结构化学习题答案(3).doc
结构化学习题解答3

O2的MO能级图
1 u
1 g
MO O2
2 O O2 ,O 和 2 的键级、键长长短次序 [3.2] 写出 O , 及磁性。 [解 ]: O2 O2 O2 O22 微 粒 键 级 2.5 2 1.5 1 2 O O2 < 2 < O2 < O2 键长次序 磁 性 顺磁 ] 按分子轨道理论说明Cl2的键比 2 的键强还是弱? 为什么? Cl [解]:Cl2的键比 2 的键弱。原因是:Cl2的基态价电子 2 2 4 * 2 * 4 Cl 组态为 3s 3s 3 p 3 p 3 p ,键级为1,而 2 比 Cl2少1个反键电子,键级为1.5。
2
[3.30] 由紫外光电子能谱知,NO分子的第一电离能为9.26 eV比CO的第一电离能(14.01eV)小很多,试从分子的电子 组态解释其原因。
解:CO的组态为 (1 )
(2 ) (3 ) (4 ) (1 ) (5 ) 2 2 2 2 4 2 1 ) (2 ) (3 ) (4 ) (1 ) (5 ) (2 ) NO的组态为 (1
z
N2的MO能级示意图
3 u
2 pz 2 py 2 px
1 g
1 g
3 g
1 u 1 u
2 px
2 py
2 pz
N2特别 稳定,π 轨道被 保护。
2 u
2s 2s
2 g
1s
1 u
1s
AO N
1 g MO N2
AO N
[3.7] 画出CN-的分子轨道示意图,写出基态的电子组态, 计算键级及不成对电子数 [解]:CN-与N2为等电子“分子”。其价层分子轨道与N2分 子大致相同,分子轨道轮廓图如下。
(完整word版)结构化学 考卷及答案(word文档良心出品)

考试A卷课程名称结构化学一、选择题(每小题2分, 共30分)得分评卷人1. 在长l = 2 nm的一维势箱中运动的He原子,其de Broglie波长的最大值是:------------ ( )(A) 1 nm (B) 2 nm (C) 4 nm (D) 8 nm (E) 20 nm2. 立方势箱中的粒子,具有E= 的状态的量子数。
则n x、n y、n z 可以是------------ ( )(A) 2 1 1 (B) 2 3 1 (C) 2 2 2 (D) 2 1 33. 下列哪几点是属于量子力学的基本假设:----------- ( ) (A) 描写微观粒子运动的波函数必须是正交归一化的9. 通过变分法计算得到的微观体系的能量总是:----------------- ( )(A) 大于真实基态能量(B) 不小于真实基态能量(C) 等于真实基态能量(D) 小于真实基态能量10. 对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( )(A) 原子轨道线性组合成的新轨道(B) 分子中所有电子在空间运动的波函数(C) 分子中单个电子空间运动的波函数(D) 分子中单电子完全波函数(包括空间运动和自旋运动)11. 下面说法正确的是:----------------- ( )(A) 如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B) 分子中若有C4,又有i,则必有σ(C) 凡是平面型分子必然属于C s群(D) 在任何情况下,=12. B2H6所属点群是:----------------- ( )(A) C2v(B) D2h(C) C3v(D) D3h(E) D3d13. 已知配位化合物MA4B2的中心原子M是d2sp3杂化,该配位化合物的异构体数目及相应的分子点群为:----------------- ( ) (A) 2,C2v,D4h(B) 2,C3v,D4h(C) 3,C3v,D4h,D2h(D) 4,C2v,C3v,D4h,D2h14.某基态分子含有离域π66键,其能量最低的三个离域分子轨道为:= 0.25 φ1 + 0.52 φ2 + 0.43 ( φ3 + φ6) + 0.39 ( φ4 +φ5)1= 0.5 ( φ1 + φ2 ) - 0.5 ( φ4 +φ5 )2= 0.60 ( φ3 -φ6 ) + 0.37 ( φ4 -φ5 )3若用亲核试剂与其反应,则反应发生在(原子编号):------------ ( )(A) 1 (B) 2 (C) 1,2 (D) 3,6 (E) 4,515. 已知C2N2分子偶极矩为0,下列说法何者是错误的?------------- ( )共轭体系(A) 是个线型分子(B) 存在一个44(C) 反磁性(D) C—C键比乙烷中的C—C键短二、填空题(24分)得分评卷人1. 在电子衍射实验中,││2对一个电子来说,代表_____________________。
《结构化学》第三章习题答案

《结构化学》第三章习题答案3001 ( A, C )3002 H ab =∫ψa [-21∇2- a r 1 - br 1 +R 1 ] ψb d τ =E H S ab + R 1 S ab - ∫a r 1ψa ψb d τ= E H S ab + K因 E H = -13.6e V , S ab 为正值,故第一项为负值; 在分子的核间距条件下, K 为负值。
所以 H ab 为负值。
3003 ∫ψg ψu d τ=(4 - 4S 2)-1/2∫(ψa s 1+ψb s 1)((ψa s 1-ψb s 1)d τ = (4 - 4S 2)-1/2∫[ψa s 12 -ψb s 12 ] d τ= (4 - 4S 2)-1/2 [ 1 - 1 ] = 0故相互正交。
3004 ( C )3006 描述分子中单个电子空间运动状态的波函数叫分子轨道。
两个近似 (1) 波恩 - 奥本海默近似 ( 核质量 >> 电子质量 )(2) 单电子近似 (定态)3007 单个电子3008 (B)3009 (1) 能级高低相近(2) 对称性匹配(3) 轨道最大重叠3010 不正确3011 (B)3012 ψ= (0.8)1/2φA + (0.2)1/2φB3013 能量相近, 对称性匹配, 最大重叠> , < 或 < , >3014 正确3015 不正确3016 σ π π δ30173018 z3019 (C)3020 π3021 σ轨道: s -s , s -p z , s -d z , p z –p z , p z -2z d , 2z d -2z d ,π轨道p x –p x ,p x –d xz ,p y –p y ,p y –d yz ,d yz –d yz ,d xz –d xzδ轨道:d xy -d xy , d 22y x -- d 22y x -3022 σ δ π 不能 不能3023 (B)3024 原子轨道对 分子轨道p z -d xy ×p x -d xz πd 22y x -- d 22y x - δ2z d -2z d σp x –p x π3025 1σ22σ21π43σ2 , 3 , 反磁3026 d xy , δ3027 p y , d xy3028 C 2 ( 1σg )2( 1σu )2( 1πu )2+2 s -p 混杂显著.因1σu 为弱反键,而1σg 和1πu 均为强成键,故键级在2-3之间.3029 N 2: (1σg )2(1σu )2(1πu )4(2σg )2O 2: σ2s 2σ2s σ2pz 2π2px 2π2py 2π2px *π2py *1或 ( 1σg )2(1σu )22σg 2(1πu )4(1πg )23030 ( 1σg )2( 1σu )2( 1πu )4( 2σg )2的三重键为 1 个σ键 (1σg )2,2个π键 (1πu )4,键级为 3( 1σu )2和(2σg )2分别具有弱反键和弱成键性质, 实际上成为参加成键作用很小的两对孤对电子,可记为 :N ≡N: 。
北师大_结构化学课后习题答案Word版

北师大 结构化学 课后习题 第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为 12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件? 参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理? 参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么? 参考答案根源就在于微观粒子的波粒二象性。
结构化学试题及答案

结构化学试题及答案一、单项选择题(每题2分,共20分)1. 原子轨道的波函数是()。
A. 球对称的B. 轴对称的C. 镜面对称的D. 非对称的答案:A2. 价层电子对互斥理论(VSEPR)认为,分子的几何构型是由()决定的。
A. 原子核的排列B. 电子云的排斥C. 原子的排列D. 电子的自旋答案:B3. 根据分子轨道理论,下列分子中哪一个是顺磁性的?()A. O2B. N2C. COD. NO答案:A4. 氢键是一种()。
A. 共价键B. 离子键C. 金属键D. 范德华力答案:D5. 晶体场理论中,八面体配位场中d轨道分裂能的大小与配体的()有关。
A. 电荷B. 半径C. 配位数D. 配体场强度答案:D6. 下列元素中,哪一个具有最高电负性?()A. FB. OC. ND. C答案:A7. 根据杂化轨道理论,乙炔分子中的碳原子采用的杂化方式是()。
A. spB. sp2C. sp3D. dsp2答案:A8. 配位化合物[Co(NH3)5Cl]Cl2中,钴离子的氧化态为()。
A. +2B. +3C. +4D. +5答案:B9. 根据分子轨道理论,下列分子中哪一个是双自由基?()A. O2B. N2C. NOD. NO+答案:A10. 晶体中,面心立方(FCC)结构的配位数为()。
A. 4B. 6C. 8D. 12答案:C二、填空题(每题2分,共20分)11. 原子轨道的径向分布函数R(r)描述了电子在原子核外不同距离处出现的概率,其中R(r)的平方与电子在距离原子核r处的概率密度成正比。
12. 价层电子对互斥理论(VSEPR)认为,分子的几何构型是由电子云的排斥决定的,其中价层电子对包括成键电子对和孤对电子。
13. 氢键是一种分子间作用力,通常发生在含有高电负性原子(如F、O、N)的氢化物与另一个含有孤对电子的高电负性原子之间。
14. 晶体场理论中,八面体配位场中d轨道分裂能的大小与配体的配体场强度有关,配体场强度越大,分裂能越大。
结构化学答案3

”或“ ”符号表示。
解:
键级
键能
键长
【3.5】基态 C2 为反磁性分子,试写出其电子组态;实验测定
C 2 分子键长为 124 pm ,比 C
原子共价双键半径和 2 67pm 短,试说明其原因。
解: C2 分子的基组态为:
由于 s-p 混杂, 1 u 为弱反键, C2 分子的键级在 2 3 之间,从而使实测键长比按共价双键
是非键轨道,即电离的电子是由 O 和 F 提供的非键电子,因此, OH 和 HF 的第一电离能差
值与 O 原子和 F 原子的第一电离能差值相等。
( e) S 1/ 2, 1 ,基态光谱项为: 2
【 3.15】
H
79
Br
在远红外区有一系列间隔为
16.94cm 1 的谱线,计算 HBr 分子的转动惯量
和平衡核间距。
(e) 写出它的基态光谱项。
解:( a) H 原子的 1s 轨道和 O 原子的 2 pz 轨道满足对称性匹配、能级相近(它们的能
级 都 约 为 - 13.6eV ) 等 条 件 , 可 叠 加 形 成
2
2
3
1 2 1。
轨 道 。 OH 的 基 态 价 电 子 组 态 为
2
2
3
1 实 际 上 是 O 原 子 的 2s , 而 1 实 际 上 是 O
(b) 振动频率为:
(c) 振动零点能为:
(d)
H
127
I
的约化质量为:
H127I 的力常数为:
【 3.20】在 CO 的振动光谱中观察到
2169.8cm 1 强吸收峰,若将 CO 的简正振动看做谐振
子,计算 CO 的简正振动频率、力常数和零点能。
厦门大学结构化学第3章答案

, , ,S , S
v v v
1 3
5 3
注:群中的对称元素可按相似变换分类。相互共轭元素的一个集合构成群的一类。即:
K ( A) gi agi1 , g i 跑遍所有的群元素。
1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 (3) 0 0 10 0 1 0 0 1
注: 反映的矩阵表示:
真转动的矩阵表示:
1 0 0 x x xy : 0 1 0 y y 0 0 1 z z
i ,为 4n 4 2 8 阶群。
间二氯苯: C2 v ,一个 C2 主轴,2 个 v 。为 2n 2 2 4 阶群。 氯苯: C2 v ,一个 C2 主轴,2 个 v 。为 2n 2 2 4 阶群。 苯: D2 h ,垂直于对二氯苯平面的 C2 主轴,2 个 C2 轴,有分子平面 h ,2 个 v , i , 为 4n 4 2 8 阶群。
3.2 CO 和 CO2 都是直线型分子,试写出这两个分子各自的对称元素。 解: CO: 对称元素:对称轴( C )、对称面( 个 v ) CO2(O=C=O) 对称元素:对称轴( C , 个 C2 )、对称面( 个 v , h )、对称心( i ),映转轴( S )
3.3 分别写出顺式和反式丁二稀分子的对称元素。 解: ①顺式丁二烯:对称轴( C2 ),对称面(2 个 v ) ②反式丁二稀: 对称轴( C2 ),对称面( h ),对称心( i )
结构化学试题及答案

结构化学试题及答案一、选择题(每题2分,共20分)1. 原子轨道的波函数是()。
A. 概率密度B. 概率流密度C. 质量密度D. 电荷密度答案:A2. 根据分子轨道理论,两个原子轨道组合形成()。
A. 一个成键轨道和一个反键轨道B. 两个成键轨道C. 两个反键轨道D. 一个成键轨道和一个非键轨道答案:A3. 价层电子对互斥理论(VSEPR)认为,分子的几何构型取决于()。
A. 中心原子的电子排布B. 中心原子的杂化类型C. 中心原子周围的电子对数D. 中心原子的氧化态答案:C4. 氢键是一种()。
A. 离子键B. 共价键C. 金属键D. 范德华力答案:D5. 根据晶体场理论,八面体配合物中,中心离子d轨道分裂能的大小与()有关。
A. 配体的电负性B. 配体的电荷C. 配体的场强D. 中心离子的电荷答案:C6. 晶体中原子的配位数是指()。
A. 每个原子周围最近邻的原子数B. 每个原子周围最近邻的原子层数C. 每个原子周围最近邻的原子面数D. 每个原子周围最近邻的原子体积答案:A7. 金属晶体中,金属键的强度与()有关。
A. 金属离子的电荷B. 金属离子的大小C. 金属离子的电子云密度D. 金属离子的电子云分布答案:C8. 根据分子轨道理论,分子的键级可以通过()计算。
A. 成键轨道电子数减去反键轨道电子数B. 成键轨道电子数加上反键轨道电子数C. 成键轨道电子数减去反键轨道电子数除以2D. 成键轨道电子数加上反键轨道电子数除以2答案:C9. 晶体的X射线衍射图谱可以提供晶体的()。
A. 化学成分B. 晶体结构C. 晶体形态D. 晶体大小答案:B10. 根据分子轨道理论,分子的稳定性与()有关。
A. 成键轨道电子数B. 反键轨道电子数C. 成键轨道和反键轨道电子数的差值D. 成键轨道和反键轨道电子数的和答案:C二、填空题(每题2分,共20分)1. 原子轨道的波函数是描述电子在原子核周围出现的概率密度,其中ψ^2表示________。
结构化学考试及答案详解

结构化学考试及答案详解一、选择题(每题2分,共20分)1. 下列关于原子轨道的描述,正确的是()。
A. 原子轨道是原子核外电子运动的轨迹B. 原子轨道是电子在空间出现概率的几何图形C. 原子轨道是电子运动的固定路径D. 原子轨道是电子运动的确定轨迹答案:B解析:原子轨道是量子力学中描述电子在原子核外空间出现概率的几何图形,它不是电子运动的固定路径或确定轨迹。
2. 价层电子对互斥理论(VSEPR)用于预测分子的几何构型,下列分子中,其几何构型为四面体的是()。
A. 水(H2O)B. 氨(NH3)C. 甲烷(CH4)D. 二氧化碳(CO2)答案:C解析:甲烷(CH4)的中心碳原子有四个价电子对,且没有孤对电子,因此其几何构型为四面体。
3. 下列关于分子轨道理论的描述,不正确的是()。
A. 分子轨道是由原子轨道线性组合而成B. 分子轨道可以是成键轨道或反键轨道C. 分子轨道理论认为电子在分子中运动D. 分子轨道理论认为电子在原子核之间运动答案:D解析:分子轨道理论认为电子在分子中运动,而不是在原子核之间运动。
4. 氢键是一种分子间的相互作用力,下列分子中,最有可能形成氢键的是()。
A. 甲烷(CH4)B. 氨(NH3)C. 氦气(He)D. 氖气(Ne)答案:B解析:氨(NH3)分子中含有氢原子和氮原子,氮原子带有孤对电子,可以与氢原子形成氢键。
5. 下列关于杂化轨道的描述,正确的是()。
A. 杂化轨道是原子轨道的线性组合B. 杂化轨道是原子轨道的相加C. 杂化轨道是原子轨道的叠加D. 杂化轨道是原子轨道的混合答案:D解析:杂化轨道是原子轨道的混合,它们是由不同类型和能量的原子轨道混合而成的。
6. 根据鲍林电负性标度,下列元素中电负性最强的是()。
A. 氟(F)B. 氧(O)C. 氮(N)D. 碳(C)答案:A解析:氟(F)是电负性最强的元素,其电负性标度值最高。
7. 下列化合物中,属于离子化合物的是()。
结构化学习题(含答案)

25.
立方势箱中的粒子,具有 E
12h 2 8ma 2
的状态量子数,nxnynz 是(
)
A.211 B.231 C.222 D.213
26. 一个在一维势箱中运动的粒子,其能量随着量子数 n 的增大( ),其能级差 En+1-En 随着势箱长度的增大( )
A.越来越小 B.越来越大 C.不变
27. 下列算符中不属于线性算符的是( )
6.
在边长为
a
的立方势箱中运动的粒子,其能级 E
3h 2 4ma 2
的简并度是______,
E 27h2 的简并度是_______。 8ma 2
7. 质 量 为 m 的 粒 子 被 局 限 在 边 长 为 a 的 立 方 箱 中 运 动 。 波 函 数 211(x,y,z)=
_________________________;当粒子处于状态211 时,概率密度最大处坐标是
第二章 原子的结构和性质
一. 填空题
1.
氢原子中电子的一个状态为:
1 81 2
Z a0
3
/
2
Zr a0
2
e
Zr 3a0
sin 2 sin 2 ,则
量子数 n 为____,l 为____,m 为____,轨道名称为____。
2. 氢原子的 3d z2 状态的能量为______eV。角动量为______,角动量在磁场方向的分
___________;若体系的能量为
7h2 4ma
2
,
其简并度是_______________。
二. 选择题
1. 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( )
A. 动量相同
结构化学课后习题答案

结构化学课后习题答案结构化化学课后习题答案一、化学键与分子结构1. 选择题a) 正确答案:D解析:选择题中,选项D提到了共价键的形成是通过电子的共享,符合共价键的定义。
b) 正确答案:B解析:选择题中,选项B提到了离子键的形成是通过电子的转移,符合离子键的定义。
c) 正确答案:C解析:选择题中,选项C提到了金属键的形成是通过金属原子之间的电子云重叠,符合金属键的定义。
d) 正确答案:A解析:选择题中,选项A提到了氢键的形成是通过氢原子与高电负性原子之间的吸引力,符合氢键的定义。
2. 填空题a) 正确答案:共价键解析:填空题中,根据问题描述,两个非金属原子之间的键称为共价键。
b) 正确答案:离子键解析:填空题中,根据问题描述,一个金属原子将电子转移到一个非金属原子上形成的键称为离子键。
c) 正确答案:金属键解析:填空题中,根据问题描述,金属原子之间的电子云重叠形成的键称为金属键。
d) 正确答案:氢键解析:填空题中,根据问题描述,氢原子与高电负性原子之间的吸引力形成的键称为氢键。
二、有机化学1. 选择题a) 正确答案:C解析:选择题中,选项C提到了烷烃是由碳和氢组成的,符合烷烃的定义。
b) 正确答案:D解析:选择题中,选项D提到了烯烃是由含有一个或多个双键的碳原子组成的,符合烯烃的定义。
c) 正确答案:B解析:选择题中,选项B提到了炔烃是由含有一个或多个三键的碳原子组成的,符合炔烃的定义。
d) 正确答案:A解析:选择题中,选项A提到了芳香烃是由芳香环结构组成的,符合芳香烃的定义。
2. 填空题a) 正确答案:醇解析:填空题中,根据问题描述,含有羟基(-OH)的有机化合物称为醇。
b) 正确答案:醚解析:填空题中,根据问题描述,含有氧原子连接两个碳原子的有机化合物称为醚。
c) 正确答案:酮解析:填空题中,根据问题描述,含有羰基(C=O)的有机化合物称为酮。
d) 正确答案:酯解析:填空题中,根据问题描述,含有羧基(-COO)的有机化合物称为酯。
结构化学考试及答案详解

结构化学考试及答案详解一、选择题(每题2分,共20分)1. 下列哪种元素的电负性最高?A. 氢B. 氧C. 碳D. 氮答案:B解析:电负性是指原子对键合电子的吸引力。
氧原子由于其较小的原子半径和较高的电子云密度,对电子的吸引力较强,因此电负性最高。
2. 共价键中,两个原子共享电子对的方式称为:A. 离子键B. 共价键C. 金属键D. 范德华力答案:B解析:共价键是指两个原子通过共享电子对形成的化学键,这是共价键的基本定义。
3. 晶体场理论中,八面体配位场中d轨道分裂能的大小与配体的场强有关,下列哪种配体具有最强的场强?A. I-B. Cl-C. Br-D. F-答案:D解析:晶体场理论中,配体的场强与配体的电负性有关,电负性越强,场强越大。
氟是卤素中电负性最强的元素,因此具有最强的场强。
4. 下列哪种分子的键角不是109.5°?A. CH4B. BF3C. H2OD. NH3答案:C解析:甲烷(CH4)和氨(NH3)是四面体分子,键角为109.5°;硼氟化物(BF3)是平面三角形分子,键角也为120°;水(H2O)是V形分子,键角约为104.5°。
5. 哪种分子具有顺磁性?A. O2B. N2C. COD. He答案:A解析:顺磁性物质是指含有未成对电子的物质。
氧气(O2)分子中有两个未成对电子,因此具有顺磁性。
6. 哪种类型的晶体具有各向异性?A. 立方晶系B. 六方晶系C. 四方晶系D. 三斜晶系答案:B解析:各向异性是指晶体的物理性质在不同方向上表现不同。
立方晶系、四方晶系和三斜晶系都具有各向同性,而六方晶系则具有各向异性。
7. 下列哪种化合物是离子化合物?A. HClB. NaClC. H2OD. C6H12O6答案:B解析:离子化合物是由阳离子和阴离子通过静电作用力结合而成的化合物。
氯化钠(NaCl)是由钠离子(Na+)和氯离子(Cl-)组成的离子化合物。
高等教育出版结构化学答案

第一章 8. )(10088.510593.5891031149811--⨯=⨯⨯==sc λν)(10093.510996.5881031149822--⨯=⨯⨯==scλν)(10696.110593.58911~16911--⨯=⨯==mλν)(10698.110996.58811~16922--⨯=⨯==mλν)(075.203101002.610088.510626.61323143411---⋅=⨯⨯⨯⨯⨯⨯==mol kJ h E ν )(275.203101002.610093.510626.61323143422---⋅=⨯⨯⨯⨯⨯⨯==molkJ h E ν9.)(2102νλυ-=chc m)(10130.8101.9)10464.510300103(10626.62)(215311498340----⋅⨯=⨯⨯-⨯⨯⨯⨯=-=sm mch m νλυ )(10398.710130.8101.9125531---⋅⋅⨯=⨯⨯⨯==s m kg m p m υ )(1096.810398.710626.6102534m ph ---⨯=⨯⨯==λ10. (1))(10626.601.01010626.6221034m m h ph ---⨯=⨯⨯===υλ(2))(1087.2106.11001067.1210626.6212193734m mTh ph ----⨯=⨯⨯⨯⨯⨯⨯===λ(3))(1075.2106.1102101.9210626.622121953134m meVh mTh ph ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ11. 子弹:)(1063.6%10100001.010626.63434m m h x --⨯≥⨯⨯⨯=∆⋅≥∆υ 可忽略花粉:)(1063.6%1011010626.6201334m m h x ---⨯≥⨯⨯⨯=∆⋅≥∆υ可忽略电子:)(1027.7%1010101.910626.6963134m m h x ---⨯≥⨯⨯⨯⨯=∆⋅≥∆υ不能忽略只有不确定关系具有实际意义12. 证明:λ=∆x 因为h m x h p x x ≥∆⋅∆⇒≥∆∆υ υλυ==⋅=∆⋅≥∆m p m h xm h13. meV m eV 2212=⇒=υυυυ1.0=∆10001060219.11091095.021.010626.621.0193034⨯⨯⨯⨯⨯⨯==∆⋅≥∆---Vm h m h x e υ)(1088.310m -⨯= 对成像没有影响 若用π4h p x x ≥∆∆)(1009.311m x -⨯≥∆14.(1)imximxem edx d ⋅-=222)( 是 本征值:2m -(2)x x dx d sin )(sin 22-= 是 本征值:1-(3)2)(2222=+y x dx d 不是(4))2(])[(22x a eex a dxd xx-+=--- 不是16. φφφφim im im meim iee d d i-=⋅= 是。
结构化学习题解答

物质结构第三章习题1. 试述正八面体场、正四面体场、正方形场中,中心离子d 轨道的分裂方式;2. 试根据晶体场理论说明直线形配合物MX 2中以分子轴为z 轴,中心原子的d 轨道如何分裂,并给出这些轨道的能量高低顺序;3. 试根据晶体场理论说明三角双锥配合物中,中心原子的d 轨道如何分裂,并给出这些轨道的能量高低顺序;4. 简述分裂能与中心离子和配体的关系;5. 配体CN -,NH 3,H 2O,X -在络光谱化学序列中的顺序是 A X -< CN --< NH 3 < H 2O B CN -< NH 3< X - < H 2OC X -< H 2O < NH 3 < CN -D H 2O < X -< NH 3 < CN -6. 在下列每对络合物中,哪一个有较大的O ,并给出解释;① FeH 2O 62+ 和 FeH 2O 63+ ② bCoCl 64- 和 CoCl 42-③ CoCl 63- 和 CoF 63- ④ FeCN 64-和 OsCN 64-7. 下列配合物离子中, 分裂能最大的是ACoNH 362+BCoNH 363+CCoH 2O 63+DRhNH 363+8. 下列配位离子中,O 值最大的是A CoCl 64-B CoCl 42-C CoCl 63-D CoF 63-9. 以下结论是否正确“凡是在弱场配体作用下,中心离子d 电子一定取高自旋态;凡是在强场配体作用下,中心离子d 电子一定取低自旋态;”10. 试写出d 6金属离子在八面体场中的电子排布和未成对电子数分强场和弱场两种情况; 11. 下列络合物哪些是高自旋的A CoNH 363+B CoNH 362+C CoCN 64-D CoH 2O 63+12. 按配位场理论,正八面体场中无高低自旋态之分的组态是A d 3B d 4C d 5D d 6E d 713. 试判断下列配位离子为高自旋构型还是低自旋构型, 并写出d 电子的排布;①FeH 2O 62+②FeCN 64-③CoNH 363+④CrH 2O 62+⑤MnCN 64-14. 为什么正四面体的络合物大多是高自旋15. Ni 2+的低自旋络合物常常是平面正方形结构,而高自旋络合物则多是四面体结构,试用晶体场理论和杂化轨道理论解释之; 16. Ni 2+有两种络合物,根据磁性测定知 NiNH 342+是顺磁性,NiCN 42-为反磁性,试推测其空间结构;17. F -是弱配体,但配位离子NiF 62-却呈反磁性,这说明Ni 4+的d 电子按低自旋排布,试解释原因; 1-17答案1. 正八面体场中分裂成两组:低能级d xy , d xz , d yz t 2g ;高能级d x 2-y 2,d z 2e g 正四面体场中分裂成两组:低能级d x 2-y 2,d z 2 e ;高能级d xy , d xzd yz t 2正方形场中分裂成四组:由高到低依次为:{d xz , d yz }; {d z 2}{d xy };{d x 2-y 2}2. d z 2直指配体, 能量最高; d x 2-y 2, d xy 受到配体的斥力最小;d xzd yz 能量居中; 3. d z 2直指配体, 能量最高; d xz , d yz 受到配体的斥力最小;d x 2-y 2d xy 能量居中;4. ①配体固定时,中心离子的电荷越高,周期数越大,则越大;②中心离子固定时,随配体的变化由光谱化学序列确定该顺序几乎和中心离子无关,若只看配位原子,随配位原子半径的减小而增大:I<Br<Cl<S<F<O<N<C 5. C 6. ①FeH 2O 63+,因为Fe 3+有高电荷;②CoCl 64-,因为O >T ;③CoF 63-,因为F -是比Cl -强的配位体 ④OsCN 64-,因为Os 2+的周期数大于Fe 2+7. D NH 3是强配体,Rh 3+的电荷数高、周期数大; 8. D F -是Cl -强的配体,Co 3+引起的分裂能比Co 2+大;9. 此结论仅在正八面体场中,中心离子d 电子数为4,5,6,7时才成立;八面体场中,d 电子数为1,2,3,8,9,10时,无论强场弱场,电子只有一种排布方式,无高低自旋之分;正四面体场中,分裂能较小,故如果可有高、低自旋态,大多是高自旋态;而正方形场中则大多是低自旋态 10. 强场,t 2g 6,无未成对电子;弱场,t 2g 4e g 2,4个未成对电子 11. BD 12. A13. ①FeH 2O 62+,d 6,弱场高自旋,t 2g 4e g 2②FeCN 64-,d 6,强场低自旋,t 2g 6③CoNH 363+ d 6,强场低自旋,t 2g6④CrH 2O 62+,d 4,弱场高自旋,t 2g 3e g 1⑤MnCN 64-,d 5,强场低自旋,t 2g514. 正四面体场分裂能较小, 通常<P , 因此多高自旋配合物;15. Ni 2+为d 8组态1 根据配位场理论,若是正方形场,d 电子排布是d xz ,d yz 4d z 22d x 2-y 22,所有d 电子成对;若是四面体场,d 电子排布是e 4t 24,有两个未成对电子;2 根据杂化轨道理论,若为低自旋,则8个d 电子集中在 4 个轨道,空出的一个d 轨道和s ,p 轨道形成dsp 2杂化轨道,为平面正方形;若为高自旋,8个d 电子分布在5个d 轨道,取sp 3杂化,形成四面体形;16. NiNH342+是四面体构型,NiCN42-为正方形构型17. 分裂能随金属离子电荷增高而增大,Ni4+d6电荷高,使分裂能大于成对能,而采取低自旋排布t2g6,呈反磁性;18. 用晶体场理论推测下列络合物的未成对电子以及磁性:① FeCN64-② FeCN63-③ MnCN64-,④CoNO263-⑤ FeH2O63+⑥CoF63-19. 下列哪个络合物的磁矩最大A 六氰合钴Ⅲ离子B 六氰合铁Ⅲ离子C 六氨合钴Ⅲ离子D 六水合锰Ⅱ离子E 六氨合钴Ⅱ离子20. 下列配位离子中磁性最大的是A MnH2O63+B FeH2O63+C FeCN64-D CoNH363+E CrH2O62+21. 凡是低自旋络合物一定是反磁性物质;这一说法是否正确22. FeF63-络离子的磁矩为A 3B B 5BC BD B23. K3FeF6的磁矩为玻尔磁子,而K3FeCN6的磁矩为玻尔磁子,这种差别的原因是A 铁在这两种化合物中有不同的氧化数B CN-离子比 F-离子引起的晶体场场分裂能更大C 氟比碳或氮具有更大的电负性D K3FeF6不是络合物24. 已知FeCN63-,FeF63-络离子的磁矩分别为B,B,①分别计算两种络合物中心离子未成对电子数;②用图分别表示中心离子d轨道上电子排布情况;③两种络合物其配位体所形成的配位场,是强场还是弱场25. 某金属离子在八面体弱场中的磁矩为玻尔磁子, 而它在八面体强场中的磁矩为0, 该中心离子可能是A CrⅢB MnⅡC CoⅡD FeⅡ26. 在FeH2O62+和FeCN64-中,Fe2+的有效离子半径哪个大说明理由;27. 为什么过渡金属络合物大多有颜色28. 络合物的光谱d-d跃迁一般在什么区域A 远紫外B 红外C 可见-近紫外D 微波29. 络合物中电子跃迁属d-d跃迁,用_________光谱研究最为合适;30. 推测下列两对络合物中,哪一个络合物的d-d跃迁能量较高:①PtNH342+ , PdNH342+ ② CoCN63-, IrCN63-31.推测下列两对络合物中,哪一个络合物的d-d跃迁能量较高:①CoCN63-和IrCN63-②RhCl63-和RhCN63-32. 铁的两种络合物:A FeCN6,B Na3FeF6,它们的磁矩大小关系为A___B,它们的紫外可见光谱d-d跃迁的波长大小关系为A___B;33. 推测1六水合铁Ⅲ, 2六水合铁Ⅱ, 3六氟合铁Ⅱ三种络合物的d-d跃迁频率大小顺序A 1>2>3B 1>3>2C 3>2>1D 3>1>2E 2>1>334. 某同学测定了三种络合物d-d跃迁光谱,但忘了贴标签,请帮他将光谱波数和络合物对应起来;已知三种络合物为 CoF63-,CoNH363+,CoCN63-,它们的三个光谱波数分别为 34,000 cm-1,13,000 cm-1,23,000 cm-1;18-34答案18.络合物未成对电子磁性FeCN64-t2g6 0 反磁性FeCN63-t2g5 1 顺磁性MnCN64-t2g5 1 顺磁性CoNO263-t2g6 0 反磁性FeH2O63+t2g3e g2 5 顺磁性CoF63-t2g4e g2 4 顺磁性注,高自旋态的d电子配对情况和自由离子是相同的,例如,Co和CoF63-中,未成对d电子数都是4;19. D 络合物磁矩Bnnμμ)2(+=B为玻尔磁子, n是未成对电子数;容易看出,选项中只有D是弱场高自旋,未成对电子数为4.20. B FeH2O63+是弱场高自旋,有5个未成对电子21. 否,低自旋络合物仍可能有未成对电子;22. D Fe3+d5组态,八面体弱场,t2g3e g2,有5个未成对电子,BBBnnμμμμ9.5)25(5)2(=+=+=23. B24. Fe3+d5,八面体场,①FeCN63-:7.1)2(=+nn n=1; FeF63-:n=5② FeCN63-:低自旋,t2g5; FeF63-:高自旋,t2g3e g2③FeCN63-:强场; FeF63-:弱场25. D26. 高自旋态的离子半径大于低自旋态;FeH2O62+是弱场高自旋,FeCN64-是强场低自旋,前者Fe2+的有效半径大;27. 在配位场作用下, d轨道产生了分裂, 分裂后的能级差值落在可见光谱区域, 因此可以吸收可见光谱而产生d-d跃迁;物质的颜色为吸收的可见光谱的互补色, 故有颜色;28. C29. 紫外-可见光谱;30. 分裂能大的络合物d-d跃迁能量高①PtNH342+;② IrCN63-31. 分裂能大的络合物d-d跃迁能量高①IrCN63-;②RhCN63-32. <,<FeCN6,强场低自旋态,未成对电子少,故磁矩较小;又,分裂能大故d-d跃迁的波长较小频率或波数较大33. A 三种络合物的分裂能递增,故d-d跃迁频率递减34. CoF 63-13,000 cm -1CoNH 363+23,000 cm -1CoCN 63-34,000 cm -135. 解释为什么大多数Zn 2+的配合物无色;36. 用配位场理论判断NiCO 4不能观察到d-d 跃迁的光谱,对吗 37. 试用配位场理论解释变色硅胶变色的原因变色剂为CoCl 2; 38. 解释为什么FeF 63-是无色的39. 实验测得FeH 2O 62+配位离子在1000nm 处有一吸收峰, 试求出跃迁能级的间隔采用波数单位cm -1; 40. 求FeCN 64-的CFSE;41. 对于CoF 63-,试写出:①d 电子排布;②磁矩;③CFSE42. 已知:CoF 63-:O = 13,000 cm -1CoCN 63-:O = 34,000 cm -1P = 21, 000 cm -1确定上述两种络合物的磁性,并计算其 CFSE 以 cm -1为单位;43. 凡是中心离子电子组态为d 6的八面体络合物,其CFSE 都是相等的,这一说法是否正确 44. 已知 ML 6络合物中M 3+为d 6,f =1,g = 20,000 cm -1,P = 25,000 cm -1,求CFSE45. 为什么在过渡金属络合物中,八面体构型远较四面体构型多46. 用配位场理论估算下列离子的结构和未成对电子数: ①MoCl 63- ②RuNH 363+ ③MnO 43- ④NiI 42- ⑤AuCN 4- 47. Jahn-Teller 效应的内容为_____________; 48. 若忽略电子相互作用, d 2组态的基态在正八面体场中的简并度为_______; 49. 下列八面体络合物的电子结构中发生大畸变的是A t 2g 5e g 2B t 2g 3e g 2C t 2g 4e g 2D t 2g 6e g 335-49答案35. Zn 2+d 10的d 轨道填满电子,它通常是以sp 3杂化轨道形成配键,无d-d 能级跃迁;因此络合物一般无色;36. 对; 37. Co 2+为d 7组态;在无水CoCl 2中,当电子发生d-d 跃迁时,吸收波长为650~750nm 的红光,因而显示蓝色;但CoCl 2吸水后,变为CoH 2O 6Cl 2,即由相对较强的配体H 2O 取代了相对较弱的配体Cl -,引起分裂能变大,使电子发生d-d 跃迁时吸收的能量增大,即吸收光的波长缩短蓝移,吸收波长为490~500nm 的蓝光,因而呈粉红色;38. Fe 3+d 5的电子分占5个d 轨道,自旋平行,按照原子光谱的跃迁选律,此时t 2g →e g 的跃迁是自旋禁阻的,故FeCl 63-不吸收可见光,无色;在原子光谱中,若采用L-S 偶合,对于允许跃迁而言,两个状态的总自旋之差应等于零,即S =0,这表明当两个状态的自旋相同时,跃迁才可能发生,否则,跃迁是禁阻的,即称为自旋禁阻跃迁 39. 1/=1/1000×10-7cm=10000cm -140.t 2g 6,PD P P P q O O 22425123526SEF C -=-∆=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛∆-⨯-=41. ①t 2g 4e g 2;②B μ62;③ q O O O D P P 452532524CFSE =∆=⎥⎦⎤⎢⎣⎡+∆⨯+⎪⎭⎫⎝⎛∆-⨯-=42. CoF 63-:顺磁性,5200 cm -1CoCN 63-:反磁性,39600 cm -143. 否,与高、低自旋态的有关;44. 八面体络合物的分裂能可近似表示为g f O ⨯=∆,f 是配体的贡献以00.1O 2H =f 为标准,g 是中心离子的贡献;依据题意,1cm 20000-=⨯=∆g f O ,由于P O <∆,为弱场高自旋,t 2g 4e g 2,晶体场稳定化能为45. 正八面体场的LFSE 比正四面体场的CFSE 大, 只有在d 0, d和弱场d 5时二者相等, 这意味着八面体构型比四面体构型稳定所以八面体构型比四面体多;46. 离子 d 电子数 形状 d 电子排布 未成对电子数MoCl 63- d 3 八面体 t 2g 33RuNH 363+ d 5 八面体 t 2g 51MnO 43- d 2 四面体 e 22NiI 42- d 8 四面体 e 4t 242AuCN 4- d 8 正方形 d xz ,d yz 4d z 22d x 2-y 22一个配位离子究竟采取何种几何构型,主要决定于它在能量上和几何上是否有利; 对于6配位的离子,比较容易判断有时需要考虑是否会发生Jahn-Teller 效应;对于4配位的离子,因素复杂些;本题中的MnO 43-离子,从晶体场稳定化能来看,采取正方形比采取四面体构型有利,但由于MnV 半径较小47pm,若采取正方形构型,则配体之间的排斥力较大,不稳定;若采取四面体构型,则配体之间的排斥力减小,离子较稳定此时MnV 的半径也略有增大;在NiI 42-配离子中,尽管Ni 2+属d 8组态但由于它的半径仍较小,而I -的半径较大~216pm 且电负性也较大因而采取正方形构型时配体之间的斥力太大,而采取四面体构型可使斥力减小,因而稳定;同是d 8构型的Au 3+,它属第三长周期,半径较大,周围有较大的空间,此时晶体场稳定化能是决定配位离子几何构型的主导因素;由于采取正方形构型比采取四面体构型可获得较大的配位场稳定化能,因而它们的四配位离子,一般采取平面四方形,呈反磁性;47. 在对称的非线性分子中,如果体系的基态有几个简并能级,则是不稳定的,体系一定会发生畸变,使一个能级降低,以消除这种简并性; 48. 3 49. D50. 已知d x 2-y 2能级> d z 2能级>其他d 轨道能级,则应在下列何种场合产生A 正四面体场B 正八面体场C 拉长的八面体D 正方形场51. 在过渡金属的八面体络合物中,由于Jahn-Teller 效应使构型发生畸变,若为强场配体,大畸变发生在d 7,d 9,若为弱场配位体,大畸变发生在____________;52.下列络合物的几何构型哪一个偏离正八面体最大A 六水合铜ⅡB 六水合钴ⅡC 六氰合铁ⅢD 六氰合镍ⅡE 六氟合铁Ⅲ 53. 下列八面体络合物中,哪些会发生畸变为什么NiH 2O 62+,CuCl 64-,CrCN 63-,CoNH362+,FeH 2O 62+ 54.下列配为位离子中,哪个构型会发生畸变 A CrH 2O 63+B MnH 2O 62+C FeH 2O 63+D CrH 2O 62+55. 为什么 Mn 3+的六配位络离子为变形八面体,而 Cr 3+的配位络离子为正八面体构型 56. 在CuCl 2晶体中,Cu 2+周围有六个Cl -配位, 实验测得其中四个Cu —Cl 键长为230pm, 另外两个键长为295pm,试用配位场理论解释之;57. 某 AB 6n -型络合物属于O h 群,若中心原子 A 的d 电子数为6,试计算CFSE,并简单说明计算方案的理由;58. 试解释:①CoH 2O 62+比CoH 2O 63+稳定,②CoCN 63-比CoCN 64-稳定,③CoF 64-比CoBr 64-稳定; 59. 简述σ-π键的效应;60. NiCO 4中Ni 与CO 之间形成A 键B 键C -键61. CO 与过渡金属形成羰基络合物时,CO 键会A 不变B 加强C 削弱D 断裂62. 羰基络合物中,CO 键的键长比 CO 分子键长应A 不变B 缩短C 变长63. CN -是强场配体,ΔO 值特别大,按分子轨道理论,它以什么轨道形成反馈π键A 5σ轨道 B1π轨道 C2π轨道 D4σ轨道64. 试阐明银盐溶液分离烷烯烃混和物的基本原理; 65. 作图示出PtCl 3C 2H 4-中Pt 2+和C 2H 4间轨道重叠情况, 指出Pt 2+和C 2H 4 各用什么轨道成键以及电子授受情况,并讨论Pt 2+和C 2H 4形成的化学键对C 2H 4 中C-C 键的影响;50-65答案 50. C 51. d 4,d 952. A53. NiH 2O 62+,t 2g 6e g 2,不产生简并态,不发生畸变; CuCl 64-,t 2g 6e g 3,高能轨道出现简并态,大畸变; CrCN 63-,t 2g 3,不产生简并态,不发生畸变; CoNH 362+,t 2g 6e g 1,高能轨道出现简并态,大畸变; FeH 2O 62+,t 2g 4e g 2,低能轨道出现简并态,小畸变; 54. D55. Mn 3+: d 4,有Jahn-Teller 效应,发生畸变; Cr 3+: d 3,无Jahn-Teller 效应,正八面体;56. Cu 2+的d 电子排布是t 2g 6e g 3,e g 轨道上电子分布不对称, d z 2二个电子与配体斥力大, 呈拉长的八面体, 所以Cu-Cl 键长,d x 2-y 2上一个电子与配体的斥力小,Cu--Cl 键短;57. 属于O h 群,说明是理想的正八面体,没有John-Teller 效应引起的变形,d 电子应该按强场排布t 2g 6而不是弱场排布t 2g 4e g 2;58. ①H 2O 是弱场配体,对于Co 2+d 7,t 2g 5e g 2;对于Co 3+d 6,t 2g 4e g 2;前者的CFSE 较大,所以CoH 2O 62+较稳定;②CN -是强场配体,对于Co 2+d 7,t 2g 6e g 1;对于Co 3+d 6,t 2g 6;前者e g 上的一个电子很不稳定,易失去该电子而形成CoCN 63-;③CoF 64-的CFSE 较大,稳定;而CoBr 64-不稳定是由于Br -离子半径大不能形成六配位的八面体,可形成CoBr 42-,为四面体; 59. ①双重成键加强了两者之间的结合:金属离子和配体之间除了σ配键外,还有反馈π配键; ②削弱了配体内部的键:形成σ配键时,配体分子的成键π电子进入金属离子的空轨道,削弱了配体内部的键;形成反馈π键时电子从金属离子返回到配体分子的反键π轨道,去进一步削弱了配体内部的键; 60. C 61. C 62. C 63. CCN -:KK3σ24σ21π45σ21π0,其中充满电子的5σ轨道参与形成σ配键,1π空轨道参与形成反馈π键;64. Ag +的电子结构为4d 105s 0, 烯烃的电子与Ag +的5s 0形成配键,Ag的d 轨道与烯烃的反键空轨道形成反馈键, 生成稳定的-配合物而Ag +不与烷烃发生作用,从而达到分离的作用;65. Pt 2+5d 8采取dsp 2杂化,形成平面正方形配位结构,杂化轨道分别与Cl 的p 轨道和乙烯的成键轨道重叠,形成配键;Pt2+的未参与杂化的5d轨道与乙烯的反键轨道重叠形成反馈键,电子由Pt的5d流向乙烯的;乙烯成键轨道上的电子流向Pt, Pt上的电子流入乙烯的, 这两个效应均导致乙烯的C-C键削弱,键长增加;。
结构化学第三章习题答案

《结构化学》第三章习题答案3001 ( A, C )3002 H ab =∫ψa [-21∇2- a r 1 - br 1 +R 1 ] ψb d τ =E H S ab + R 1 S ab - ∫a r 1ψa ψb d τ= E H S ab + K因 E H = -13.6e V , S ab 为正值,故第一项为负值; 在分子的核间距条件下, K 为负值。
所以 H ab 为负值。
3003 ∫ψg ψu d τ=(4 - 4S 2)-1/2∫(ψa s 1+ψb s 1)((ψa s 1-ψb s 1)d τ = (4 - 4S 2)-1/2∫[ψa s 12 -ψb s 12 ] d τ= (4 - 4S 2)-1/2 [ 1 - 1 ] = 0故相互正交。
3004 ( C ) 3006 描述分子中单个电子空间运动状态的波函数叫分子轨道。
两个近似 (1) 波恩 - 奥本海默近似 ( 核质量 >> 电子质量 )(2) 单电子近似 (定态)3007 单个电子 3008 (B) 3009 (1) 能级高低相近 (2) 对称性匹配 (3) 轨道最大重叠 3010 不正确 3011 (B) 3012 ψ= (0.8)1/2φA + (0.2)1/2φB 3013 能量相近, 对称性匹配, 最大重叠> , < 或 < , >3014 正确 3015 不正确 3016 σ π π δ 30173018 z 3019 (C) 3020 π 3021 σ轨道: s -s , s -p z , s -d z , p z –p z , p z -2z d , 2z d -2z d ,π轨道p x –p x ,p x –d xz ,p y –p y ,p y –d yz ,d yz –d yz ,d xz –d xzδ轨道:d xy -d xy , d 22y x -- d 22y x -3022 σ δ π 不能 不能 3023 (B) 3024 原子轨道对 分子轨道p z -d xy ×p x -d xz πd 22y x -- d 22y x - δ2z d -2z d σp x –p x π3025 1σ22σ21π43σ2 , 3 , 反磁 3026 d xy , δ 3027 p y , d xy 3028 C 2 ( 1σg )2( 1σu )2( 1πu )2+2 s -p 混杂显著.因1σu 为弱反键,而1σg 和1πu 均为强成键,故键级在2-3之间.2: (1σg )2(1σu )2(1πu )4(2σg )2O 2: σ2s 2σ2s σ2pz 2π2px 2π2py 2π2px *π2py *1或 ( 1σg )2(1σu )22σg 2(1πu )4(1πg )23030 ( 1σg )2( 1σu )2( 1πu )4( 2σg )21 个σ键 (1σg )2,2个π键 (1πu )4,键级为 3( 1σu )2和(2σg )2分别具有弱反键和弱成键性质, 实际上成为参加成键作用很小的两对孤对电子,可记为 :N ≡N: 。
结构化学课后习题答案

结构化学课后习题答案结构化学是化学学科中的一个重要分支,它主要研究原子、分子以及晶体的结构和性质。
课后习题是帮助学生巩固和深化课堂知识的重要手段。
以下是一些结构化学课后习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的习题内容来确定。
习题一:原子轨道的基本概念1. 描述s、p、d、f轨道的基本形状和特征。
- s轨道:球形,对称性高,只有一个轨道。
- p轨道:哑铃形,有两个主瓣,对称性较低,有三个轨道。
- d轨道:具有更复杂的形状,如四叶草形等,有五个轨道。
- f轨道:形状更为复杂,有七个轨道。
2. 解释原子轨道的量子数。
- 主量子数n:决定电子层,n越大,电子离原子核越远。
- 角量子数l:决定轨道形状,l的不同值对应不同的轨道类型。
- 磁量子数m:决定轨道在空间的取向。
- 自旋量子数s:描述电子自旋状态。
习题二:分子几何结构1. 描述价层电子对互斥理论(VSEPR)的基本原理。
- VSEPR理论基于电子对的排斥作用,认为电子对会尽可能地分布在原子周围,以减少排斥力,从而形成稳定的分子几何结构。
2. 根据VSEPR理论,预测CO2分子的几何形状。
- CO2分子中,碳原子有两个双键氧原子,没有孤对电子,根据VSEPR理论,分子呈线性结构。
习题三:晶体结构1. 解释晶体的布拉维格子和晶系。
- 布拉维格子:描述晶体中原子排列的几何结构,有简单立方、体心立方、面心立方等。
- 晶系:根据晶体的对称性,晶体可以分为立方晶系、四方晶系、六方晶系等。
2. 描述面心立方(FCC)晶体的特点。
- FCC晶体中,每个原子周围有12个相邻原子,形成紧密堆积结构,具有较高的对称性和密堆积度。
习题四:化学键1. 区分离子键、共价键和金属键。
- 离子键:由正负离子之间的静电吸引形成。
- 共价键:由原子间共享电子对形成,常见于非金属元素之间。
- 金属键:由金属原子与自由电子云之间的相互作用形成。
2. 描述氢键的特点及其在分子间作用中的影响。
高中结构化学试题及答案

高中结构化学试题及答案一、选择题(每题3分,共30分)1. 下列关于原子结构的叙述,正确的是()。
A. 原子核由质子和中子组成B. 电子在原子核内运动C. 原子核带正电,电子带负电D. 质子数等于中子数答案:A2. 元素周期表中,元素的排列顺序是根据()。
A. 原子序数B. 相对原子质量C. 电子排布D. 元素名称答案:A3. 元素周期表中,同一周期元素的原子序数()。
A. 依次递增B. 依次递减C. 保持不变D. 无规律答案:A4. 元素周期表中,同一主族元素的原子序数()。
A. 依次递增B. 依次递减C. 保持不变D. 无规律答案:A5. 化学键是相邻原子之间的强烈相互作用,下列关于化学键的叙述,正确的是()。
A. 化学键只存在于离子化合物中B. 化学键只存在于共价化合物中C. 化学键可以存在于离子化合物和共价化合物中D. 化学键只存在于金属晶体中答案:C6. 下列关于分子间作用力的叙述,正确的是()。
A. 分子间作用力是一种化学键B. 分子间作用力比化学键弱C. 分子间作用力只存在于非极性分子之间D. 分子间作用力只存在于极性分子之间答案:B7. 下列关于氢键的叙述,正确的是()。
A. 氢键是一种化学键B. 氢键比范德华力强C. 氢键只存在于氢化物中D. 氢键只存在于极性分子之间答案:B8. 下列关于晶体的叙述,正确的是()。
A. 晶体具有规则的几何外形B. 晶体具有各向同性C. 晶体具有固定的熔点D. 晶体具有固定的沸点答案:C9. 下列关于金属晶体的叙述,正确的是()。
A. 金属晶体由金属离子和自由电子组成B. 金属晶体由金属原子和自由电子组成C. 金属晶体由金属离子和电子云组成D. 金属晶体由金属原子和电子云组成答案:B10. 下列关于离子晶体的叙述,正确的是()。
A. 离子晶体由正负离子组成B. 离子晶体由正离子和电子组成C. 离子晶体由负离子和电子组成D. 离子晶体由正离子和电子云组成答案:A二、填空题(每空2分,共20分)11. 原子核由____和____组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《结构化学》第三章习题3001 H 2+的H ˆ= 21∇2- a r 1 - b r 1 +R1, 此种形式已采用了下列哪几种方法: ------------------------------ ( )(A) 波恩-奥本海默近似 (B) 单电子近似(C) 原子单位制 (D) 中心力场近似3002 分析 H 2+的交换积分(β积分) H ab 为负值的根据。
3003 证明波函数 ()()()()b a b a ψψψψψψS S s 1s 121u s 1s 121g 221221--=++=是相互正交的。
3004 通过变分法计算得到的微观体系的能量总是:----------------- ( )(A) 等于真实基态能量(B) 大于真实基态能量(C) 不小于真实基态能量(D) 小于真实基态能量3006 什么叫分子轨道?按量子力学基本原理做了哪些近似以后才有分子轨道的概念?这些近似的根据是什么?3007 描述分子中 _______________ 空间运动状态的波函数称为分子轨道。
3008 对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( )(A) 分子中电子在空间运动的波函数(B) 分子中单个电子空间运动的波函数(C) 分子中单电子完全波函数(包括空间运动和自旋运动)(D) 原子轨道线性组合成的新轨道3009 试述由原子轨道有效地形成分子轨道的条件。
3010 在 LCAO-MO 中,所谓对称性匹配就是指两个原子轨道的位相相同。
这种说法是否正确?3011 在LCAO-MO 方法中,各原子轨道对分子轨道的贡献可由哪个决定:----------------- ( )(A) 组合系数 c ij (B) (c ij )2(C) (c ij )1/2 (D) (c ij )-1/23012 在极性分子 AB 中的一个分子轨道上运动的电子,在 A 原子的φA 原子轨道上出现的概率为80%, B 原子的φB 原子轨道上出现的概率为20%, 写出该分子轨道波函数 。
3013 设φA 和φB 分别是两个不同原子 A 和 B 的原子轨道, 其对应的原子轨道能量为E A 和E B ,如果两者满足________ , ____________ , ______ 原则可线性组合成分子轨道 = c A φA + c B φB 。
对于成键轨道, 如果E A ______ E B ,则 c A ______ c B 。
(注:后二个空只需填 "=" , ">" 或 "等比较符号 )3014 两个能量不同的原子轨道线性组合成两个分子轨道。
在能量较低的分子轨道中,能量较低的原子轨道贡献较大;在能量较高的分子轨道中,能量较高的原子轨道贡献较大。
这一说法是否正确?3015 凡是成键轨道都具有中心对称性。
这一说法是否正确?3016 试以 z 轴为键轴, 说明下列各对原子轨道间能否有效地组成分子轨道,若可能,则填写是什么类型的分子轨道。
2d z -2d zd yz -d yz d xz -d xz d xy - d xy3017 判断下列轨道间沿z 轴方向能否成键。
如能成键, 则在相应位置上填上分子轨道的名称。
p x p z d xy d xz p xp zd xyd xz3018 AB 为异核双原子分子,若φA y z d 与φB y p 可形成π型分子轨道,那么分子的键轴为____轴。
3019 两个原子的 d yz 轨道以 x 轴为键轴时, 形成的分子轨道为--------------------- ( )(A) σ轨道 (B) π轨道 (C) δ轨道 (D) σ-π轨道3020 若双原子分子 AB 的键轴是z 轴,则φA 的 d yz 与φB 的 p y 可形成________型分子轨道。
3021 现有4s ,4p x ,4p y ,4p z ,32d z ,3 d 22y x -,3d xy ,3d xz ,3d yz 等九个原子轨道,若规定z 轴为键轴方向,则它们之间(包括自身间)可能组成哪些分子轨道?各是何种分子轨道?3022 以z 轴为键轴,按对称性匹配原则, 下列原子轨道对间能否组成分子轨道?若能,写出是什么类型分子轨道,若不能,写出"不能",空白者按未答处理。
3023 若以x 轴为键轴,下列何种轨道能与p y 轨道最大重叠?-------------------------- ( )(A) s (B) d xy (C) p z (D) d xz3024 以 z 轴为键轴,下列"原子轨道对"之间能否形成分子轨道?若能,写出是什么轨道,若不能, 画"×" 。
原子轨道对 分子轨道p z ─d xyp x ─d xzd 22y x -─ d 22y x -2d z ─2d zp x ─p x3025 CO 分子价层基组态电子排布为_____________________________,_______________, 磁性________________。
3026 在 z 方向上能与 d xy 轨道成键的角量子数 l ≤2 的 原子轨道是 ____________ ,形成的分子轨道是_________轨道。
3027 在 x 方向上能与 d xy 轨道成键的角量子数l ≤2 的原子轨道是 ______ _______ 。
3028 写出N 2分子的基态价电子组态及其键级,说明原因。
3029 用分子轨道表示方法写出下列分子基态时价层的电子组态:N 2:_____________________________ ,O 2:_____________________________ 。
3030 写出N 2基态时的价层电子组态,并解N 2的键长(109.8?pm)特别短、键能(942 ?kJ ·mol -1)特别大的原因。
3031 写出下列分子的分子轨道的电子组态(基态), 并指明它们的磁性。
O 2 , C 23032 C2+的分子轨道为_________________,键级___________________;HCl 的分子轨道为________________,键级___________________ 。
3033 按照简单分子轨道理论:(1) HF 分子基组态电子排布为___________________________,键级_______________,磁性________________。
(2) O2-离子基组态电子排布为_____________________________,键级_______________,磁性________________。
3034 Cl2分子的HOMO 是_______________,LUMO 是_________________。
3035 写出CN-的价电子组态及键级。
3036 CF 和CF+哪一个的键长短些。
3037 请写出Cl2,O2+和CN-基态时价层的分子轨道表示式,并说明是顺磁性还是反磁性。
3038 下列分子或离子净成键电子数为1 的是:-------------------------- ( )N+(E) Li2(A) He2+(B) Be2(C)B2+(D)23039 下列分子中哪一个顺磁性最大:-------------------------- ( )(A) N2+(B) Li2(C) B2(D) C2(E) O2-3040 写出NF+的价电子组态、键级和磁性。
3041 下列分子的键长次序正确的是:-------------------------- ( )(A) OF-> OF > OF+(B) OF > OF-> OF+(C) OF+> OF > OF-(D) OF- > OF+> OF3042 OF,OF+,OF-三个分子中,键级顺序为________________。
3043 比较下列各对分子和离子的键能大小:N2,N2+( )O2,O2+( )OF,OF-( )CF,CF+( )Cl2,Cl2+( )3044 CO 是一个极性较小的分子还是极性较大的分子?其偶极矩的方向如何?为什么?3045 OH 基的第一电离能是13.2?eV ,HF 的第一电离能是16.05?eV ,它们的差值几乎与O原子和F原子的2p 轨道的价轨道电离能之间的差值相同,请用分子轨道理论解释这个结果。
3046 试用分子轨道理论讨论OH 基的结构。
(1) 写出OH 基的电子组态并画出能级图;(2) 什么类型的分子轨道会有未成对电子;(3) 讨论此轨道的性质;(4) 比较OH 基和OH-基的最低电子跃迁的能量大小。
3047 HF 分子以何种键结合?写出这个键的完全波函数。
3048 已知H 原子的电负性为2.1 ,F 原子的电负性为4.0 ,H2的键长为74 pm ,F2的键长为142 pm 。
现由H 原子和F 原子结合成HF 分子,(1) 写出HF 分子的电子组态;(2) 利用共价半径及电负性差值计算HF 分子的键长。
3049 在C2+,NO,H2+,He2+等分子中,存在单电子σ键的是______________ ,存在三电子σ键的是______________ ,存在单电子π键的是______________ 。
存在三电子π键的是______________ 。
3050 用分子轨道理论预测N22-,O22-和F22-能否稳定存在?它们的键长与其中性分子相对大小如何?3051 用分子轨道理论预测N2+,O2+和F2+能否稳定存在;它们的键长与其中性分子相对大小如何?3052 用分子轨道理论估计N2,O2,F2,O22+和F2+等是顺磁分子还是反磁分子。
3053 判断NO 和CO 哪一个的第一电离能小,原因是什么?3054 HBr 分子基态价层轨道上的电子排布是_________________________ 。
3055 下列分子的正离子和中性分子相比,解离能的大小如何:N2,NO,O2,C2,F2,CN,CO3056(1) 写出O2分子的电子结构,分析其成键情况,并解释O2分子的磁性;(2) 列出O22-,O2-,O2和O2+的键长次序;(3) 有三个振动吸收带:1097 cm-1,1580 cm-1和1865 cm-1,它们被指定为是由O2,O2+和O2-所产生的,指出哪一个谱带是属于O2+的。
3057 下列分子中,键能比其正离子的键能小的是____________________ 。
键能比其负离子的键能小的是________________________ 。