求M 、N 两点间的电势差和电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g ).θ A B Oh10.如图所示,在竖直放置的铅屏A 的右表面上贴着 射线放射源P ,已知射线实质为高速电子流,放射源放出 粒子的速度v 0=1.0×107m/s 。

足够大的荧光屏M 与铅屏A 平行放置,相距d=2.0×10-2m ,其间有水平向左的匀强电场,电场强度大小E=2.5×104N/C 。

已知电子电量e =1.6⨯10-19C ,电子质量取m=9.0⨯10-31kg 。

求(1)电子到达荧光屏M 上的动能; (2)荧光屏上的发光面积。

11.如图所示,两条光滑的绝缘导轨,导轨的水平部分与圆弧部分平滑连接,两导轨间距为L ,导轨的水平部分有n 段相同的匀强磁场区域(图中的虚线范围),磁场方向竖直向上,磁场的磁感应强度为B ,磁场的宽度为S ,相邻磁场区域的间距也为S ,S 大于L ,磁场左、右两边界均与导轨垂直。

现有一质量为m ,电阻为r ,边长为L 的正方形金属框,由圆弧导轨上某高度处静止释放,金属框滑上水平导轨,在水平导轨上滑行一段时间进入磁场区域,最终线框恰好完全通过n 段磁场区域。

地球表面处的重力加速度为g ,感应电流的磁场可以忽略不计,求:(1)刚开始下滑时,金属框重心离水平导轨所在平面的高度. (2)整个过程中金属框内产生的电热.(3)金属框完全进入第k (k <n )段磁场区域前的时刻,金属框中的电功率.BBBd A P12、如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场。

磁感应强度为B,方向水平并垂直纸面向外。

一质量为m、带电量为-q的带电微粒在此区域恰好作速度大小为v的匀速圆周运动。

(重力加速度为g)(1)求此区域内电场强度的大小和方向。

(2)若某时刻微粒运动到场中距地面高度为H的P点,速度与水平方向成45°,如图所示。

则该微粒至少须经多长时间运动到距地面最高点?最高点距地面多高?(3)在(2)问中微粒又运动P点时,突然撤去磁场,同时电场强度大小不变,方向变为水平向右,则该微粒运动中距地面的最大高度是多少?B【例1】【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略.取水平向右为正方向,对A 由动量定理,有:I = m A υ0代入数据得:υ0 = 3.0m/s (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有:—(F fBA +F fCA )t = m A υA -m A υ0 对B 由动理定理有:F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有:—(F fBA +F fCA )s A = 1/2m A υ2A -1/2m A υ2对B 由动能定理有:F fA Bf s B = 1/2m B υ2B根据动量与动能之间的关系有: m A υA = KA A E m 2,m B υB = KBB E m 2木板A 的长度即B 相对A 滑动距离的大小,故L = s A -s B , 代入放数据由以上各式可得L = 0.50m . 训练题答案:(1)F=1.85N (2)I=6.94NS 【例2】【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a ,由牛顿第二定律有:a =mmg - F Tm ,代入数据得a = 5m/s 2当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 =a= 2s ,位移s 1 = 1/2at 21 = 10m .此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm =mgP m= 15m/s .这段以恒定功率提升物体的时间设为t 2,由功能定理有:Pt 2-mg (h -s 1) =21mυ2m -21mυ2代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s .即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题答案:(1)P=kmgv m (2)t=(v m 2+2kgs )/2kgv m 训练题答案:BC【例3】【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K = 0 重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧. (2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理: 在水平方向取向右为正方向,有:-qEt = m (-υ)-mυcos θ 在竖直方向取向上为正方向,有:-mgt = 0-mυsin θ上两式相比得θθsin cos 1+=mg qE ,故电场强度为E = θθsin )cos 1(q mg +(3)竖直方向液滴初速度为υ1 = υsinθ,加速度为重力加速度g ,故到达最高点时上升的最大高度为h ,则h = 2221sin 22ggυυθ=从进入点O 到最高点N 由动能定理有qU -mgh = △E K = 0,代入h 值得U = 22sin 2m qυθ【例4】【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为F = F 浮-mg ,而F 浮 = ρ液Vg = 2ρ木Vg = 2mg ,故F = mg .在垂直于管壁方向有:F N = F cosα = mg cosα,在平行管方向受滑动摩擦力F f = μN = μmg cos θ,比较可知,F sinα = mg sinα = 0.6mg ,F f = 0.4mg ,Fsin α>F f .故木块从A 到B 做匀加速运动,滑过B 后F 的分布和滑动摩擦力均为阻力,做匀减速运动,未到C 之前速度即已为零,以后将在B 两侧管间来回运动,但离B 点距离越来越近,最终只能静止在B 处.(1)木块从A 到B 过程中,由动能定理有:FL sin α-F f L = 1/2mυ2B代入F 、F f 各量得υB = )cos (sin 2αμα-gL = 22 = 2.83m/s .(2)木块从开始运动到最终静止,运动的路程设为s ,由动能定理有:FL sin α-F f s = △E K = 0代入各量得s =ααcos sin m L = 3m训练题答案:E K =4J【例5】答案:⑴正电荷,Emg q 43= ⑵()Emg Rg BE F 439+=解:(1)小球在C 点受重力、电场力和轨道的支持力处于平衡,电场力的方向一定是向左的,与电场方向相同,如图所示.因此小球带正电荷. 则有小球带电荷量Emgq 43=(1) (2)小球从A 点释放后,沿圆弧轨道滑下,还受方向指向轨道的洛仑兹力f ,力f 随速度增大而增大,小球通过C 点时速度(设为v )最大,力f 最大,且qE 和mg 的合力方向沿半径OC ,因此小球对轨道的压力最大. 由()ααcos 1sin 212--=qER mgR mv (2) 通过C 点的速度小球在重力、电场力、洛仑兹力和轨道对它的支持力作用下沿轨道做圆周运动,有Rv m qvB qE mg F 2cos sin =---αα (3)最大压力的大小等于支持力训练题.解:小球在沿杆向下运动时,受力情况如图所示:在水平方向:N =qvB ,所以摩擦力f =μN =μqvB当小球做匀速运动时:qE =f =μqv b B (6分)小球在磁场中做匀速圆周运动时,Rv m B qv bb 2=又3L R =,所以mqBL v b 3= (4分)小球从a 运动到b 的过程中,由动能定理得:221b f mv W W =-电 而m L B q BL qv qEL W b 10222===μ电 所以mL q B mv W W b f 452212222==-电则94=电W W f (8分)fqvBN qE【例6】.(16分)(1)由mg BIL = (1分) rR EI +=(1分) 得 r mgEBLR -=(1分) (2)由022R vL B mg = (2分) 得220L B mgR v = (1分)由动量定理,得mv Lt I B mgt =- (1分) 其中t I =0R BLsq =(1分) 得220022L B mR mgR s L B t += (1分) (或22020244L B mgR gR m s L B +) (3)K 接3后的充电电流CBLa tvCBL t v CBL t U C t q I =∆∆=∆∆=∆∆=∆∆=(1分) ma BIL mg =- (1分) 得22LCB m mga +==常数 (1分) 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的。

相关文档
最新文档