超声波模块系统设计
基于STM32单片机的高精度超声波测距系统的设计
基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。
STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。
二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。
同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。
三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。
我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。
在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。
这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。
我们还考虑到了系统的可扩展性。
通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。
我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。
本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。
31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。
超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。
STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。
基于单片机控制的超声波测距系统的设计
基于单片机控制的超声波测距系统的设计一、概述。
超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。
本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。
其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。
二、硬件设计。
1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。
2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。
3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。
4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。
5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。
三、软件设计。
1.控制模块:编写程序实现超声波信号的发射与接收。
其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。
超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。
(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。
(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。
(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。
2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。
具体步骤如下:(1)等待串口接收数据。
(2)当接收到数据时,将数据转换成浮点数格式。
(3)根据测量结果控制LED灯的亮灭。
以上就是基于单片机控制的超声波测距系统的设计。
该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。
超声波测距系统的设计
超声波测距系统的设计引言:一、硬件设计:1.选择传感器:超声波传感器是测距系统的核心部件,通常采用脉冲法进行测量。
在选择传感器时,应考虑工作频率、测量范围、精度和稳定性等参数,并根据实际需求进行选择。
2.驱动电路设计:超声波传感器需要高频信号进行激励,设计驱动电路时需要根据传感器的工作要求来设计合适的电路,保证信号稳定且能够满足传感器的工作需求。
3.接收电路设计:超声波传感器产生的脉冲回波需要经过接收电路进行信号放大和滤波处理,设计接收电路时需要考虑信号放大的增益、滤波器的截止频率以及抗干扰能力等因素。
4.控制板设计:控制板是超声波测距系统中的核心控制器,负责控制测距过程、数据处理以及通信等功能。
在设计控制板时,应根据系统的要求选择合适的微控制器或单片机,并设计合理的电路布局和电源电路。
二、软件编程:1.驱动程序开发:根据传感器的规格书和数据手册,编写相应的驱动程序,实现对超声波传感器的激励和接收。
2.距离计算算法开发:通过测量超声波的往返时间来计算距离,根据声速和时间的关系进行距离计算,并根据实际情况对计算结果进行修正。
3.数据处理和显示:根据实际需求,对测量得到的距离进行处理,并将结果显示在合适的显示设备上,如LCD屏幕或计算机等。
4.数据通信:如果需要将测量结果传输至其他设备或系统,则需要编写相应的数据通信程序,实现数据的传输和接收。
三、系统测试与优化:1.测试传感器性能:测试测距系统的稳定性、精度和灵敏度等性能指标,根据测试结果对系统参数进行优化和调整。
2.系统校准:超声波测距系统可能受到环境温度、湿度和声速等因素的影响,需要进行校准以提高测量精度。
3.系统集成与实际应用:将超声波测距系统与实际应用场景进行集成,进行实际测试和验证。
总结:超声波测距系统的设计包括硬件设计和软件编程两个方面,其中硬件设计主要包括传感器选择、驱动电路设计和接收电路设计等;软件编程主要包括驱动程序开发、距离计算算法开发、数据处理和显示以及数据通信等。
毕业设计基于51单片机的超声波测距模块设计
西南科技大学毕业设计(论文)题目名称:基于51单片机的超声波测距模块设计年级:2003级■本科□专科学生学号:20035095学生姓名:时余春指导教师:何宏森胡天链学生单位:信息工程学院技术职称:讲师学生专业:生物医学工程教师单位:信息工程学院西南科技大学教务处制基于51单片机的超声波测距模块设计摘要:本文介绍了一种基于单片机的脉冲反射式超声波测距模块。
该模块以空气中超声波的传播速度为确定条件,利用反射超声波测量待测距离。
论文概述了超声检测的发展及基本原理,介绍超声波传感器的原理及特性。
对于测距系统的一些主要参数进行了讨论。
并且在介绍超声测距系统功能的基础上,提出了系统的总体构成。
针对测距系统发射、接收、检测、显示部分的总体设计方案进行了论证。
进一步介绍了单片机AT89C51在系统中的应用,分析了系统各部分的硬件及软件实现。
最后利用测距系统进行验证。
实验表明,各主要波形及技术指标均达到设计要求。
该系统对室内有限范围的距离测量具有较高的精度和可靠性,最后文中分析了误差产生的原因及如何对系统进行完善。
关键词:51单片机;超声波;测距Design of Ultrasonic Distance Measurement Based on AT89C51 MCUAbstract: The thesis introduces a kind of single-pulse-refection ultrasonic distance meter system module in detail based on Microcontroller. The system could measure certain distance with the reflected wave on condition in which the speed of transmitting wave is fixed. This paper summarizes the development and foundational principle of ultrasonic detections. Then it presents the theory and characters of ultrasonic sensor. At the same time, it discusses a number of main technical parameters. Moreover, it proposes the whole structure of the system by introducing the function of ultrasonic distance meter. And then the transmission receiver, detection, display scheme of this distance meter system is demonstrated. Specially, after the application of AT89C51 microcontroller, it analyzes the hardware and soft ware realization of each part in this system. At last the result and error analysis of the experiments is presented. It is proved by experiments that the design of the system is provided with high accuracy and reliability. In the end, the further measures of modification are presented.Keywords: AT89C51 MCU, ultrasonic, distance measurer目录第1章绪论 (1)1.1课题背景 (1)1.1.1 机器人感知系统研究现况 (1)1.1.2 传感器技术概况 (1)1.2课题目的及意义 (2)1.3课题设计研究范围及成果 (2)第2章超声波传感器模块测距方案分析 (3)2.1超声波与超声波的应用 (3)2.2超声波传感器 (4)2.2.1 超声波传感器的原理及结构 (4)2.2.2 超声波传感器的分类 (6)2.2.3 超声波发射器 (7)2.2.4 超声波接收器 (8)2.3系统主要参数考虑 (10)2.3.1 传感器的指向角θ (10)2.3.2 声速 (10)2.3.3 测量盲区 (10)2.4超声波传感器模块设计原理 (11)2.5典型的超声波传感器测距模块 (11)第3章超声波传感器测距模块的硬件设计 (13)3.1超声波传感器测距模块的总体 (13)3.2超声波传感器测距模块的设计难点及解决方法 (14)3.2.1 提高测距精度的依据 (15)3.2.2 系统设计干扰问题及其解决方法 (15)3.3硬件电路设计说明 (15)3.3.1 发射部分 (16)3.3.2 接收部分 (16)3.3.3 测温部分 (16)3.3.4 超声波测距模块 (16)3.4主要器件选择及其简介 (16)3.4.1 LM358运放简介 (16)3.4.2 温度传感器DS18B20 (17)3.4.3 AT89C51单片机简介 (19)3.5硬件电路的具体设计 (20)3.5.1 电源的设计 (20)3.5.2 超声波发生电路 (21)3.5.3 超声波回波接收检测 (22)3.5.4 温度补偿电路 (23)3.5.5 LED动态扫描显示电路 (23)3.6系统抗干扰措施 (24)第4章系统软件结构设计 (26)4.1主程序结构 (26)4.2中断程序 (27)4.3回波接收程序 (29)第5章系统实验结果分析 (30)结论与展望 (32)致谢 (33)参考文献 (34)附录1:超声波测距模块设计原理图 (35)附录2:超声波测距模块设计PCB图 (36)附录3:超声波测距模块设计PCB3D效果图 (37)附录4:DS18B20温度采集补偿程序 (38)第1章绪论1.1 课题背景本设计依托电子技术、嵌入式处理计算技术、机器人技术、传感器技术,并根据当前科学技术发展潮流,引出对用于机器人中的超声波传感器测距模块的研究与设计。
基于DYP-ME007超声波模块的液位测量系统设计
案
加 熟
2 0 1 3年 第 4 2卷 第 6期
V O1 . 42 N O. 6 20l 3
I NDUS TRI AL HEATI NG
DO I :1 0 . 3 9 6 9  ̄ .i s s n .1 0 0 2 — 1 6 3 9 . 2 0 1 3 . 0 6 . 0 0 6
基于 D Y P — ME 0 0 7 超声波模块的液位测量系统设计
兰 羽
( 陕西工业职业技术学院 电气学院,陕西 成 阳 7 1 2 0 0 0 ) 摘要 :为了在有毒 、易爆 、高温 、高压 等环境 中快速准确检测液体液位,系统以 S T C 8 9 C5 1 单片机为核心,采用超声波测距模块 D Y P — ME 0 0 7 ,利用超声波测距原理 ,由 S T C 8 9 C 5 1 单片机控制 D YP — ME 0 0 7模块发射超声波,遇到被 测液面反射后模块接收 回波, 通 过单片机 记录超声 波经 过路径所 用时间,计算 出超声波走过距离 ,从而得 到液位 的高度 ,本 文完成 了系统 的硬件 电路和软件 编 程 的设计 。经实验表明:系统 测量 范围在 2~ 4 0 0 e m,测量精 度 1 c m,符合实 际需要 。 关键词 :单片机 S T C 8 9 C 5 1 ;超声波测距 ;D YP - ME 0 0 7 模块 ;液位测量 中图分类号 :T P 2 1 2 1 文献标志码 :A 文章编号 :1 0 0 2 . 1 6 3 9 ( 2 0 1 3 ) 0 6 — 0 0 1 8 - 0 3
De s i g n o f Ul t r a s o n i c Li q u i d Le v e l Me a s u r i n g SMo d u l e
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文
《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。
随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。
超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。
本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。
二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。
系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。
通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。
三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。
STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。
2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。
通过超声波的发送与接收,实现对目标的距离计算。
3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。
电源模块需考虑到功耗问题,以实现系统的长时间运行。
4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。
5. 显示模块:实时显示测距结果,方便用户观察与操作。
四、软件设计1. 主程序:负责整个系统的控制与数据处理。
主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。
2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。
通过计算超声波的发送与接收时间差,计算出目标物体的距离。
3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。
4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。
五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。
基于51单片机超声波测距报警系统课程设计
基于51单片机超声波测距报警系统课程设计一、引言超声波测距技术是一种常见的非接触式测距技术,具有测距范围广、精度高等优点。
在日常生活中,超声波测距技术被广泛应用于车辆倒车雷达、智能家居中的人体感应等领域。
本文将介绍基于51单片机的超声波测距报警系统的课程设计。
二、设计思路本课程设计主要分为硬件设计和软件设计两部分。
硬件部分主要包括超声波模块、LCD显示屏、蜂鸣器等模块的连接和电路设计;软件部分主要包括51单片机程序设计及LCD显示程序编写。
三、硬件设计1. 超声波模块连接超声波模块是实现测距功能的核心部件。
在本课程设计中,我们采用HC-SR04型号的超声波模块。
该模块需要连接到51单片机上,具体连接方式如下:- 将VCC引脚连接到51单片机上的5V电源;- 将GND引脚连接到51单片机上的GND;- 将Trig引脚连接到P2.0口;- 将Echo引脚连接到P2.1口。
2. LCD显示屏连接LCD显示屏用于显示测距结果和报警信息。
在本课程设计中,我们采用1602型号的LCD显示屏。
该模块需要连接到51单片机上,具体连接方式如下:- 将VSS引脚连接到51单片机上的GND;- 将VDD引脚连接到51单片机上的5V电源;- 将VO引脚连接到一个10K电位器,再将电位器两端分别接到GND 和5V电源;- 将RS引脚连接到P1.0口;- 将RW引脚连接到P1.1口;- 将EN引脚连接到P1.2口;- 将D4-D7引脚分别连接到P0口的高四位。
3. 蜂鸣器连接蜂鸣器用于报警。
在本课程设计中,我们采用被动式蜂鸣器。
该模块需要连接到51单片机上,具体连接方式如下:- 将正极引脚(一般为长针)连接到51单片机上的P3.7口;- 将负极引脚(一般为短针)连接到51单片机上的GND。
四、软件设计1. 51单片机程序设计在本课程设计中,我们采用Keil C51作为编程工具,使用C语言编写程序。
主要程序流程如下:- 定义超声波模块的Trig和Echo引脚;- 定义LCD显示屏的RS、RW、EN和D4-D7引脚;- 定义蜂鸣器的引脚;- 定义变量存储测距结果和报警状态;- 初始化LCD显示屏、超声波模块等模块;- 循环执行以下操作:- 发送超声波信号并计算回波时间,从而得到距离值;- 根据距离值判断是否需要报警,并控制蜂鸣器发出报警声音;- 将测距结果和报警状态显示在LCD显示屏上。
教学项目10超声波测距系统设计
教学项目10超声波测距系统设计超声波测距系统是一种基于超声波传感技术,通过发送超声波脉冲并接收反射回来的超声波脉冲,从而测量目标物体与传感器之间的距离。
本教学项目旨在教授如何设计和实现一个简单的超声波测距系统。
以下是该项目的详细步骤:1.材料准备:- Arduino Uno控制板-超声波传感器模块(如HC-SR04)-面包板-杜邦线2.连接电路:- 将Arduino Uno控制板插入面包板,并让其稳固地固定在面包板上。
- 使用杜邦线将超声波传感器模块连接到Arduino Uno控制板上,确保正确连接,VCC与5V引脚相连,Trig与9引脚相连,Echo与10引脚相连,GND与GND引脚相连。
3.编写代码:- 打开Arduino开发环境,创建一个新的空白文件。
-编写代码以初始化引脚,并定义距离变量。
-编写一个函数来测量距离,该函数将使用超声波发送脉冲并接收回来的脉冲,并计算出目标物体与传感器之间的距离。
-在主循环中调用测量函数,并将测量结果打印到串行监视器中。
以下是一个示例代码:```c++const int trigPin = 9;const int echoPin = 10;void setupinMode(trigPin, OUTPUT);pinMode(echoPin, INPUT);Serial.begin(9600);void loolong duration, distance;digitalWrite(trigPin, LOW);delayMicroseconds(2);digitalWrite(trigPin, HIGH);delayMicroseconds(10);digitalWrite(trigPin, LOW);duration = pulseIn(echoPin, HIGH);distance = duration * 0.034 / 2;Serial.print("Distance: ");Serial.print(distance);Serial.println(" cm");delay(1000);```4.上传代码:- 将Arduino Uno控制板通过USB连接到电脑。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文
《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术被广泛应用于各个领域,如机器人导航、环境监测、智能家居等。
本文将介绍一种基于STM32单片机的高精度超声波测距系统的设计。
该系统采用先进的超声波测距原理,结合STM32单片机的强大处理能力,实现了高精度、快速响应的测距功能。
二、系统概述本系统主要由超声波发射模块、接收模块、STM32单片机以及相关电路组成。
通过STM32单片机控制超声波发射模块发射超声波,然后接收模块接收反射回来的超声波信号,根据超声波的传播时间和速度计算距离。
系统具有高精度、抗干扰能力强、测量范围广等特点。
三、硬件设计1. STM32单片机本系统采用STM32系列单片机作为主控制器,具有高性能、低功耗、丰富的外设接口等特点。
通过编程控制单片机的GPIO 口,实现超声波发射和接收的控制。
2. 超声波发射模块超声波发射模块采用40kHz的超声波传感器,具有体积小、功耗低、测距范围广等优点。
通过单片机控制发射模块的触发引脚,产生触发信号,使传感器发射超声波。
3. 超声波接收模块超声波接收模块同样采用40kHz的超声波传感器。
当传感器接收到反射回来的超声波信号时,会产生一个回响信号,该信号被接收模块的回响引脚捕获并传递给单片机。
4. 相关电路相关电路包括电源电路、滤波电路、电平转换电路等。
电源电路为系统提供稳定的电源;滤波电路用于去除干扰信号;电平转换电路用于匹配单片机与传感器之间的电平标准。
四、软件设计1. 主程序设计主程序采用C语言编写,通过STM32单片机的标准库函数实现各功能模块的初始化、参数设置以及控制逻辑。
主程序首先进行系统初始化,然后进入循环等待状态,等待触发信号的到来。
当接收到触发信号时,开始测距流程。
2. 测距流程设计测距流程主要包括发射超声波、等待回响信号、计算距离等步骤。
当接收到触发信号时,单片机控制超声波发射模块发射超声波;然后等待接收模块的回响信号。
基于52单片机的超声波测距系统设计
基于52单片机的超声波测距系统设计概述:本文介绍了一种基于52单片机的超声波测距系统设计。
该系统具有高精度、快速响应和稳定性等优点,可广泛应用于交通、测量、安防、智能家居等领域。
第一章介绍了测距系统的背景和意义,第二章介绍了超声波测距原理及其技术优势,第三章介绍了系统的硬件设计,包括传感器电路、电源电路、显示设备等,第四章介绍了系统的软件设计,包括程序设计、数据处理等,第五章进行了实验验证,并对系统进行了性能测试和分析,最后是总结与展望。
关键词:基于52单片机;超声波测距;硬件设计;软件设计;实验验证。
第一章前言随着科技的不断发展,人们对于测距技术的要求也越来越高。
测距系统的研究涵盖了物理学、电子学、计算机科学等多个学科领域,其应用场景也非常广泛,如交通、测量、安防、智能家居等。
超声波作为一种常用的测距技术,由于其高精度、快速响应和稳定性等优点,受到了广泛的关注和应用。
本文介绍了一种基于52单片机的超声波测距系统设计。
该系统采用了超声波传感器进行测量,实现了对目标物体的距离测量,并将测得的数据通过显示设备进行显示。
系统具有结构简单、功能齐全、测量精度高、响应速度快等优点,可广泛应用于各种场景。
第二章超声波测距原理及其技术优势超声波是一种频率高于人类听觉范围的声波。
正是因为其频率高,所以超声波传播时能够克服空气等介质的阻力,从而实现远距离传播,并且能够穿透不同密度、材质的物质层,不会被大气、水等介质吸收,因而得名。
在超声波测距中,通过发射一定频率的超声波,待其在目标物体反弹后返回并被接收探头接收后,根据声波传播速度和时间差计算出目标物体与传感器之间的距离,从而实现测距。
超声波测距技术具有以下优势:(1)高精度:超声波传达速度稳定,因此测量精度高;(2)非接触性:非接触式测量不会受到测量背景的干扰,通过超声波测距,物体距离可以在任何介质中进行测量;(3)快速响应:超声波传播速度很快,实现的响应速度比其他测距方法快;(4)广泛适用性:可以在空气、液体、固体等任何介质中进行测量,可以适用于多种领域,如测量、交通、安全等。
基于STM32单片机的高精度超声波测距系统的设计
基于STM32单片机的高精度超声波测距系统的设计基于STM32单片机的高精度超声波测距系统的设计1. 引言超声波测距技术是一种常用的非接触性测量技术,具有测量范围广、分辨率高等优点,广泛应用于工业自动化、无人驾驶、智能家居等领域。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足快速、准确、可靠的测距需求。
2. 系统设计2.1 硬件设计超声波测距系统主要由超声波发射器、接收器和信号处理模块组成。
其中,超声波发射器用于发射超声波信号,接收器用于接收反射回来的超声波信号,信号处理模块用于处理接收到的信号并计算出测距结果。
2.2 超声波发射器超声波发射器采用压电陶瓷传感器作为能量转换元件,通过驱动电路将驱动信号转化为超声波信号并发射出去。
为了实现高精度的测距,超声波发射器需要具备较高的频率响应和较窄的方向性。
2.3 超声波接收器超声波接收器采用同样的压电陶瓷传感器作为能量转换元件,利用其能够将接收到的超声波信号转化为电信号。
为了实现高灵敏度的接收,超声波接收器需要具备较高的响应灵敏度和较低的噪声。
2.4 信号处理模块信号处理模块采用STM32单片机作为核心处理器,通过多通道模数转换器(ADC)将接收到的电信号转化为数字信号。
然后,通过数字信号处理算法对信号进行滤波、增益控制和时域分析等操作。
最后,利用测量原理计算出测距结果,并将结果显示在液晶显示器上。
3. 系统工作原理3.1 发射信号超声波发射器以一定的频率发射超声波信号,信号经过传播并与目标物体相互作用后,被目标物体反射回来。
3.2 接收信号超声波接收器接收到反射回来的超声波信号,并将其转化为电信号。
信号经过放大、滤波等处理后,送入信号处理模块。
3.3 信号处理信号处理模块使用STM32单片机对接收到的信号进行处理。
首先,通过ADC转化为数字信号。
然后,进行信号滤波,去除噪声和回波干扰。
接着,采用增益控制技术,对信号进行放大或衰减,以适应不同距离的测量需求。
基于单片机的超声波测距系统设计
基于单片机的超声波测距系统设计一、本文概述随着科技的飞速发展,超声波测距技术以其非接触、高精度、实时性强等优点,在众多领域如机器人导航、自动驾驶、工业控制、安防监控等中得到了广泛应用。
单片机作为一种集成度高、控制灵活、成本较低的微控制器,是实现超声波测距系统的理想选择。
本文旨在探讨基于单片机的超声波测距系统的设计原理、硬件构成、软件编程及实际应用,以期为相关领域的科研人员和技术人员提供参考。
本文将首先介绍超声波测距的基本原理和关键技术,包括超声波的传播特性、测量原理及误差分析。
接着,详细阐述基于单片机的超声波测距系统的硬件设计,包括单片机的选型、超声波收发模块的选择与连接、信号处理电路的设计等。
在此基础上,本文将介绍系统的软件设计,包括超声波发射与接收的时序控制、距离数据的处理与显示等。
还将讨论系统的低功耗设计、抗干扰措施以及在实际应用中的优化策略。
本文将通过具体实例,展示基于单片机的超声波测距系统在机器人定位、障碍物检测等场景中的应用,以验证系统的可行性和实用性。
本文期望能为相关领域的研究提供有益的参考,推动超声波测距技术的进一步发展和应用。
二、超声波测距原理超声波测距系统主要基于超声波在空气中的传播速度以及反射原理进行设计。
超声波是一种频率高于20kHz的声波,其传播速度在标准大气条件下约为343米/秒。
在超声波测距系统中,超声波发射器向目标物体发射超声波,当超声波遇到目标物体后,会发生反射,反射的超声波被超声波接收器接收。
测距的原理在于测量超声波从发射到接收的时间差。
设超声波发射器发射超声波的时间为t1,接收器接收到反射波的时间为t2,则超声波从发射到接收所经历的时间为Δt = t2 - t1。
由于超声波在空气中的传播速度是已知的,所以可以通过测量时间差Δt来计算目标物体与测距系统之间的距离D。
距离D的计算公式为:D = V * Δt / 2,其中V为超声波在空气中的传播速度。
在实际应用中,为了确保测量的准确性,通常会采用一些技术手段来减少误差。
基于单片机的超声波测距系统设计
基于单片机的超声波测距系统设计超声波测距系统在物联网和机器人等领域有着广泛的应用。
超声波作为一种非接触的测量方式,可以有效地避免物体表面的污染,适用于各种环境下的距离测量。
本文将介绍基于单片机的超声波测距系统的设计方法。
超声波测距的原理超声波测距是基于声波传播时间的测量。
超声波发射器发出超声波,经物体反射后被接收器接收。
根据声波的传播速度和接收时间,可以计算出超声波的传播距离。
常用的超声波频率为40kHz左右,其传播速度约为340m/s。
单片机与超声波测距在超声波测距系统中,单片机作为主控制器,负责控制整个系统的运行。
它接收来自超声波发射器的信号,触发超声波的发送,并计时等待超声波的返回。
当超声波被接收器接收时,单片机通过计算时间差来计算距离。
距离计算距离计算公式为:距离 =声速×时间差 / 2。
在系统中,声速是已知量,因此关键是准确测量时间差。
单片机通过计时器来精确测量从超声波发射到接收的时间,从而计算出距离。
误差分析超声波测距系统可能出现的误差主要有以下几种:1、计时器计时误差:这是时间测量误差的主要来源。
为提高计时精度,可以使用高精度的计时器或者采取软件滤波算法来降低误差。
2、声速误差:由于环境温度、湿度等因素的影响,声速可能会发生变化,从而影响测量结果。
可以通过引入温度传感器来对声速进行补偿,以减小误差。
3、反射面误差:由于被测物体的表面形状和质地等原因,超声波可能无法完全反射回来,导致测量结果偏小。
为减少误差,可以在发射端和接收端加装角度调节装置,使超声波尽量垂直于被测物体表面。
应用实例以下是一个基于单片机的超声波测距系统的设计实例:1、硬件选择:选用STM32F103C8T6单片机作为主控制器,并选用HC-SR04超声波传感器作为超声波发射和接收器。
该传感器具有外接和控制电路简单、性能稳定、可靠性高等优点。
2、硬件连接:将超声波传感器的Trig和Echo引脚分别连接到单片机的GPIO口,以控制超声波的发射和接收。
超声波清洗机控制系统设计总结报告
超声波清洗机控制系统设计总结报告超声波清洗机控制系统设计总结报告一、设计目的超声波清洗机控制系统设计的目的是实现对清洗机的自动控制,通过控制系统能够灵活地调整清洗机的工作模式、清洗时间、清洗液温度等参数,提高清洗效果和效率。
二、设计方案1. 控制系统硬件设计控制系统硬件主要包括一台嵌入式控制器、传感器模块、执行器模块和人机界面模块。
嵌入式控制器负责处理控制信号,传感器模块用于实时监测清洗机参数,执行器模块用于控制清洗机运行,人机界面模块用于人机交互操作。
2. 控制系统软件设计控制系统软件主要包括上位机软件和嵌入式控制器软件。
上位机软件负责与嵌入式控制器进行通信,实现参数设置、曲线显示、数据存储等功能,嵌入式控制器软件负责实时控制清洗机的运行,根据传感器模块的数据进行逻辑判断和控制执行器模块。
三、设计过程1. 硬件设计过程根据清洗机的工作要求,选取合适的嵌入式控制器,并根据清洗机的参数设计传感器模块和执行器模块。
选择合适的人机界面模块进行人机交互操作。
2. 软件设计过程根据清洗机的工作要求,设计上位机软件,实现与嵌入式控制器的通信,并实现参数设置、曲线显示、数据存储等功能。
设计嵌入式控制器软件,实现控制算法和与传感器模块、执行器模块的通信。
三、设计结果1. 硬件设计结果选取了一款高性能的嵌入式控制器,并选取了合适的传感器模块和执行器模块。
人机界面模块选择了一款易于操作的触摸屏。
2. 软件设计结果上位机软件实现了参数设置、曲线显示、数据存储等功能,并与嵌入式控制器之间进行了成功的通信。
嵌入式控制器软件实现了控制算法和与传感器模块、执行器模块的成功通信。
四、设计总结通过对超声波清洗机控制系统的设计,成功地实现了对清洗机的自动控制,并提高了清洗效果和效率。
在设计过程中,我们积极探索并选取了合适的硬件和软件方案,通过不懈努力,取得了令人满意的设计结果。
同时,在设计过程中也发现了一些问题和不足,对这些问题和不足进行总结和分析,以便在后续的设计中能够得到更好的改进和提高。
基于51单片机的超声波测距系统设计
基于51单片机的超声波测距系统设计超声波测距系统在工业自动化、智能机器人等领域有着广泛的应用。
本文将介绍一种基于51单片机的超声波测距系统设计,包括硬件设计和软件设计两个方面。
1.硬件设计硬件设计是超声波测距系统设计的基础,下面是一些主要的硬件设计要点。
(1)传感器模块:选择适合的超声波传感器模块作为测距传感器。
传感器模块一般包括一个超声波发射器和一个超声波接收器。
通过发送超声波脉冲,并测量收到的回波时间来计算距离。
(2)51单片机:选择一款适合的51单片机作为主控芯片。
常用的型号有AT89S51、AT89C52等。
51单片机具有丰富的外设资源,且易于编程。
(3)显示模块:可以选择常见的数码管、液晶显示屏等显示模块来显示测距结果。
(4)电源模块:设计稳定、可靠的电源模块,为系统提供电源供电。
2.软件设计软件设计是实现超声波测距系统的关键,下面是一些主要的软件设计要点。
(1)超声波发射与接收:通过51单片机的IO口驱动超声波传感器模块进行发射与接收。
超声波发射一般只需要发送一个脉冲,而超声波接收则需要采集到回波信号,可以使用定时器或外部中断来实现信号的接收。
(2)测距算法:根据超声波发射和接收的时间间隔,可以通过测距算法来计算出距离。
最常用的测距算法是利用声速的速度和回波时间的一半来计算距离。
(3)数据处理与显示:将测得的距离数据进行处理,并使用显示模块将结果显示出来。
可以选择合适的数码管显示驱动方式或液晶显示屏驱动方式。
(4)系统控制:根据实际需求,可以对系统进行控制,如设置报警阈值,当距离超出阈值时发出报警信号。
3.系统功能与扩展超声波测距系统设计完成后,可以加入一些额外的功能与扩展,以提高系统的实用性和性能。
(1)多点测距:可以设计多个传感器模块,实现多点测距功能,适用于复杂的环境。
(2)数据存储与通信:可以将测得的距离数据存储到外部存储器,如EEPROM或SD卡,并通过串口通信或无线通信方式将数据传输到上位机进行进一步处理。
基于单片机的超声波测距系统设计中可能遇到的问题
基于单片机的超声波测距系统设计中可能遇到的问题基于单片机的超声波测距系统设计中可能遇到的问题一、引言超声波测距系统是一种常见的测量技术,它利用超声波的传播速度和回波时间来计算目标物体与传感器之间的距离。
在实际应用中,我们通常会使用单片机来控制超声波传感器和处理测量数据。
然而,在设计这样一个系统时,可能会遇到一些问题。
本文将讨论基于单片机的超声波测距系统设计中可能遇到的问题,并提供相应解决方案。
二、电路设计问题1. 电源稳定性:由于单片机和超声波传感器对电源的要求较高,电源稳定性是一个重要考虑因素。
在设计电路时,应选择合适的稳压器和滤波电容来保证电源稳定。
解决方案:使用线性稳压器或开关稳压器来提供稳定的电源,并添加足够大小的滤波电容以减小噪音。
2. 信号干扰:由于周围环境中可能存在其他无线设备或干扰源,信号干扰是一个常见问题。
干扰信号可能会影响超声波传感器的测量精度。
解决方案:在电路设计中,应采取屏蔽措施,如使用屏蔽电缆或添加滤波器来减小干扰信号的影响。
3. 电路布局:合理的电路布局对于系统性能和稳定性也非常重要。
如果布局不当,可能会导致信号串扰、干扰等问题。
解决方案:在设计电路板时,应遵循良好的布局原则,如尽量减少信号线的长度、保持信号线与功率线的距离、使用地平面和分析地线等。
三、软件设计问题1. 数据处理算法:在超声波测距系统中,单片机需要通过算法来处理传感器返回的数据,并计算出目标物体与传感器之间的距离。
选择合适的算法对于测量精度至关重要。
解决方案:常用的测距算法有时间差测距法和相位差测距法。
根据实际需求选择合适的算法,并进行适当优化。
2. 数据校准:由于硬件元件存在一定误差,需要对数据进行校准以提高测量精度。
同时,在不同环境下可能需要进行动态校准。
解决方案:通过实验和测试,获取传感器的误差数据,并根据误差曲线进行校准。
在不同环境下,可以使用自适应校准算法来提高测量精度。
3. 数据传输与显示:设计一个合适的界面来显示测量结果也是一个重要问题。
基于52单片机的超声波测距系统设计
基于52单片机的超声波测距系统设计超声波测距技术是一种常用的非接触式测距方法,被广泛应用于工业控制、智能家居、智能车载等领域。
是其中一种典型应用,在该系统中,52单片机作为控制核心,通过超声波模块实现距离测量。
本文将深入探讨该系统的设计原理、硬件及软件实现细节,以及应用场景和未来发展方向。
首先,我们将介绍超声波测量原理。
超声波是指频率高于人类听觉范围(20kHz)的声波,其传播速度约为343m/s。
超声波测距系统通常由发射器和接收器两部分组成,发射器产生超声波信号,经过目标反射回来后被接收器接收,通过测量信号的往返时间来计算距离。
超声波测距系统设计的关键在于精准地控制发射和接收信号的时间,并进行信号处理和距离计算。
在52单片机的超声波测距系统设计中,常用的超声波模块有HC-SR04模块,该模块具有简单易用的特点,能够方便地与52单片机进行数据交互。
硬件方面,系统主要包括52单片机、HC-SR04模块、LCD显示屏、电源模块等,其中52单片机负责控制整个系统的工作流程和信号处理,HC-SR04模块负责发射和接收超声波信号,LCD显示屏用于显示测量结果。
在软件方面,需要编写程序来实现超声波信号的发射和接收,信号处理和距离计算,并将结果显示在LCD屏幕上。
通过合理设计硬件电路和优化软件算法,可以实现较为精准和稳定的距离测量。
为了验证系统的性能和稳定性,我们设计了一系列实验,并进行了测量和分析。
实验结果显示,在一定范围内,系统能够实现精准的距离测量,测量误差较小,响应速度较快。
同时,系统具有较好的抗干扰能力,能够在复杂环境下正常工作,适用于各种应用场景。
通过进一步对系统参数和算法进行优化,系统的性能和稳定性还可以进一步提升。
基于52单片机的超声波测距系统设计在工业控制、智能家居、智能车载等领域有着广泛的应用前景。
在工业控制领域,超声波测距系统可以用于监测和控制生产线上物体的位置和距离,提高生产效率和安全性。
毕业设计论文--基于单片机的超声波测距系统设计
毕业设计(论文)题目:基于单片机的超声波测距系统设计摘要由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
超声波测距系统,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于液位、井深、管道长度的测量等场合。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。
本文介绍了一种基于STC89C52单片机的超声波测距系统,阐述了超声波测距系统的硬件电路部分的构成、软件设计思路及工作原理。
硬件部分采用STC89C52 单片机作为主控单片机,硬件电路主要由发射电路、接收电路、显示电路、报警电路等几部分组成;软件部分由主程序、显示子程序、超声波发射子程序、延迟子程序、计算子程序、报警程序等组成。
该电路具有结构简单、操作方便、精度较高、应用广泛的特点。
关键词:超声波;测距系统;单片机AbstractBecause of the strong point of ultrasonic energy consumption slow, medium of communication in the longer distance, thus frequently used ultrasonic distance measurement, such as the range finder and level measurement and so on can be achieved by ultrasound. Ultrasonic Ranging System, can be used in car reversing, the construction site and the location of some industrial site monitoring, can also be used if the level, depth and length of the pipeline, such as measurement occasions. Use of ultrasonic testing is often more rapid, convenient and simple terms, easy to achieve real-time control, and measurement accuracy can meet the practical requirements of industry.The paper describes an ultrasonic measuring system based on the STC89C52, it described an ultrasonic measuring system hardware circuit structure, working principle and software design methods. Hardware using STC89C52 microcontroller as a master MCU, the hardware circuit part includes main transmitter, receiver circuit, display circuit, warning circuit and so on. The software part includes the main program, display subroutine, ultrasonic transmitter subroutine, delay subroutine, calculation subroutine and alarm program. The system Circuits were simply structure, easy to use, high accuracy and wide application.Key Words:Ultrasonic wave;Ranging System;MCU目录摘要 (I)Abstract (II)第1章绪论............................................................................................................. - 1 -1.1 测量距离的意义.................................................................................................... - 1 -1.2 基于单片机的超声波测距系统.......................................................................... - 2 -1.2.1 单片机概述 ...................................................................................................... - 2 -1.2.2 单片机的发展趋势 ........................................................................................ - 2 -1.2.3 基于单片机的超声波测距系统的优点与缺陷 ........................................ - 3 -1.2.4 超声波测距原理............................................................................................. - 4 -1.3设计内容 .................................................................................................................. - 4 -第2章设计方案..................................................................................................... - 5 -2.1 设计的目的和要求................................................................................................ - 5 -2.1.1 设计的目的 ..................................................................................................... - 5 -2.1.2 设计的要求 ..................................................................................................... - 5 -2.2 设计思路................................................................................................................. - 5 -2.2.1 硬件部分.......................................................................................................... - 5 -2.2.2 软件部分.......................................................................................................... - 6 -2.3 重要功能模块的选取 ........................................................................................... - 6 -2.3.1 单片机的选用 ................................................................................................. - 6 -2.3.2 发射器和接收器............................................................................................. - 8 -第3章硬件电路设计............................................................................................. - 9 -3.1 系统硬件设计总框图分析 .................................................................................. - 9 -3.2 处理器STC89C52................................................................................................. - 9 -3.2.1 单片机STC89C52的特点 ......................................................................... - 10 -3.2.2 STC89C52管脚说明 .................................................................................... - 11 -3.3 单片机最小系统设计 ......................................................................................... - 14 -3.3.1 单片机最小系统........................................................................................... - 14 -3.3.2 本次设计中的单片机最小系统................................................................. - 14 -3.4 超声波模块HC-SR04 ........................................................................................ - 17 -3.5 显示模块LCD1602 ............................................................................................ - 18 -3.6 报警模块............................................................................................................... - 21 -3.7 超声波测距系统的实物图 ................................................................................ - 22 -第4章软件程序设计........................................................................................... - 23 -4.1 概述........................................................................................................................ - 23 -4.2 头文件和全局变量.............................................................................................. - 23 -4.3 主程序 ................................................................................................................... - 24 -4.4 初始化函数........................................................................................................... - 25 -4.5 显示子程序和溢出中断程序 ............................................................................ - 25 -4.6 超声波发射程序、T1中断子程序和报警程序 ............................................ - 26 -4.7 距离计算程序 ....................................................................................................... - 27 -第5章系统的调试............................................................................................... - 28 -5.1 硬件的调试........................................................................................................... - 28 -5.2 软件的调试........................................................................................................... - 29 -结论..................................................................................................................... - 32 -参考文献................................................................................................................. - 33 -附录..................................................................................................................... - 34 -1.源程序 .................................................................................................................... - 34 -2.英文原文 ................................................................................................................ - 41 -3.中文译文 ................................................................................................................ - 53 -致谢..................................................................................................................... - 62 -第1章绪论1.1 测量距离的意义准确而快速地测定任意两个空间点间的距离,对人类活动的许多方面都具有十分重要的意义。
超声波倒车雷达系统设计
摘 要: .......Abstract ....第一章 绪 论 引言 ............... 超声波测距原理以及理论分析 第二章 系统概述 ........................方案选择 ..................方案一 ................ 方案二 ................ 系统设计原理 .............. 系统组成 ..................主控制器 .............. 显示电路 ..............HC-SR04 超声波模块 ...第 3 章 系统硬件设计 ............主控芯片 STC89C51 ........单片机特点 : ......... 内部结构 .............. 引脚图以及部分引脚功能 液晶显示模块 ..................模块简介: ............ 引脚功能说明 : ....... 系统显示模块电路 ...... 超声波测距模块 ............模块简介 .............. 模块工作原理: ........ 模块电气参数 .......... 系统超声波模块电路 .... 报警电路模块 ..............蜂蜜器简介 ............ 系统报警电路模块 ......第四章 系统软件设计 .............主程序设计 ................主程序简介 ............ 程序代码 ..............LCD 显示模块程序设计 ......模块简介 .............. 程序代码 .............. 超声波测距模块程序设计 ... 模块简介 ..................模块代码 ..............目录错误! 未定义书签。
错误! 未定义书签。
错误! 未定义书签。
超声波测距系统的设计
超声波测距系统的设计引言:超声波测距系统是一种常见的距离测量技术,利用超声波在空气中传播时的特性进行测量。
相对于光学传感器,超声波测距系统具有较低的成本、较小的体积和更大的测量范围。
因此,在工业自动化、机器人导航和智能设备等领域具有广阔的应用前景。
本文将介绍超声波测距系统的设计原理、硬件配置和软件实现,以及一些常见的应用案例。
一、设计原理:超声波测距系统的设计基于声音在空气中的传播速度,即声速。
根据超声波经过物体并反射回来所花费的时间,可以计算出物体与传感器之间的距离。
一般来说,超声波传感器由发射器和接收器组成。
发射器发出超声波脉冲,然后接收器接收到反射回来的超声波信号。
通过计算发射和接收的时间差,可以得到物体与传感器的距离。
由于超声波的传播速度与环境条件有关,如温度、湿度等,所以在进行距离计算时需要进行修正。
二、硬件配置:选择合适的超声波传感器是设计中的第一步。
一般来说,超声波传感器的频率越高,测量精度越高,但测量距离也越短。
因此,在选择传感器时需要根据具体应用需求进行权衡。
另外,传感器的外观尺寸和接口类型也需要考虑,以便与其他硬件设备进行连接。
控制电路主要由单片机和时钟模块组成。
单片机负责接收超声波信号,并通过定时器记录接收到信号的时间点。
时钟模块用于计时,以确定超声波传播的时间差。
显示电路可以选择LCD显示屏或数码管等设备。
显示电路的设计取决于测量结果的格式和精度要求。
一般来说,LCD显示屏具有更好的显示效果,但成本较高,而数码管则相对便宜但显示效果较差。
根据具体应用需求选择合适的显示电路。
三、软件实现:距离计算部分根据接收到信号的时间差和声速进行计算。
由于超声波的传播速度与环境条件有关,所以需要根据实际环境和传感器的特性进行修正。
通常可以通过校准来确定修正系数,并将其应用于距离计算公式中。
除了基本的测距功能,超声波测距系统还可以提供其他功能,如障碍物检测、移动物体跟踪等。
这些功能的实现主要依靠信号处理和算法设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波测距系统设计
作者:陈芸来源:转载
减小字体增大字体摘要:超声波作为一种传输信息的媒体,由于其本身的直射性和反射性,以及不易受光照、电磁波等外界因素影响的特性,在探伤、测距、测速等多种领域越来越受到重视。
关键词:超声波测距非接触式 PIC单片机
本系统设计的超声波波测距系统采用PIC16F73作为主控制芯片,首先产生40KHz的方波,驱动超声波发射探头发出超声波。
在发波的同时,开启T1定时器,用来记下收到回波的时间。
接收部分先对接受到的回波信号两级放大,然后整流成一较平稳的信号,再通过一个比较器将模拟信号转化成数字信号作为有无回波的识别。
当单片机接收回波信号时,使用单片机捕捉功能,产生中断,在中断程序中读出T1计数寄存器中的数值即为超声波发射与接收的时间间隔。
测得回波的时间,根据声在空气中的传播特性,通过计算S=v*t/2,即可得到障碍物的距离。
1.1 超声波发波电路
超声波的发波部分,首先由软件产生40KHz的方波,经引脚RC0输出,分两路驱动超声波发射探头,一路经一个4011与非门反向,驱动探头之前分别先各由一个9013NPN的三极管做开关,后由4069反向器来增强驱动能力,使超声波发射探头发出40KHz的超声波。
1.2 超声波接收电路
接收部分先对接受到的回波信号放大,然后将信号整流,最后通过一个比较器将模拟信号转化成数字信号作为有无回波的识别信号。
1.3 放大电路
放大电路有两个LM358构成一个两级放大电路,第一级放大约100倍,第二级放大约10倍。
其中C4可除去超声波传感器接收头收到的信号的直流信号,第一级放大其放大倍数为R1/R4=100,第二级放大器放大倍数为R2/R4=10。
由于LM358是双电源供电,这里为了使电路的供电系统简单点,在LM358的第3脚输入一个2.5V的电压,来取代器件的双电源供电,从而使器件能正常工作。
1.4整形、比较电路
由于超声波传感器接收头接收到的信号是一个正弦信号,不便于单片机处理,故在电路上用两个检波二极管和一个电容组成的整流电路将回波信号整形成一平稳的电平,信号经整流后通过LM358构成的一个比较器将模拟信号转化成数字信号,然后与单片机引脚RA5共同经一个4011与非门输出到单片机RC2/CCP1引脚,以产生单片机的中断。
其中R10、R11构成一个分压电路产生一个比较电压,当回波信号的电压大于此比较电压时,LM358输出一个高电平;当回波信号小于此比较电压时,LM358输出一个低电平。
单片机引脚RA5用做信号接收的使能控制,当RA5为高电平时允许接收,当RA5为低电平时,回波信号无效,不允许接收。
1.5 数据传输
当模块将距离测出后,需将数据传输到外围的电路以供应用,此系统采用两种数据传输方式,D/A 数据传输和I2C数据传输。
1.6 D/A数据传输
D/A数据传输是利用单片机的PWM输出将测得的距离值转化成电压值输出,使得测得的距离与输出的脉宽调制方波的占空比成正比,PWM波再经整流输出平稳电压,这样就能将测得的距离按一定的线性关系输出,外围电路可使用A/D转换器将数据读取。
1.7 I2C数据传输
I2C要求两条总线线路一条串行数据线SDA 和一条串行时钟线SCL,每个连接到总线的器件都可以通过一个唯一的地址与主机获得通信。
它是一个真正的多主机总线,如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁防止数据被破坏。
串行的8 位双向数据传输位速率在标准模式
下可达100kbit/s, 快速模式下可达400Kbit/s, 高速模式下可达3.4Mbit/s。
片上的滤波器可以滤去总线数据线上的毛刺波以保证数据完整。
本系统采用I2C数据传输方式,可使得测量距离毫无偏差得传输到外围电路中,避免D/A数据传输过程中的转化误差。
I2C地址的设置使用一个4位的拨码开关,电路如图4.9示。
4位的拨码开关最多可识别16个I2C地址,本系统使用前三个开关,提供8个不同的I2C地址,8个地址0xB0,0xB2,0xB4,0xB6,0xB8,0xBA,0xBC,0xBE,具体设置由软件实现。
2超声波波测距系统软件设计
其中初始化中包括I/O口设置、中断系统设置、I2C初始化,CAP初始化,然后发送超声波,开始时按短距离模式发波,发完波开启接收回波,同时开始计时,当有回波信号产生中断时,计时停止,并计算出距离。
随后将距离以D/A数据传输的方式输出,最后根据当前的测量结果来选择下次发波的模式。
I2C数据传输采用中断实现,测距模块实时响应外围电路中I2C主控器对数据读取的要求。