高中数学(必修)模块2平面解析几何初步教材分析
高一数学必修2 点到直线的距离
![高一数学必修2 点到直线的距离](https://img.taocdn.com/s3/m/810f3216fd4ffe4733687e21af45b307e871f93f.png)
高一数学必修2 点到直线的距离一、教材分析1、教学内容本节课是人教B 版数学必修2第二章《平面解析几何初步》第§2.2.4节,主要内容是点到直线的距离公式的推导和应用。
2、课程标准探索并掌握点到直线的距离公式,会求两条平行直线间的距离。
3、地位与作用本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了解析几何的定量计算,是在学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识基础上的学习,对“点到直线的距离”的研究,为以后直线与圆的位置关系等几何问题的进一步学习奠定了基础。
二、教学目标依据《普通高中数学课程标准》的要求及教材的特点,结合学生的认知水平确定教学目标如下:1、知识与技能目标:理解点到直线距离公式的推导和掌握点到直线距离公式及其应用,能用公式2221BA C C d +-=求两平行线间距离。
2、过程与方法目标:(1)通过对点到直线的距离公式的推导与应用,培养学生数形结合、分类讨论、转化的数学思想,进而培养学生探究性思维方法和由特殊到一般、由具体到抽象的研究能力,以及用代数方法解决几何问题的能力。
(2)通过点到直线的距离公式的探索和推导过程,渗透算法的思想。
(3)通过问题获得数学知识,经历“发现问题—提出问题—解决问题”的过程。
3、情感、态度与价值观目标:通过教学过程中的师生互动、生生互动,形成学生的体验性认识,提高数学学习兴趣,树立学好数学的信心,逐步形成锲而不舍的钻研精神和合作交流的团队精神。
4、教学重点、难点及确立的依据教学重点:点到直线的距离公式确定依据:由本节在教材中的地位确定教学难点:点到直线的距离公式的推导确定依据:学生根据点到直线的距离定义进行推导,思路自然,但运算繁琐,在解决问题的过程中遇到困难,此时需要教师引导学生采用整体代换的思想简化推导过程。
三、教学方法发现法:本节课为了培养学生探究性思维能力,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己动手实践,引导、启发学生分析、发现、归纳、论证等,从而形成完整的数学模型。
苏教版高中高一数学必修2《平面解析几何初步》评课稿
![苏教版高中高一数学必修2《平面解析几何初步》评课稿](https://img.taocdn.com/s3/m/5818054d4b7302768e9951e79b89680202d86b7e.png)
苏教版高中高一数学必修2《平面解析几何初步》评课稿一、教材简介《平面解析几何初步》是苏教版高中高一数学必修2教材中的一章,主要介绍平面解析几何的基本概念和基本方法。
通过学习本章内容,学生可以掌握平面坐标系的建立与运用,了解平面解析几何的基本思想和基本定理,培养学生的几何建模、问题分析和解决问题的能力。
二、教学目标本章的主要教学目标如下:1.理解平面直角坐标系的概念和性质;2.掌握平面直角坐标系中的点、线段的坐标表示方法;3.熟练掌握坐标表示法求解距离、斜率、中点等问题的方法;4.理解直线的方程及其性质,能够求解直线的方程;5.学会判定两条直线相交、平行或重合的方法;6.掌握解直线方程组的方法,理解直线方程组解的几何意义。
三、教学重点1.平面直角坐标系的建立与应用;2.直线方程的求解与性质;3.直线方程组的解与几何意义。
四、教学难点1.直线的判定;2.直线方程组的解法。
五、教学准备1.课前准备:教师需要提前准备好教材、教具等教学资源;2.课堂准备:教师需要准备黑板、彩笔等辅助教学工具。
六、教学过程1. 导入与激发兴趣(5分钟)引导学生回顾上一堂课的内容,并提出与本节课相关的问题,激发学生对本节课内容的兴趣与思考。
2. 新知呈现(15分钟)第一部分:平面直角坐标系1.教师通过示意图引入平面直角坐标系的概念和性质;2.教师展示如何在平面上建立直角坐标系,并解释坐标的表示方法;3.通过具体的例子,教师讲解点、线段在坐标系中的表示方法,并进行示范。
第二部分:距离、斜率和中点1.教师引入距离的概念,并介绍计算两点距离的方法;2.教师讲解斜率的概念和计算方法,并通过实例演示;3.教师引入线段的中点概念,并讲解求解中点坐标的方法。
3. 知识拓展与巩固(20分钟)第一部分:直线的方程1.教师引导学生探讨直线的特征和性质,进一步理解直线方程的意义;2.教师介绍直线方程的一般形式和斜截式,并通过例题演示解题方法;3.学生通过练习题巩固直线方程的求解方法。
高中数学 第二章 平面解析几何初步 2.1 平面直角坐标
![高中数学 第二章 平面解析几何初步 2.1 平面直角坐标](https://img.taocdn.com/s3/m/b0682cf8daef5ef7bb0d3c03.png)
2.1 平面直角坐标ຫໍສະໝຸດ 中的基本公式课程目标1.理解实数与数轴上的点的对应关 系,理解实数与位移的对应关系. 2.掌握数轴上两点间的距离公式,理 解数轴上的向量加法的坐标运算. 3.探索并掌握平面直角坐标系中两 点的距离公式和中点公式. 4.通过对两点的距离求解过程的探 索,进一步体会“坐标法”的基本思 想,学会构造直角三角形解决问题的 基本思路.
思考 4 点 P(x,y)关于点 G(x0,y0)的对称点的坐标是什么?
提示:点 P(x,y)关于点 G(x0,y0)的对称点的坐标为(2x0-x,2y0-y).
思考 5 教材中的“?”
如果数轴上的单位长取作 1 cm,你能在数轴上标出数 0.001,0.000 1 和 2对应的点吗?你能说明在数轴上确实存在这些点吗?
若 AB∥x 轴或与 x 轴重合,则|AB|=|x2-x1|;若 AB∥y 轴或与 y 轴重合,则 |AB|=|y2-y1|.
思考 3 算术平方根 ������2 + ������2的几何意义是什么?
提示: ������2 + ������2表示点(x,y)到原点的距离.
3.中点公式 (1)直线上的中点坐标公式. 已知数轴上两点 A(x1),B(x2),则线段 AB 的中点 M 的坐标为������1+2������2. (2)平面内的中点坐标公式. 设平面内两点 A(x1,y1),B(x2,y2)的中点 M(x,y),则 x=������1+2������2,y=������1+2 ������2.
2.平面直角坐标系中的基本公式 平面直角坐标系中两点 A(x1,y1),B(x2,y2)的距离公
式:d(A,B)= (������2-������1)2 + (������2-������1)2.
高中数学必修2解析几何初步教材分析及教学建议之一
![高中数学必修2解析几何初步教材分析及教学建议之一](https://img.taocdn.com/s3/m/37f753fe0722192e4436f6bf.png)
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
高中数学 第二章 平面解析几何初步 2.2.4 点到直线的
![高中数学 第二章 平面解析几何初步 2.2.4 点到直线的](https://img.taocdn.com/s3/m/0b226c24f18583d04964594f.png)
点到直线的距离 两条平行线间的距离
定义
点到直线的 垂线段的长度
夹在两平行线间的 公垂线段的长度
图示
公式 (或求法)
d=|Ax1+By1+C|
A2+B2
d= |C2-C1|
A2+B2
思考 1 点 P0(x0,y0)到 x 轴、y 轴、与 x 轴平行的直线 y=a(a≠0)、
与 y 轴平行的直线 x=b(b≠0)的距离 d 分别等于什么?
离,d=|3×1-2×0+0|=3.
12+02
探究一
探究二
探究三
点评直线方程先化为一般式 Ax+By+C=0,再使用点到直线的距
离公式 d=|������������0+B������0+C|不易出错,当直线与坐标轴平行或重合时,不必使用点
������2+������2
到直线的距离公式,如点 P(3,2)到直线 x=5 与直线 y=-1 的距离分别为 2 与 3.
点评过一定点求直线方程多用待定系数法,且注意验证过该点且
斜率不存在的直线是否满足题意.
探究一
探究二
探究三
探究二 两条平行线之间的距离
对于两平行直线间的距离公式,应注意以下几点: (1)直线的方程必须是一般式,而且方程中 x,y 项的系数分别对应相等, 对于不同系数的应先化为相同后再求距离. (2)两条平行直线间的距离,也可以转化为在一条直线上的一个点到另 一条直线的距离来求,即转化为点到直线的距离. (3)两条平行线间的距离是这两条直线上的点之间的最小距离,也就是 它们的垂线段的长.
探究二
探究三
解:(1)当过点 A(2,1)的直线的斜率不存在时,直线方程为 x=2,此时,直线 到原点的距离为 d=|x-0|=|2-0|=2,所以 x=2 适合要求.
高中数学第二章平面解析几何初步教案新人教B版必修2
![高中数学第二章平面解析几何初步教案新人教B版必修2](https://img.taocdn.com/s3/m/874607373868011ca300a6c30c2259010202f32d.png)
第二章平面解析几何初步示范教案整体设计教学分析本节课是对第二章根本知识与方法总结与归纳,从整体上来把握本章,使学生根本知识系统化与网络化,根本方法条理化.通过小结与复习,对全章知识内容进展一次梳理,突出知识间内在联系,在综合运用知识解决问题能力上提高一步.采用分单元小结方式,让学生自己回忆与小结各单元知识.在此根底上,教师可对一些关键处予以强调.比方可重申解析几何根本思想——坐标法.并用解析几何根本思想串联全章知识,使全章知识网络更加清晰.指出本章学习要求与要注意问题.可让学生先阅读教科书中“思考与交流〞有关内容.教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中特殊地位.三维目标1.通过总结与归纳直线与直线方程、圆与圆方程、空间直角坐标系知识,对全章知识内容进展一次梳理,突出知识间内在联系,在综合运用知识解决问题能力上提高一步.2.能够使学生综合运用知识解决有关问题,培养学生分析、探究与思考问题能力,激发学生学习数学兴趣,培养分类讨论思想与抽象思维能力.重点难点教学重点:解析几何解题根本思路与解题方法形成.教学难点:整理形本钱章知识系统与网络.课时安排1课时教学过程导入新课设计1.我们知道学习是一个循序渐进过程,更是一个不断积累过程.送给大家这样一句话:疏浚源头流活水,承上根底梳理已整合;千寻飞瀑悬彩练,启下重点突破须提升.每学完一个单元都要总结复习,这节课我们就来复习刚完毕本章.引出课题.设计2.为了系统掌握第二章知识,教师直接点出课题.推进新课新知探究提出问题阅读教材P111思考交流,画出本章知识构造.讨论结果:知识构造应用例如思路1例1直线l与直线3x+4y-7=0平行,并且与两坐标轴围成三角形面积为24,求直线l方程.解:设l :3x +4y +m =0,那么当y =0时,x =-m 3;当x =0时,y =-m 4. ∵直线l 与两坐标轴围成三角形面积为24,∴12·|-m 3|·|-m 4|=24.∴m=±24. ∴直线l 方程为3x +4y±24=0.点评:与直线Ax +By +C =0平行直线方程可设为Ax +By +m=0(m≠C).变式训练求满足以下条件直线方程:(1)经过点P(2,-1)且与直线2x +3y +12=0平行;(2)经过点Q(-1,3)且与直线x +2y -1=0垂直;答案:(1)2x +3y -1=0.(2)2x -y +5=0.例2求圆心在直线2x -y -3=0上,且过点A(5,2)与点B(3,-2)圆方程.分析:因为条件与圆心有关系,因此可设圆标准方程,利用圆心在直线2x -y -3=0上,同时也在线段AB 垂直平分线上,由两直线交点得出圆心坐标,再由两点间距离公式得出圆半径,从而得到方程.解:方法一:设圆方程为(x -a)2+(y -b)2=r 2,由条件得⎩⎪⎨⎪⎧ 2a -b -3=0,5-a 2+2-b 2=r 2,3-a 2+-2-b 2=r 2.解得⎩⎪⎨⎪⎧ a =2,b =1,r =10.所以圆方程为(x -2)2+(y -1)2=10. 方法二:因为圆过点A(5,2)与点B(3,-2),所以圆心在线段AB 垂直平分线上,线段AB 垂直平分线方程为y =-12(x -4).设所求圆圆心C 坐标为(a ,b),那么有⎩⎪⎨⎪⎧ 2a -b -3=0,b =-12a -4.解得⎩⎪⎨⎪⎧ a =2,b =1.所以圆心C(2,1),r =|CA|=5-22+2-12=10.所以所求圆方程为(x -2)2+(y -1)2=10.点评:此题介绍了几何法求圆标准方程,利用圆心在弦垂直平分线上可得圆心满足一条直线方程,结合其他条件可确定圆心,由两点间距离公式得出圆半径,从而得到圆标准方程.其实求圆标准方程,就是求圆圆心与半径,有时借助于弦心距、圆半径之间关系计算,可大大简化计算过程与难度.如果用待定系数法求圆方程,那么需要三个独立条件,“选标准,定参数〞是解题根本方法,其中选标准是根据条件选择恰当圆方程形式,进而确定其中三个参数.变式训练求经过两点A(-1,4)、B(3,2)且圆心在y 轴上圆标准方程.解:2+(y -b)2=r 2.∵该圆经过A 、B 两点,∴⎩⎪⎨⎪⎧ -12+4-b 2=r 232+2-b 2=r 2⎩⎪⎨⎪⎧ b =1r 2=10.所以圆方程是x 2+(y -1)2=10.方法二:线段AB 中点为(1,3),k AB =2-43--1=-12⎩⎪⎨⎪⎧ y =2x +1x =0,得⎩⎪⎨⎪⎧ x =0,y =1.故点(0,1)为所求圆圆心.由两点间距离公式得圆半径r =10.所求圆方程为x 2+(y -1)2=10.思路2例3自点A(-3,3)发出光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线方程.解:(待定系数法)设光线l 所在直线方程为y -3=k(x +3),那么反射点坐标为(-31+k k,0)(k 存在且k≠0). ∵光线入射角等于反射角,∴反射线l′所在直线方程为y =-k[x +31+k k], 即l′:y +kx +3(1+k)=0.∵圆(x -2)2+(y -2)2=1,且l′与圆相切,∴圆心到l′距离d =|2+2k +31+k |1+k2=1. ∴k=-34或k =-43. ∴光线l 所在直线方程为3x +4y -3=0或4x +3y +3=0.点评:此题是方程思想典例,方法较多,无论那种方法都是设出适当未知数,列出相应方程求解,对光线问题解决,一般利用对称方法解题,往往会收到意想不到结果.变式训练 点A(0,2)与圆C :(x -6)2+(y -4)2=365,一条光线从A 点出发射到x 轴上后沿圆切线方向反射,求这条光线从A 点到切点所经过路程.解:设反射光线与圆相切于D 点.点A 关于x 轴对称点坐标为A 1(0,-2),那么光线从A 点到切点所走路程为|A 1D|在,Rt△A 1CD 中,|A 1D|2=|A 1C|2-|CD|2=(-6)2+(-2-4)2-365=36×95. ∴|A 1D|=1855,即光线从A 点到切点所经过路程是1855. 知能训练1.如果直线x +2ay -1=0与直线(3a -1)x -ay -1=0平行,那么a 等于( ) A .0 B.16C .0或 1D .0或16答案:D2.直线l 过点P(5,10),且原点到它距离为5,那么直线l 方程为__________.答案:x =5或3x -4y +25=03.直线x -2y +b =0与两坐标轴所围成三角形面积不大于1,那么b 取值范围是__________.答案:[-2,0)∪(0,2]4.经过点P(0,-1)作直线l ,假设直线l 与连接A(1,-2),B(2,1)线段没有公共点,那么直线l 斜率k 取值范围为__________.答案:(-∞,-1)∪(1,+∞)5.直线l 1:mx +(m -1)y +5=0与l 2:(m +2)x +my -1=0互相垂直,那么m 值是__________.答案:m =0或m =-126.求经过点P(2,3)且被两条平行直线3x +4y -7=0与3x +4y +8=0截得线段长为32直线方程.解:因为两条平行直线间距离d =|-7-8|32+42=3, 所以所求直线与直线3x +4y -7=0夹角为45°.设所求直线斜率为k ,那么tan45°=|k --34||1+-34k|. 解得k =17或k =-7. 因此x -7y +19=0或7x +y -17=0为所求.6.直线l :3x +4y -10=0与曲线C :x 2+y 2-5y +p =0交于A ,B 两点,且OA⊥OB,O 为坐标原点,求实数p 值.解:直线l 与曲线C 方程联立,得⎩⎪⎨⎪⎧ 3x +4y -10=0,x 2+y 2-5y +p =0,消去x ,得25y 2-125y +100+9p =0.∴y 1y 2=100+9p 25. 同理,x 1x 2=16p -10025. ∵OA⊥OB,∴y 1y 2x 1x 2=-1. ∴100+9p2516p -10025=-1, 解得p =0.拓展提升设有半径为3 km 圆形村落,A 、B 两人同时从村落中心出发,A 向东而B 向北前进,A 出村后不久,改变前进方向,斜着沿切于村落周界方向前进,后来恰好与B 相遇,设A 、B 两人速度都一定,其比为3∶1,问A 、B 两人在何处相遇?分析:首先建立适当坐标系,结合几何知识解题.由于是圆形村落,A 、B 两人同时从村落中心出发,于是可以以村落中心为原点,以开场时A 、B 两人前进方向为x 、y 轴,建立坐标系,这就为建立解析几何模型创造了条件,然后再准确设元,列出方程.解:以开场时A 、B 两人前进方向为x 、y 轴,建立坐标系,由题意可设A 、B 两人速度分别为3v km/h ,v km/h ,再设A 出发x 0 h 后在点P 处改变前进方向,又经y 0 h 在点Q 处与B 相遇,那么P 、Q 两点坐标为(3vx 0,0),(0,v(x 0+y 0)),如以下图所示.由于A 从点P 到Q 行走时间是y 0 h ,于是由勾股定理有|OP|2+|OQ|2=|PQ|2,有(3vx 0)2+[v(x 0+y 0)]2=(3vy 0)2.整理,得(x 0+y 0)(5x 0-4y 0)=0.又x 0+y 0>0,所以5x 0=4y 0.①于是k PQ =0-v x 0+y 03vx 0-0=-x 0+y 03x 0.② 把①代入②得k PQ =-34.由于切线PQ 与y 轴交点Q 对应纵坐标v(x 0+y 0)值就是问题答案,于是转化为“当直线y =-34x +b 与圆相切时,求纵截距b 值〞.利用圆心到切线距离等于圆半径,得4|b|32+42=3,解得b =154(b>0).因此A 、B 两人相遇位置是离村落中心正北334km 处. 课堂小结本节课学习了:1.复习本章知识,形成知识网络.2.解决与直线、圆有关问题.作业本章小结稳固与提高 6,7,9,11题.设计感想本节在设计过程中,注重了两点:一是表达学生主体地位,注重引导学生思考,让学生学会学习;二是既有根底知识复习、基此题型联系,又为了满足高考要求,对教材内容适当拓展.本节课对此进展了归纳与总结.通过新旧知识联系,加强横向沟通,培养学生多角度思考问题,利用不同方法解决问题能力.在课堂上进展解题方法讨论有助于活泼学生思维,促进发散思维培养,提高思维灵活性,抓住数形结合数学思想,总结解题规律,充分表达解析几何研究方法.教会学生思想方法比教会学生解题重要多.数学知识将来可能会遗忘,而数学思想方法会影响一个人一生.备课资料备选习题1.假设过定点M(-1,0)且斜率为k 直线与圆x 2+4x +y 2-5=0在第一象限内局部有交点,那么k 取值范围是( )A .0<k< 5B .-5<k<0C .0<k<13D .0<k<5 答案:A2.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动120°弧长到达Q 点,那么Q 坐标为( )A .(-12,32)B .(-32,-12)C .(-12,-32)D .(-32,12)答案:A3.过坐标原点且与x 2+y 2-4x +2y +52=0相切直线方程为( )A .y =-3x 或y =13x B .y =-3x 或y=-13xC .y =-3x 或y =-13x D .y =3x 或y=13x 解析:过坐标原点直线为y =kx ,与圆x 2+y 2-4x +2y +52=0相切,那么圆心(2,-1)到直线方程距离等于半径102,那么|2k +1|1+k 2=102,解得k =13或k =-3,∴切线方程为y =-3x 或y =13x.答案:A4.以点(2,-1)为圆心且与直线3x -4y +5=0相切圆方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9解析:r =|3×2-4×-1+5|32+42=3.答案:C5.圆:x 2+y 2-4x +6y =0与圆:x 2+y 2-6x =0交于A 、B 两点,那么AB 垂直平分线方程是________.答案:3x -y -9=06.从点A(-4,1)出发一束光线l ,经过直线l 1:x -y +3=0反射,反射光线恰好通过点B(1,6),求入射光线l 所在直线方程.解:设B(1,6)关于直线l 1对称点为B′(x 0,y 0),那么⎩⎪⎨⎪⎧x 0+12-y 0+62+3=0,y 0-6x 0-1·1=-1,解得⎩⎪⎨⎪⎧x 0=3,y 0=4.∴直线AB′方程为y -14-1=x +43+4,即3x -7y +19=0.故直线l方程为3x -7y +19=0.7.直线l :2x -y +1=0与点A(-1,2)、B(0,3),试在l 上找一点P ,使得|PA|+|PB|值最小,并求出这个最小值.解:过点B(0,3)且与直线l 垂直直线方程为l′:y -3=-12x ,由⎩⎪⎨⎪⎧2x -y +1=0,y =-12x +3,得⎩⎪⎨⎪⎧x =45,y =135,即直线l 与直线l′相交于点Q(45,135).点B(0,3)关于点Q(45,135)对称点为B′(85,115),连接AB′,那么依平面几何知识,知AB′与直线l 交点P 即为所求.直线AB′方程为y -2=113(x +1),由⎩⎪⎨⎪⎧2x -y +1=0,y =113x +2713,得⎩⎪⎨⎪⎧x =1425,y =5325,即P(1425,5325),相应最小值为|AB′|=-1-852+2-1152=170 5.。
[高中数学必修2]第二章 平面解析几何初步 知识梳理
![[高中数学必修2]第二章 平面解析几何初步 知识梳理](https://img.taocdn.com/s3/m/bd436cdecaaedd3382c4d387.png)
第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。
记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。
可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。
(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。
从点A 到点B的向量,记作AB 。
线段AB 的长叫做向量AB 的长度,记作|AB|。
我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。
例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。
注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。
③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。
(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。
对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。
已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。
新教材2025版高中数学第2章平面解析几何初步2
![新教材2025版高中数学第2章平面解析几何初步2](https://img.taocdn.com/s3/m/56b95d48fd4ffe4733687e21af45b307e971f97b.png)
2.2.4 直线的方向向量与法向量最新课程标准(1)驾驭直线l的方向向量与直线l的法向量的概念.(2)会求已知直线的方向向量与法向量.(3)会利用直线的方向向量与法向量解决相关问题.新知初探·课前预习——突出基础性教材要点要点一直线l的方向向量与直线l平行的非零向量v都称为直线l的方向向量❶.斜率为k的直线的方向向量为________的非零实数倍.要点二直线l的法向量与方程式为Ax+By+C=0的直线l垂直的非零向量n=____________称为直线l的一个法向量❷.批注❶直线l的方向向量v→并不唯一,λv→的全部的非零实数倍都是方向向量.批注❷直线的一般式方程Ax+By+C=0的一次项系数组成的向量(A,B)是直线的一个法向量.基础自测1.推断正误(正确的画“√”,错误的画“×”)(1)零向量不能作为直线的方向向量和平面的法向量.( )(2)若v是直线l的方向向量,则λv(λ∈R)也是直线l的方向向量.( )(3)若n为直线l的一个法向量,则λn(λ≠0)也是直线l的一个法向量.( )(4)向量(x0,y0)与(y0,-x0)是相互垂直的.( )2.直线3x-2y-1=0的一个方向向量为( )A.(2,-3) B.(2,3)C.(-3,2) D.(3,2)3.直线3x-4y+5=0的一个法向量是( )A.(3,4) B.(3,-4)C.(4,3) D.(4,-3)4.已知直线l的方向向量为(1,5),则直线l的法向量为( )A.(5,1) B.(-1,5)C.(5,-1) D.(-5,-1)5.若一条直线的斜率为k,则它的一个方向向量是________,一个法向量是________.题型探究·课堂解透——强化创新性题型1 求直线的方向向量和法向量例1 (1)求直线2x-3y+5=0的一个方向向量和法向量;(2)求过点A(2,3)和点B(0, -2)的直线的一个方向向量和法向量.方法归纳娴熟驾驭直线的斜截式(或一般式)方程对应的方向向量的坐标特征.不同形式的直线方程,可以先将方程化为斜截式或一般式,然后干脆写出它的一个方向向量.直线l:y=kx+b的一个方向向量为v=(1,k);直线l:Ax+By+C=0的一个方向向量为v=(B,-A).巩固训练1 (1)(多选)若直线l的倾斜角等于135°,则下列向量中可以是直线l的方向向量的有( )A.(2,2) B.(-3,3)C.(,-) D.(-,-)(2)若直线l经过点A(-1,4),B(3,2),则直线的一个法向量n为( )A.n=(1,-2) B.n=(4,-2)C.n=(4,2) D.n=(1,2)题型2 直线方向向量的应用例2 (1)经过A(0,2),B(-1,0)两点的直线的方向向量为(1,k),求k的值;(2)假如直线过点P(1,-4),且直线的方向向量是a=(3,9),求直线的方程.方法归纳已知直线的方向向量求直线方程时,可用待定系数法求得:(1)若已知直线的一个方向向量为v=(1,k),则可设直线l的方程为y=kx+b;(2)若已知直线的一个方向向量为v=(B,-A),则可设直线l的方程为Ax+By+C=0.巩固训练2 (1)若过点P(3,2m)和点Q(-m,2)的直线与方向向量为a=(-5,5)的直线平行,则实数m的值是( )A. B. -C. 2 D.-2(2)平行于向量(2,-3)且经过点B(1,-2)的直线方程为________.题型3 直线法向量的应用例3 (1)已知两条直线l1:ax-2y-3=0,l2:4x+6y-3=0,若l1的一个法向量恰为l2的一个方向向量,则a=________;(2)假如直线过点D(6,-1),且直线的法向量是b=(4,-3),求直线的方程.方法归纳已知直线的法向量求直线方程的方法待定系数法:若已知直线的一个法向量为n=(A,B),则可设直线l的方程为Ax+By+C=0.巩固训练3 (1)已知直线的倾斜角为120°,它的一个法向量为v=(m,m+1),则m的值为( )A.1+ B.1-C.D.-(2)垂直于向量(3,-5)且经过点A(1,2)的直线方程为 ________.2.2.4 直线的方向向量与法向量新知初探·课前预习[教材要点]要点一(1,k)要点二(A,B)[基础自测]1.(1)√(2)×(3)√(4)√2.解析:因为3x-2y-1=0的斜率k=,结合选项可知直线3x-2y-1=0的一个方向向量为(2,3).答案:B3.解析:∵直线3x-4y+5=0,斜率为,∴其方向向量为:(1,),设其法向量坐标为(x,y),又∵方向向量和法向量垂直,∴x+y=0,符合要求的只有B.答案:B4.解析:因为直线l的方向向量为(1,5),所以直线l的法向量可以是(-5,1)或(5,-1).答案:C5.解析:因为直线的斜率为k,所以它的一个方向向量为(1,k),设一个法向量为(x,y),则(x,y)·(1,k)=x+ky=0,不妨取x=k,y=-1,则它的一个法向量是(k,-1).答案:(1,k) (k,-1)题型探究·课堂解透例1 解析:(1)直线方程2x-3y+5=0化为y=x+,其斜率k=.所以直线的一个方向向量为(1,).由1××(-1)=0可知直线的一个法向量为(,-1).(2)由已知条件可知直线的一个方向向量为=(0-2,-2-3)=(-2,-5),又5×(-2)+(-2)×(-5)=0可知直线的一个法向量为(5,-2).巩固训练1 解析:(1)直线l的斜率为k=tan 135°=-1,所以直线l的全体方向向量为λ(1,-1),(λ≠0,λ∈R)检验可知B、C为直线l的方向向量.(2)因为=(4,-2),A.当n=(1,-2),则·n=4+4=8≠0,不满意.B.当n=(4,-2),则·n=16+4=20≠0,不满意.C.当n=(4,2),则·n=16-4=12≠0,不满意.D.当n=(1,2),则·n=4-4=0,满意.答案:(1)BC (2)D例2 解析:(1)因为直线的方向向量为(1,k),则k为直线的斜率,所以k==2,所以k的值为2.(2)由题意,直线的方向向量是a=(3,9),故直线的斜率k==3,且直线过点P(1,-4),故直线方程为y+4=3(x-1),即3x-y-7=0.巩固训练2 解析:(1)由题意得,=(-m-3,2-2m)与a=(-5,5)共线,所以5(-m-3)-(-5)·(2-2m)=0,解得m=-,经检验知,m=-符合题意.(2)由条件可设直线的方程为3x+2y+C=0,把点B(1,-2)代入得C=1,所以所求直线方程为3x+2y+1=0.答案:(1)B (2)3x+2y+1=0例3 解析:(1)因为直线l1:ax-2y-3=0的一个法向量恰为l2:4x+6y-3=0的一个方向向量,所以l1⊥l2,所以a×4+(-2)×6=0,解得:a=3.(2)方法一由题意可设直线的方程为4x-3y+C=0,将点D(6,-1)代入得C=-27,所以直线方程为4x-3y-27=0.方法二由题意,直线的法向量是b=(4,-3),故直线的一个方向向量为(3,4),故直线的斜率k=,且直线过点D(6,-1),故直线方程为y+1=(x-6).即4x-3y-27=0.答案:(1)3 (2)4x-3y-27=0巩固训练3 解析:(1)由题意得,k=tan 120°=-,∴直线的一个方向向量为a=(1,-).∴a⊥v,又v=(m,m+1),∴m-(m+1)=0解得m=-.(2)由条件可知向量(3,-5)为所求直线的一个法向量,故可设直线的一般式方程为3x-5y+C=0,将点A(1,2)代入得C=7,所以直线方程为3x-5y+7=0.答案:(1)D (2)3x-5y+7=0。
新教材2025版高中数学第2章平面解析几何初步2
![新教材2025版高中数学第2章平面解析几何初步2](https://img.taocdn.com/s3/m/1e335580cf2f0066f5335a8102d276a2002960d8.png)
2.2.3 直线的一般式方程最新课程标准(1)驾驭直线的一般式方程.(2)理解关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)都表示直线.(3)会进行直线方程的五种形式之间的转化.新知初探·课前预习——突出基础性教材要点要点直线方程的一般式1.定义:关于x,y的二元一次方程Ax+By+C=0❶(其中A,B不同时为0)都表示一条直线,把它称为直线的一般式方程,简称一般式.2.适用范围:平面直角坐标系中,任何一条直线都可用一般式表示.3.系数的几何意义:当B≠0时,则-=k(斜率),-=b(y轴上的截距);当B=0,A≠0时,则-=a(x轴上的截距),此时不存在斜率.批注❶虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.基础自测1.推断正误(正确的画“√”,错误的画“×”)(1)平面直角坐标系中的随意一条直线都可以用一个关于x,y的二元一次方程来表示.( )(2)随意一个关于x,y的二元一次方程都表示一条直线.( )(3)直线l:Ax+By+C=0的斜率为-.( )(4)当C=0时,方程Ax+By+C=0(A、B不同时为0)表示过原点的直线.( )2.直线3x+4y+12=0的斜率为( )A. B.C.- D.-3.直线x-y-1=0的倾斜角α为( )A.30° B.45°C.60° D.90°4.若方程Ax+By+C=0表示直线,则A,B应满意的条件为( )A.A≠0 B.B≠0C.A·B≠0 D.A2+B2≠05.斜率为2,且经过点A(1,3)的直线的一般式方程为________.题型探究·课堂解透——强化创新性题型1 求直线的一般式方程例1 依据下列各条件写出直线的方程,并且化成一般式.(1)斜率是-,经过点A(8,-2);(2)经过点B(4,2),平行于x轴;(3)在x轴和y轴上的截距分别是,-3;(4)经过两点P1(3,-2),P2(5,-4).方法归纳求直线的一般式方程的策略巩固训练1 (1)过点P(-2,3),并且在两坐标轴上的截距互为相反数的直线方程是( )A.x-y+1=0B.x-y+1=0或3x+2y=0C.x-y-5=0D.x-y+5=0或3x+2y=0(2)过点A(-2,1),且倾斜角的余弦值为-的直线的一般式方程为________.题型2 用直线的一般式方程解决直线与坐标轴形成三角形问题例2 设直线l的方程为(a+1)x+y-2-a=0(a∈R),若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN面积取最小值时,直线l的方程.方法归纳由直线的一般式方程表示直线与坐标轴形成三角形的面积的步骤巩固训练2 已知直线l:kx-y+1+2k=0,(k∈R)与x轴负半轴和y轴正半轴坐标轴围成的三角形面积为,求k的值.题型3 由含参数的一般式方程求参数(或取值范围)例3 已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线l不经过其次象限,求a的取值范围.变式探究1 本例中若直线不经过第四象限,则a的取值范围是什么?变式探究2 本例中将方程改为“x-(a-1)y-a-2=0”,若直线不经过其次象限,则a的取值范围又是什么?方法归纳求直线过定点的2种方法巩固训练3 已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证:不论k取何实数,直线l必过定点,并求出这个定点的坐标.2.2.3 直线的一般式方程[基础自测]1.(1)√(2)√(3)×(4)√2.解析:直线方程的斜截式为:y=-x-3,斜率为-.答案:D3.解析:依据题意,易知直线x-y-1=0的斜率k=1,由tan α=k=1,得α=45°.答案:B4.解析:依据直线方程的一般式可知,要使得Ax+By+C=0表示直线,则A,B不能同时为零,即A2+B2≠0.答案:D5.解析:由直线点斜式方程可得y-3=2(x-1),化为一般式为:2x-y+1=0.答案:2x-y+1=0题型探究·课堂解透例1 解析:选择合适的直线方程形式.(1)由点斜式得y-(-2)=-(x-8),即x+2y-4=0.(2)由斜截式得y=2,即y-2=0.(3)由截距式得=1,即2x-y-3=0.(4)由两点式得=,即x+y-1=0.巩固训练1 解析:(1)若直线在坐标轴上的截距为0,设直线方程为y=kx(x≠0),因为直线过点P(-2,3),所以3=-2k,即k=-,所以直线方程为y=-x,即3x+2y=0;若直线在坐标轴上的截距不为0,设直线方程为=1(a≠0),因为直线过点P(-2,3),所以=1,解得a=-5,所以直线方程为=1,即x-y+5=0.故所求直线方程为x-y+5=0或3x+2y=0.解析:(2)设直线的倾斜角为θ,则θ∈[0,π),因为cos θ=-,所以sin α===,所以直线的斜率k=tan θ===-2,所以直线的方程为y-1=-2(x+2),所以直线的一般式方程为2x+y+3=0.答案:(1)D (2)2x+y+3=0例2 解析:令y=0,求得M点坐标为M(,0),令x=0,求得N点坐标为N(0,2+a),∵a>-1,∴S△OMN=··(2+a)==(a+1++2)≥2,当且仅当a+1=,即a=0时等号成立.故所求直线l的方程为x+y-2=0.巩固训练2 解析:设直线l交x轴负半轴于点A,交y轴正半轴于点B,则k>0,令y=0,得A(-,0);令x=0,得B(0,1+2k),三角形OAB的面积为·OA·OB=×(1+2k)=,即4k2-5k+1=0,解得k=1或.例3 解析:(1)方法一将直线l的方程整理为y-=a(x-),∴直线l的斜率为a,且过定点A(),而点A()在第一象限内,故不论a为何值,l恒过第一象限.方法二直线l的方程可化为(5x-1)a-(5y-3)=0.∵上式对随意的a总成立,必有即即l过定点A().以下同方法一.(2)直线OA的斜率为k==3.如图所示,要使l不经过其次象限,需斜率a≥k OA=3,∴a的取值范围为[3,+∞).变式探究1 解析:由本例(2)解法可知直线OA的斜率为3,要使直线不经过第四象限,则有a≤3.变式探究2 解析:①当a-1=0,即a=1时,直线为x=3,该直线不经过其次象限,满意要求.②当a-1≠0,即a≠1时,直线化为斜截式方程为y=x-,因为直线不过其次象限,故该直线的斜率大于等于零,且在y轴的截距小于等于零,即解得,所以a>1.综上可知a≥1.巩固训练3 证明:整理直线l的方程得(x+y)+k(x-y-2)=0.无论k取何值,该式恒成立,所以解得所以直线l经过定点M(1,-1).。
高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2
![高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2](https://img.taocdn.com/s3/m/c719b642915f804d2a16c143.png)
2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。
《平面解析几何初步》教材分析
![《平面解析几何初步》教材分析](https://img.taocdn.com/s3/m/cb1c2883d0d233d4b14e6991.png)
(四)分节教材分析
2.3.2圆的一般方程-------- 2课时 重点:圆的一般方程、由圆的一般方程读出圆心与半
径及二元二次方程表示圆的条件. 难点:由圆的一般方程读出圆心与半径 教学建议:(1)由圆的标准方程得到一般方程,它是 一个二元二次方程,再由二元二次方程研究表示圆的 条件;(2)会读写圆的一般方程,会将一般方程与标 准方程进行互化,强调配方法的应用.
(五)本章所蕴涵的数学思想方法
本章主要数学思想方法有:对应思想、数形结合思想、
转化与化归思想、函数与方程思想、分类讨论思想 等.
(六)教学中的几个注意点
1.注意把握教学要求 2.关注重要数学思想方法的教学 3.关注学生的动手操作和主动参与 4、关注书本中例题的示范和导向作用 5.关注信息技术的应用
(四)分节教材分析
2.1
平面直角坐标系中的基本公式-----共2课时 2.1.1数轴上的基本公式------- 1课时 重点:理解和掌握数轴上的基本公式 难点:建立实数与数轴的点或位移的对应关系 教学建议:(1)学生已有向量学习的基础,不妨结合 向量理解坐标及AC=AB+BC等;(2)在记忆公式的同时, 理解它们的几何意义及符号语言;(3)用几何意义研 究书后练习题中含绝对值的不等式的解集.
(四)分节教材分析
2.2复习课---------1课时 建议站位高一点,带领学生再看直线的教学. 平面几何的基本元素是什么?其代数表述是什么? 直线的代数表达中,关键量的作用是什么? 从辩证的角度看:分点在线上和点不在线上. {二元一次方程}与{直线} 之间的一一对应的关系. 单个几何元素(点、直线)研究完成后,研究多个几
二、北京高考考试说明要求
苏教版学高中数学必修二平面解析几何初步圆与圆的位置关系讲义
![苏教版学高中数学必修二平面解析几何初步圆与圆的位置关系讲义](https://img.taocdn.com/s3/m/020c3c6efd0a79563d1e72a0.png)
学习目标核心素养1.能根据两个圆的方程,判断两圆的位置关系.(重点)2.当两个圆有公共点时能求出它们的公共点,能运用两圆的位置关系解决有关问题.(易错点)3.了解两圆相交时公共弦所在直线的求法;了解两圆公切线的概念,会判断所给直线是不是两圆的公切线.(难点)通过学习本节内容提升学生的逻辑推理和数学运算核心素养.圆与圆的位置关系1.几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>r1+r2d=r1+r2|r1—r2|<d<r1+r2d=|r1—r2|d<|r1—r2|错误!错误!错误!错误!1.思考辨析(1)两圆方程联立,若方程组有两个解,则两圆相交.()(2)若两个圆没有公共点,则两圆一定外离.()(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.()(4)若两圆有公共点,则|r1—r2|≤d≤r1+r2. ()[答案] (1)√(2)×(3)×(4)√2.两圆x2+y2+6x+4y=0及x2+y2+4x+2y—4=0的公共弦所在的直线方程为______________.x+y+2=0 [联立错误!1—2得:x+y+2=0.]3.圆x2+y2=1与圆x2+y2+2x+2y+1=0的交点坐标为________.(—1,0)和(0,—1)[由错误!解得错误!或错误!]4.圆C1:x2+y2+4x—4y+7=0和圆C2:x2+y2—4x—10y+13=0的公切线有________条.3[圆C1的圆心坐标为C1(—2,2),半径r1=1.∵圆C2的圆心坐标为C2(2,5),半径r2=4.∴|C1C2|=错误!=5,r1+r2=5,∴两圆外切.故公切线有3条.]两圆位置关系的判定1222222(1)m=1时,圆C1与圆C2有什么位置关系?(2)是否存在m使得圆C1与圆C2内含?思路探究:(1)参数m的值已知,求解时可先找出圆心及半径,然后比较两圆的圆心距d与r1+r和|r1—r2|的大小关系.(2)假设存在m使得圆C1与圆C2内含,则圆心距d<|r1—r2|.2[解] (1)∵m=1,∴两圆的方程分别可化为:C1:(x—1)2+(y+2)2=9.C2:(x+1)2+y2=1.两圆的圆心距d=错误!=2错误!,又∵r1+r2=3+1=4,r1—r2=3—1=2,∴r1—r2<d<r1+r2,所以圆C1与圆C2相交.(2)假设存在m使得圆C1与圆C2内含,则错误!<3—1,即(m+1)2<0,显然不等式无解.故不存在m使得圆C1与圆C2内含.判断圆与圆的位置关系时,通常用几何法,即转化为判断圆心距与两圆半径的和与差之间的大小关系.1.已知圆C1:x2+y2—2ax—2y+a2—15=0,C2:x2+y2—4ax—2y+4a2=0(a>0).试求a为何值时两圆C1,C2(1)相切;(2)相交;(3)相离;(4)内含.[解] 对圆C1,C2的方程,经配方后可得:C1:(x—a)2+(y—1)2=16,C2:(x—2a)2+(y—1)2=1,∴圆心C1(a,1),r1=4,C2(2a,1),r2=1,∴|C1C2|=错误!=a,(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切,当|C1C2|=r1—r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5,时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即0<a<3时,两圆内含.两圆相交的问题122222(1)求公共弦所在直线的方程;(2)求公共弦的长.思路探究:错误!→错误!→错误!→错误![解] (1)设两圆的交点分别为A(x1,y1),B(x2,y2).将点A的坐标代入两圆方程,得错误!1—2,得x1—2y1+4=0,故点A在直线x—2y+4=0上.同理,点B也在直线x—2y+4=0上,即点A,B均在直线x—2y+4=0上.因为经过两点有且只有一条直线,所以直线AB的方程为x—2y+4=0,即公共弦所在直线的方程为x—2y+4=0.(2)圆C1的方程可化为(x—1)2+(y+5)2=50,所以C1(1,—5),半径r1=5错误!.C1(1,—5)到公共弦的距离d=错误!=3错误!.设公共弦的长为l,则l=2错误!=2错误!=2错误!.1.利用两圆的方程相减求两圆公共弦所在直线的方程时,必须注意只有当两圆方程中二次项的系数相同时,才能如此求解,若二次项的系数不同,需先调整方程中各项的系数.2.求两圆的公共弦长有两种方法:一是先求出两圆公共弦所在直线的方程;再利用圆的半径、弦心距、弦长的一半构成的直角三角形求解;二是联立两圆的方程求出交点坐标,再利用两点间的距离公式求弦长.2.求圆心在直线x—y—4=0上,且经过两圆x2+y2—4x—6=0和x2+y2—4y—6=0的交点的圆的方程.[解] 由错误!得错误!或错误!即两圆的交点坐标为A(—1,—1),B(3,3).设所求圆的圆心坐标C为(a,a—4),由题意可知CA=CB,即错误!=错误!,解得a=3,∴C(3,—1).∴CA=错误!=4,所以,所求圆的方程为(x—3)2+(y+1)2=16.两圆相切的问题1.若已知圆C1:x2+y2=a2(a>0)和C2:(x—2)2+y2=1,那么a取何值时C1与C2相外切?[提示] 由|C1C2|=a+1,得a+1=2,∴a=1.2.若将探究1中,C2的方程改为(x—2)2+y2=r2(r>0),那么a与r满足什么条件时两圆相切?[提示] 若两圆外切,则a+r=|C1C2|=2,即a+r=2时外切.若两圆内切,则|r—a|=|C1C2|=2.∴r—a=2或a—r=2.【例3】已知圆C1:x2+y2+4x—4y—5=0与圆C2:x2+y2—8x+4y+7=0.(1)证明:圆C1与圆C2相切,并求过切点的公切线的方程;(2)求过点(2,3)且与两圆相切于(1)中切点的圆的方程.思路探究:(1)证明|C1C2|=r1+r2,两圆方程相减得公切线方程.(2)由圆系方程设圆的方程,将已知点代入.[解] (1)把圆C1与圆C2都化为标准方程形式,得(x+2)2+(y—2)2=13,(x—4)2+(y+2)2=13;圆心与半径长分别为C1(—2,2),r1=错误!;C2(4,—2),r2=错误!,因为|C1C2|=错误!=2错误!=r1+r2,所以圆C1与圆C2相切.由错误!得12x—8y—12=0,即3x—2y—3=0,这就是过切点的两圆公切线的方程.(2)由圆系方程,可设所求圆的方程为x2+y2+4x—4y—5+λ(3x—2y—3)=0.点(2,3)在此圆上,将点坐标代入方程解得λ=错误!.所以所求圆的方程为x2+y2+4x—4y—5+错误!(3x—2y—3)=0,即x2+y2+8x—错误!y—9=0.两圆相切有如下性质(1)设两圆的圆心分别为O1,O2,半径分别为r1,r2,则两圆相切错误!(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦).在解题过程中应用这些性质,有时能大大简化运算.3.求与圆C:x2+y2—2x=0外切且与直线l:x+错误!y=0相切于点M(3,—错误!)的圆的方程.[解] 圆C的方程可化为(x—1)2+y2=1,圆心C(1,0),半径为1.设所求圆的方程为(x—a)2+(y—b)2=r2(r>0),由题意可知错误!解得错误!或错误!所以所求圆的方程为(x—4)2+y2=4或x2+(y+4错误!)2=36.1.本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,能利用直线与圆的方程解决平面几何问题.难点是利用方程判断圆与圆的位置关系.2.本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用.(2)求两圆公共弦长的方法.3.本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解.1.圆(x+2)2+y2=4与圆(x—2)2+(y—1)2=9的位置关系为()A.相离B.相切C.相交D.内含C[两圆圆心分别为(—2,0),(2,1),半径分别为2和3,圆心距d=错误!=错误!.∵3—2<d<3+2,∴两圆相交.]2.已知圆C1:x2+y2—2mx+m2=1与圆C2:x2+y2+2y=8外离,则实数m的取值范围是________.(—∞,—错误!)∪(错误!,+∞)[圆C1可化为(x—m)2+y2=1,圆C2可化为x2+(y +1)2=9,所以圆心C1(m,0),C2(0,—1),半径r1=1,r2=3,因为两圆外离,所以应有C1C2>r1+r2=1+3=4,即错误!>4,解得m>错误!或m<—错误!.]3.半径长为6的圆与x轴相切,且与圆x2+(y—3)2=1内切,则此圆的方程为________.(x±4)2+(y—6)2=36 [设圆心坐标为(a,b),由题意知b=6,错误!=5,可以解得a =±4,故所求圆的方程为(x±4)2+(y—6)2=36.]4.已知圆C1:x2+y2—2mx+4y+m2—5=0,圆C2:x2+y2+2x—2my+m2—3=0,m为何值时,(1)圆C1与圆C2外切;(2)圆C1与圆C2内含.[解] 将圆C1,圆C2化为标准形式得C1:(x—m)2+(y+2)2=9,C2:(x+1)2+(y—m)2=4.则C1(m,—2),C2(—1,m),r1=3,r2=2,C1C2=错误!=错误!.(1)当圆C1与圆C2外切时,有r1+r2=C1C2,则错误!=5,解得m=—5或2,即当m=—5或2时,两圆外切.(2)当圆C1与圆C2内含时,C1C2<r1—r2,∴错误!<1,即m2+3m+2<0.∵f(m)=m2+3m+2的图象与横坐标轴的交点是(—2,0),(—1,0),∴由m2+3m+2<0,可得—2<m<—1,即当—2<m<—1时,两圆内含.。
人教版高中必修2(B版)第二章平面解析几何初步课程设计
![人教版高中必修2(B版)第二章平面解析几何初步课程设计](https://img.taocdn.com/s3/m/7a0dfe76842458fb770bf78a6529647d26283440.png)
人教版高中必修2(B版)第二章平面解析几何初步课程设计一、课程简介本课程是人教版高中必修2(B版)第二章平面解析几何初步课程。
本章的内容主要包括向量、点、直线、平面以及它们之间的关系和运算。
本课程的目的是使学生掌握平面解析几何的基本概念、基本方法和基本技能,培养学生的逻辑思维能力、数学分析能力和解决问题的能力。
二、教学目标1.了解平面解析几何基本概念和基本原理;2.掌握向量的概念、性质和加减法运算;3.掌握点、直线、平面的定义、性质和基本运算;4.掌握平面解析几何的基本定理;5.能够解决平面解析几何问题,提高数学分析和逻辑思维能力。
三、教学内容及教学方法1. 向量的概念与运算向量是平面解析几何的基本概念之一,掌握向量的概念和运算对于后面的学习非常重要。
教学方法:讲解+练习2. 点、直线、平面的方程点、直线、平面的方程是平面解析几何的另一个重要内容,掌握方程的表示方法和解题方法可以应对各种不同情况的问题。
教学方法:讲解+练习3. 一次函数和二次函数一次函数和二次函数是数学中非常基本的概念,也是平面解析几何中的重要内容。
在本章中,我们将学习一次函数和二次函数的基本性质和图像。
教学方法:讲解+练习4. 直线的性质直线是平面解析几何中非常重要的概念,学生需要掌握直线的基本性质、相交和平行线的判定方法以及直线方程的求法。
教学方法:讲解+练习5. 角的概念和性质角是平面几何中的基本概念,掌握角的概念和性质可以应对各种不同情况的问题。
教学方法:讲解+练习6. 平面的性质平面是平面解析几何中的基本概念之一,学生需要掌握平面的基本性质和平面方程的求法。
教学方法:讲解+练习四、教学进度和安排本课程共涉及6个知识点,每个知识点需要2小时完成,总共需要12个小时的教学时间。
第1~2课时:向量的概念与运算第3~4课时:点、直线、平面的方程第5~6课时:一次函数和二次函数第7~8课时:直线的性质第9~10课时:角的概念和性质第11~12课时:平面的性质五、教学评价方法1.课堂测试课堂测试可以考查学生对本节课程知识的掌握程度,测试内容包括选择题、填空题、计算题等。
普通高中《平面解析几何》教材分析
![普通高中《平面解析几何》教材分析](https://img.taocdn.com/s3/m/a9416962168884868762d671.png)
现一定教学目标,在教学活动中使用的、供学生选择和处理的、负载着知识信息的一
切手段和材料,是引导学生认知发展、能力形成、人格建筑的范例,是引进学生认知、 分析、理解事物并进行反思、批判和建构意义的中介.教材是教学内容的载体,是教 学的依据。数学教学,就是要把教材中的数学知识传授给学生,并挖掘教材中隐含的、 内在价值,开发学生的智力,发展学生的能力,培养学生良好的个性.因此,在数学教 学过程中,首先应该认真分析教材,掌握教材,并在此基础上处理教材,设计教学.一 些教师常常对教材不会做处理,照本宣科,原因就在于缺乏对教材深入的分析.分析 教材,是处理教材的前提,也是教学设计的基础,教材分析好坏,不仅关系到能否真 正发挥教材的作用,也直接影响教学质量的高低.
analyze
by
hi曲school
textbook of 2004 edition which is some aspects such
published
People’S Education Publishing
House in
ቤተ መጻሕፍቲ ባይዱas
content
structure,
educational function,psychological characteristic according with student teaching through the method of content
莎』£磊f箍大学
教育硕士学位论文
普通高中《平面解析几何》教材分析
一一基于《全日制普通高中中学教科书必修本・数学》 第二册(上)2 004版本的分析
王辉斌
导师姓名职称: 专业名称:
堂筮堡
型塾撞
塾查塑±
研究方向:堂盘鏊生:熬堂
高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第2课时)两点式高一数学教案
![高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第2课时)两点式高一数学教案](https://img.taocdn.com/s3/m/cabb482a76a20029bc642d37.png)
第2课时 两点式已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),则其方程y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2且y 1≠y 2),称为直线的两点式方程.2.直线的截距式方程若直线过点A (a ,0),B (0,b ),其中a 叫做直线在x 轴上的截距,b 叫做直线在y 轴上的截距,则直线方程x a +y b=1(a ≠0,b ≠0),称为直线的截距式方程.1.思考辨析(1)两点式y -y 1y 2-y 1=x -x 1x 2-x 1,适用于不垂直于x 轴和y 轴的任何直线.( ) (2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)·(y 2-y 1)表示.( )(3)不经过原点的直线都可以用方程x a +y b=1表示. ( )(4)方程y -y 1=y 2-y 1x 2-x 1(x -x 1)和y -y 1y 2-y 1=x -x 1x 2-x 1表示同一图形. ( )[答案] (1)√ (2)√ (3)× (4)×2.过点P 1(1,1),P 2(2,3)的直线方程为________. 2x -y -1=0 [由直线方程的两点式得y -31-3=x -21-2,即2x -y -1=0.]3.经过M (3,2)与N (6,2)两点的直线方程为________. y =2 [由M ,N 两点的坐标可知,直线MN 与x 轴平行,所以直线方程为y =2.]4.过点P 1(2,0),P 2(0,3)的直线方程为________. x 2+y 3=1 [∵P 1(2,0),P 2(0,3)都在坐标轴上,因此过这两点的直线方程为x 2+y3=1.] 直线的两点式方程及其应用 1),求三角形三条边所在的直线方程.思路探究:已知直线上的两点,可利用两点式求方程,也可利用两点先求斜率,再利用点斜式写直线方程.[解] ∵A (2,-1),B (2,2),A ,B 两点横坐标相同,直线AB 与x 轴垂直,故其方程为x =2.∵A (2,-1),C (4,1),由直线方程的两点式可得AC 的方程为y -1-1-1=x -42-4,即x -y -3=0. 同理可由直线方程的两点式得直线BC 的方程为y -21-2=x -24-2,即x +2y -6=0.∴三边AB ,AC ,BC 所在的直线方程分别为 x =2,x -y -3=0,x +2y -6=0.当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件,若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程.1.已知三角形的三个顶点A (-4,0),B (0,-3),C (-2,1),求:(1)BC 边所在的直线方程;(2)BC 边上中线所在的直线方程.[解] (1)直线BC 过点B (0,-3),C (-2,1),由两点式方程得y +31+3=x -0-2-0,化简得2x +y +3=0. (2)由中点公式得,BC 的中点D的坐标为⎝ ⎛⎭⎪⎫0-22,-3+12,即D (-1,-1),又直线AD 过点A (-4,0),由两点式方程得y +10+1=x +1-4+1,化简得x +3y +4=0. 直线的截距式方程 的直线l 的方程.思路探究:[解] 设直线l 在x 轴,y 轴上的截距分别为a ,b .①当a ≠0,b ≠0时,设l 的方程为x a +y b=1. ∵点(4,-3)在直线上,∴4a +-3b=1, 若a =b ,则a =b =1,直线方程为x +y =1.若a =-b ,则a =7,b =-7,此时直线的方程为x -y =7.②当a =b =0时,直线过原点,且过点(4,-3),∴直线的方程为3x +4y =0.综上所述,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0.当所给条件涉及直线的横、纵截距求直线方程时,可考虑用直线的截距式方程.但要特别注意截距式使用的条件是横纵截距都存在且不为零.2.求过点A (5,2),且在坐标轴上的截距互为相反数的直线l 的方程.[解] 当直线l 在坐标轴上的截距为0时,设方程为y =kx ,又l 过点A (5,2),得2=5k ,即k =25,故方程为 y =25x ,即2x -5y =0. 当直线l 在坐标轴上的截距不为0时,设直线l 的方程为x a +y -a=1,即x -y =a .又因为直线l过点A(5,2),所以5-2=a,a=3.所以直线l的方程为x-y-3=0.综上所述,直线l的方程为2x-5y=0或x-y-3=0.直线方程的综合应用[探究问题]1.直线方程的四种特殊形式及其适用范围.[提示]方程名称方程形式已知条件适用范围1.点斜式y-y1=k(x-x1)点P(x1,y1)和斜率k 斜率存在的直线2.斜截式y=kx+b 斜率k和在y轴上的截距b斜率存在的直线3.两点式y-y1y2-y1=x-x1x2-x1P1(x1,y1),P2(x2,y2)其中x1≠x2,y1≠y2斜率存在且不为0的直线4.截距式xa+yb=1在x,y轴上的截距分别为a,b,且a≠0,b≠0斜率存在且不为0,不过原点的直线2.“截距”与“距离”的关系.[提示]截距是直线与y轴(或x轴)交点的纵坐标(横坐标),它不是距离,是有向线段的数量,可正、可负,可为0.距离不能为负值.3.求直线在坐标轴上截距的方法.[提示]令x=0,所得y值是直线在y轴上的截距;令y=0,所得x值是直线在x轴上的截距.【例3】如图,已知正方形ABCD的边长是4,它的中心在原点,对角线在坐标轴上,则正方形边AB,BC所在的直线方程分别为________________.对称轴所在直线的方程为________.思路探究:根据已知条件,灵活选择适当形式求直线方程.x+y-22=0,x-y+22=0 y=±x,y=0,x=0.[如题图,由正方形ABCD的边长为4知A(22,0),B(0,22),C(-22,0),∠AOM=45°,∠AOP=135°.由截距式方程,得直线AB方程为x22+y22=1,即x+y-22=0,直线BC方程为x-22+y22=1,即x-y+22=0.由点斜式方程得,直线MN方程为y=x.直线PQ方程为y=-x.由A,C在x轴上得直线AC方程为y=0.由B,D在y轴上,得直线BD方程为x=0.]直线方程的选择技巧(1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率.(2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距.(3)若已知两点坐标,一般选用直线的两点式方程,若两点是与坐标轴的交点,就用截距式方程.(4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决.3.三角形的顶点是A(-4,0),B(3,-3),C(0,3),求这个三角形三边所在的直线的方程.[解]∵直线AB过点A(-4,0),B(3,-3)两点,由两点式方程得y -0-3-0=x -(-4)3-(-4),整理得3x +7y +12=0, ∴直线AB 的方程为3x +7y +12=0.∵直线AC 过点A (-4,0)和C (0,3)两点,由截距式方程得x -4+y 3=1,整理得3x -4y +12=0. ∴直线AC 的方程为3x -4y +12=0.∵直线BC 过点B (3,-3)和C (0,3)两点,由两点式得y -(-3)3-(-3)=x -30-3,整理得2x +y -3=0. ∴直线BC 的方程为2x +y -3=0.1.本节课的重点是了解直线方程的两点式的推导过程,会利 用两点式求直线的方程,掌握直线方程的截距式,并会应用.难点是直线方程两点式的推导.2.本节课要重点掌握的规律方法(1)求直线的两点式方程的策略.(2)直线的截距式方程应用的注意点.(3)应用直线截距式方程求面积问题.3.本节课的易错点是在截距相等时求直线方程易漏掉直线过原点的情况.1.过两点(-2,1)和(1,4)的直线方程为( )A .y =-x +3B .y =x -3C .y =x +3D .y =-x -3 C [代入两点式得直线方程y -14-1=x +21+2,整理得y =x +3.] 2.经过P (4,0),Q (0,-3)两点的直线方程是________.x 4-y 3=1 [因为由两点坐标知直线在x 轴,y 轴上截距分别为4,-3,所以直线方程为x 4+y-3=1.] 3.直线x a 2-y b 2=1在y 轴上的截距是________. [答案] -b 24.直线l 经过点A (2,1)和点B (a ,2),求直线l 的方程.[解] ①当a =2时,直线的斜率不存在,直线上每点的横坐标都为2,所以直线方程为x =2; ②当a ≠2时,由y -21-2=x -a 2-a,得x +(2-a )y +a -4=0. 综上,当a =2时,所求直线方程为x =2;当a ≠2时,所求直线方程为x +(2-a )y +a -4=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学(必修)模块2“平面解析几何初步”教材分析
大丰市教育局教研室陈克毅
一.新旧比较
1.旧《大纲》与新《课程标准》的比较;
2.课时安排上的差异
四.教材分析和教学建议
1.本章的引言部分的教学十分重要,首先拉格朗日的一段话是本章的精髓,既点明了本章的知识特点,又阐明了本章要用到的数学思想方法:——数形结合。
2.当学习了拉格朗日的一段话后,可先复习初中阶段所学过的函数:一次函数、二次函数和反比例函数,将函数转化为方程,从而说明曲线与方程的关系,再提出本章的学习任务。
3.2.1的教学还可以围绕复习旧知来进行,请学生考虑在平面直角坐标系内,已知两点可以作一条直线,那么,已知一点还须加上什么条件才能作出相应直线呢?解决此问题后,再复习初中阶段“坡度”的有关知识。
4.在2.1中,“增量”是一个既新又难以理解的概念,在教学中不能一带而过,本节教材中的另一个难点是斜率与倾斜角的关系,应让学生加以深刻理解。
有关第72页的电子表格,其主要目的还是让学生理解斜率与倾斜角的关系、钝角的正切以及“正切函数”的单调性和90°的正切值不存在。
5.本节只有两个例题,例1是已知两点求经过这两点的直线的斜率的题目,比较简单,旨在巩固理解直线斜率的概念。
例2可重点讲解,方法一可按书上的方法,方法二可按本节练习的第3小题的方法(两点确定一条直线)。
还可以再补充一道例题,以解决本节练习的第4、5两小题。
6.在2.1.2中,介绍了直线的斜裁式方程后,可设问“任一条直线都有斜裁式方程吗?”以进一步理解直线的斜率和倾斜角的关系。
7.第75页的“思考”中,务必引导学生进行分析讨论,方便解决一些问题,如课本第80页“思考·运用”第8题。
8.在2.1.2结束时,可提出问题:“二元一次方程Ax+By+C=0(A2+B2≠0)表示一条直线,每一条直线都有相应的二元一次方程吗?”
9.对于2.1.3的教学,可再一次请学生完成第75页的“思考”中的第二问,然后让学生归纳出两直线平行的条件,或者用初中阶段两直线平行的性质(同位角相等),从而得到倾斜角相等、斜率相等的结论。
并请学生特别注意蓝色框中括号部分(k1、k2均存在)
10.课本第81页例1是用代数方法研究几何问题的例子,务必要认真讲解,通过回忆梯形的定义,然后讨论证明的思路。
11.由于学生还没有学习三角函数,所以不能用tanα×tan(90°-α)=1的结论来推导,故只能用相似三角形来解决。
但是出现的图形建议用下图:更能让学生联想起初中阶段解直角三角形的知识。
12.无论是两直线平行还是垂直的条件,都必须是斜率存在的情况下才能用相应的结论,这一点必须向学生讲清楚。
另外,应注重第88页“探究·拓展”的讲解,既是应用分类讨论思想方法的具体应用,同时又是这一部分结论性的小结并在解题中应用。
13.本节的难点:一是两条直线垂直的条件;二是第83页的例5。
例5的难点主要有:(1)实际应用问题,学生不易理解题意;(2)由于是实际应用问题,就有一个由实际问题抽象为数学模型的过程,因此要建立平面直角坐标系。
(3)由于灯柱的高度h是未知数,故直线CA的方程中含有待定的系数h,要求稍高。
本题也可以用相似三角形来做参考图形如下:
由Rt △EOB ∽Rt △CAB ,可得
5.225
.1133
2++=h h BA BO BC BE =,即,即可求得h 的值。
14.有了直线的方程,对直线之间位置关系的研究就可以转化为对它们相应的方程组的解的研究,在
教学中应引导学生领会这一要点,从而领会解析法的本质。
15.在第85页的例2的基础上,对于学生基础较好的学生,可以提出用直线系方程解决的方法。
即将第86页的“思考”提到这里讲。
16.第86页例2中的第2 问以及第87页练习第4题,虽然数学模型已经建立,但是由于学生缺乏感性认识,难以理解,应注意疏通。
17.对于2.1.5的教学。
可先复习平行四边形的判定方法,让学生先运用所学的知识进行判定,然后再用“对边分别相等”的方法进行判定,指出以后学习了中点坐标公式(第90页)后还可以有更简洁的判定方法。
18.作为第91页例2的扩展,可介绍三角形重心坐标公式。
介绍时可就在本题中求△ABC 的重心坐标,然后进行观察、归纳小结,得出公式,等以后讲线段的定比分点公式时再进行严格的证明。
19.第92页例3属于运用代数方法证明几何问题的例子,注意向学生讲清楚代数法证明几何问题的步骤、如何建立“适当”的坐标系才能使过程更简洁。
20.对于2.1.6的教学,应首先引导学生讨论“求点D 到直线AB 的距离”的方法。
学生最容易想到的是课本上的方法1,方法2是利用初中阶段“直角三角形中成比例的线段”来求得的,关键是如何转化。
事实上,还有第三种方法(函数法):即:方程――函数y=f(x)――求函数2020))(()(y x f x x d -+-=的最小值。
这样正好与本章开始时所讲的函数方程思想相呼应。
这也是第94页“思考”中所提问题的答案。
21.第95页例2讲好后,可变题“求到直线x+3y-4=0的距离等于
20
10
的直线方程”,以疏通习题。
22.教材中将这里安排2课时,可根据实际情况再安排1节习题课。
23.2.2.1节的开始部分是按照求轨迹方程的标准步骤进行的,因此,一定要学生仔细领会各个步骤的含义,给学生指导。
例2是实际应用问题,也是解决第103页“探究·拓展”第11题的样本题。
24.在讲授圆的方程时,可简单复习一下初中阶段有关圆的几何知识。
包括点和圆、直线和圆、圆和圆的位置关系及其判定(代数的和几何的)。
25.在2.3.2中,大多数内容总是以类比的方式出现的,而且涉及的问题的面较广,教学时应该要有一定的耐心。
以上是本人的一孔之见,仅供参考。
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待你的好评与关注!)。