24.1.2_垂直于弦的直径(2)

合集下载

24.1.2垂直于弦的直径(教案)九年级上册初三数学(人教版)

24.1.2垂直于弦的直径(教案)九年级上册初三数学(人教版)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了垂直于弦的直径的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对垂径定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是经过弦的中点且与弦垂直的圆直径。(详细解释概念)。它的重要性在于能够将弦平分,并且平分弦所对的两条弧。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了垂直于弦的直径在实际中的应用,以及它如何帮助我们解决问题。
3.增强学生的问题解决与实际应用能力:将垂径定理应用于解决实际问题,使学生能够运用所学知识解决几何图形中的弦长、半径等问题,提高数学在实际生活中的应用能力。
4.培养学生的合作交流与表达能力:在小组讨论和课堂展示中,鼓励学生积极参与、分享观点,提高合作交流能力和数学语言表达能力。
三、教学难点与重点
1.教学重点
2.垂径定理及其应用:利用垂径定理解决实际问题,如求圆中弦长、圆半径等,并结合实际例子,让学生掌握垂径定理在几何图形中的应用。
二、核心素养目标
1.培养学生的几何直观与空间想象能力:通过探究垂直于弦的直径性质,使学生能够运用几何直观感知圆中弦与直径的关系,发展空间想象力和几何思维能力。
2.提升学生的逻辑推理与论证能力:引导学生通过严密的逻辑推理证明垂径定理,培养学生严谨的数学思维和论证能力。
其次,逻辑推理是数学教学中的一个难点,也是学生容易犯错的地方。在今天的课堂上,尽管我尝试通过引导和示范来帮助学生理解垂径定理的证明过程,但仍有部分学生在推理过程中出现混乱。针对这个问题,我考虑在接下来的教学中,设计一些更具启发性的问题和案例,让学生在解决问题的过程中逐步培养严密的逻辑推理能力。

24.1.2垂直于弦的直径 垂径定理三种语言

24.1.2垂直于弦的直径  垂径定理三种语言

提示:此中直角三角形AOD中只有A D是已知量,但可以通过弦心距、半径、 拱高的关系来设未知数,利用勾股定理列 出方程。利用垂径定理进行的几何证明
7.2m
37.4m
C A
D
B
O
关于弦的问题,常 常需要过圆心作弦 的垂线段,这是一 条非常重要的辅助 线。 圆心到弦的距离、 半径、弦构成直角 三角形,便将问题 转化为直角三角形 的问题。

解:如图,用AB表示主桥拱,设AB 所在的圆的圆心为O,半径为r.
C
D B
A ⌒ 经过圆心O作弦AB的垂线OC垂足为
D,与AB交于点C,则D是AB的中 点,C是⌒ AB的中点,CD就是拱高.
∴ AB=37.4m,CD=7.2m
∴ AD=1/2 AB=18.7m,OD=OC-CD=r-7.2 ∵ OA OD AD
C M H A E D F B O N
2 2
如图所示,一座圆弧形的拱桥,它所 在圆的半径为10米,某天通过拱桥的 水面宽度AB为16米,现有一小帆船高 出水面的高度是3.5米,问小船能否从 拱桥下通过?
1.已知弧AB,用直尺和圆规求作这条弧的中点。 2. 已知弧AB,用直尺和圆规求作这条弧的四等 分点。
N D
1.作 法 1.连接AB;
2 2 2
O
∴ r 18.7 r 7.2
2 2
2
解得r=27.9(m) 即主桥拱半径约为27.9m.
方法总结
对于一个圆中的弦长a、圆心到弦的 距离d、圆半径r、弓形高h,这四个量 中,只要已知其中任意两个量,就可 以求出另外两个量,如图有:

⑴d + h = r
a 2 ⑵ r d ( ) 2
垂径定理三种语言

24.1.2 垂直于弦的直径学案2

24.1.2 垂直于弦的直径学案2

24.1.2 垂直于弦的直径2学习时间:总课时:学习目标:1.运用垂径定理及其推论进行计算和证明.学习过程例赵州桥(如图)是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).知识点一:垂径定理的应用1.往水平放置的半径为13cm的圆柱形容器内装入一些水以后,截面图如图所示,若水面宽度AB=24cm,则水的最大深度为()A.5cm B.8cm C.10cm D.12cm2.如图是隧道的横截面,形状是以点O为圆心的圆的一部分,C是⊙O中弦AB的中点,CD经过圆心O交⊙O于点D,并且AB=4m,CD=6m,则⊙O的半径长为m.3.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)综合训练1.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽为()A.1.4m B.1.6m C.1.8m D.2m2.如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP=2,CD=8,求⊙O的半径.垂直于弦的直径。

垂直于弦的直径-九年级数学人教版(上)(原卷版+解析版)

垂直于弦的直径-九年级数学人教版(上)(原卷版+解析版)

第二十四章圆24.1.2垂直于弦的直径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.B.2C.2D.2.如图是⊙的直径,弦⊥于点则A.B.C.D.3.如图,在半径为5的圆O中,AB,C D是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为A.3 B.4C.D.4.如图,A、B是⊙O上两点,若四边形ACB O是菱形,⊙O的半径为r,则点A与点B之间的距离为A.B.C.r D.2r二、填空题:请将答案填在题中横线上.5.如图,AB为圆O的直径,CD为圆O的弦,AB⊥CD于M,若AB=10 cm,CD=8 cm,则AM=_________cm.6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.7.如图,AB是⊙O的直径,点D平分弧AC,AC=5,DE=1.5,则OE=_____.8.“圆材埋壁”是我国古代名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小。

以锯锯之,深一寸,锯道长一尺。

问:径几何?”大意是:如图,CD是⊙O的直径,弦A B⊥CD,垂足为E,CE=1寸,AB=10寸,则CD=________.9.如图是一个高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,水管水面上升了0.2 m,求此时排水管水面的宽CD.第二十四章圆24.1.2垂直于弦的直径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.B.2C.2D.【答案】D2.如图是⊙的直径,弦⊥于点则A.B.C.D.【答案】A3.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为A.3 B.4C.D.【答案】C【解析】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON=,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3.故选:C.4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为A.B.C.r D.2r【答案】B∴AD=OA sin60°=则AB=2AD=.故选:B.【名师点睛】考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.二、填空题:请将答案填在题中横线上.5.如图,AB为圆O的直径,CD为圆O的弦,AB⊥CD于M,若AB=10 cm,CD=8 cm,则AM=_________cm.【答案】2【解析】连接OD,如图,6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.【答案】5【解析】∵⊙O的直径CD垂直弦AB于点E,AB=8,∴BE=4,∠OEB=90°,设OB=x,则OC=x,∵CE=2,∴OE=x-2,∵在Rt△OBE中,OB2=OE2+BE2,∴,解得:,∴OB=5.故答案为5.7.如图,AB是⊙O的直径,点D平分弧AC,AC=5,DE=1.5,则OE=_____.【答案】8.“圆材埋壁”是我国古代名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小。

24.1.2 垂直于弦的直径(2)课件

24.1.2 垂直于弦的直径(2)课件

②⑤ ③④
③⑤ ④⑤
①③④ ①②⑤
①②④ ①②③
思考
⌒ 你能确定AB的圆心吗?
C
作法: 1. 连接AB. 2. 作AB的垂直 A ⌒ 平分线 ,交AB 于点C. 3. 作AC的垂直 平分线. 4. 两条垂直平分 线交于一点O.
B
⌒ 点O就是AB的圆心.
O
你 能 破 镜 重
m
n
A
C

吗?
B O
作法: 作弦AB、AC及它们的垂直平分线m、n,交 于O点;以O为圆心,OA为半径作圆. 依据: 弦的垂直平分线经过圆心,并且平分弦 所对的两条弧.
这五条拿出任意两条作为题设, 其余三条作为结论,会出现多 少个命题? 这些命题都是真命 题吗?
探究
C
命题1 垂径定理的推论1
① 直径 ③ 平分弦
② 垂直于弦 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
⌒ ⌒ ⌒ ⌒
已知:CD是直径,AB是弦,CD平分AB
E
A
O B
求证:CD⊥AB,AD=BD,AC=BC
B
2 5cm .
2.过⊙O内一点M的最长弦长为4厘米,最短弦长为
O
P E C
D
O
M
A
O B N
D
探究
命题2 垂径定理的推论2 ① 直径 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧

⌒ ⌒ ⌒
C
② 垂直于弦 ③ 平分弦 O B
已知:AB、CD是弦,CD⊥AB,CD平分AB 求证:CD是直径,AD=BD,AC=BC
E A
D
弦的垂直平分线经过圆心,并且平分弦所对的 两条弧.
பைடு நூலகம்

人教版 九年级上册 24.1.2 垂直于弦的直径解答题

人教版 九年级上册   24.1.2 垂直于弦的直径解答题

垂直于弦的直径1.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.2.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.圆周角3.已知四边形ABCD是圆内接四边形,∠1=112°,求∠CDE.4.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.切线5.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD ⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.6.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.7.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.(1)求证:AE=CD;(2)求证:直线AB是⊙O的切线.8.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.9.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.10.如图,⊙O的周长等于8πcm,正六边形ABCDEF内接于⊙O.(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.1.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.2.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.3.已知四边形ABCD是圆内接四边形,∠1=112°,求∠CDE.【解答】解:由圆周角定理得,∠A=∠1=56°,∵四边形ABCD是圆内接四边形,∴∠CDE=∠A=56°.4.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.【解答】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半径为.5.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD ⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.【解答】(1)证明:连结OC,如图,∵CD为切线,∴OC⊥CD,∵BD⊥DF,∴OC∥BD,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴BC平分∠ABD;(2)解:连结AE交OC于G,如图,∵AB为直径,∴∠AEB=90°,∵OC∥BD,∴OC⊥CD,∴AG=EG,易得四边形CDEG为矩形,∴GE=CD=8,∴AE=2EG=16,在Rt△ABE中,AB==4,即圆的直径为4.6.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.【解答】解:(1)BD=DC.理由如下:连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴,∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=75°,∴∠DEC=75°,∴∠EDC=180°﹣75°﹣75°=30°,∵BP∥DE,∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=,又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线;7.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.(1)求证:AE=CD;(2)求证:直线AB是⊙O的切线.【解答】解:(1)∵四边形ABCD是平行四边形∵四边形ADCE是⊙O内接四边形∴∠ADC+∠AEC=180°∵∠AEC+∠AEB=180°∴∠ADC=∠AEB∴∠B=∠AEB∴AE=CD(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.∵AF是直径∴∠AEF=90°∴∠AFE+∠EAF=90°∵∠BAE=∠ECA,∠AFE=∠ACE∴∠AFE=∠BAE∴∠BAE+∠EAF=90°∴∠BAF=90°且AO是半径∴直线AB是⊙O的切线8.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.9.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.【解答】解:∵正六边形的半径等于边长,∴正六边形的边长AB=OA=a;正六边形的周长=6AB=6a;∵OM=OA•sin60°=a,正六边形的面积S=6××a×a=a2.10.如图,⊙O的周长等于8πcm,正六边形ABCDEF内接于⊙O.(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.【解答】解:(1)连接OC、OD,作OH⊥CD于H,∵⊙O的周长等于8πcm,∴半径OC=4cm,∵六边形ABCDE是正六边形,∴∠COD=60°,∴∠COH=30°,∴圆心O到CD的距离=4×cos30°=2,∴圆心O到AF的距离为2cm;(2)正六边形ABCDEF的面积=×4×2×6=24cm2.。

24.1.2 垂直于弦的直径教学设计

24.1.2 垂直于弦的直径教学设计

24.1.2 垂直于弦的直径本节内容是前面初步理解圆后的第一个重要性质,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也是为实行圆的计算和作图提供了方法和依据.本课时主要内容有垂直于弦的直径的性质、推论及其应用.教学时要提醒学生在使用性质时要注意:直径和直径垂直于弦这两个条件缺一不可.【情景导入】(1)请同学把手中的圆对折,你会发现圆是一个什么样的图形呢?(2)请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?【说明与建议】说明:通过折叠圆的操作,探索圆的轴对称性及垂径定理,思考利用等腰三角形的性质证明圆的轴对称性.建议:学生动手操作,并分组观察、讨论和归纳操作结果,在学生归纳的过程中注意学生语言的准确性和简洁性.【归纳导入】(1)操作1:如图①,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.(2)操作2:如图,将一个圆二等分、四等分、八等分.①②③(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O 上任取一点A ,过点A 作折痕CD 的垂线,沿垂线将纸片折叠; 第四步,将纸打开,得到新的折痕,其中点M 是两条折痕的交点,即垂足,新的折痕与圆交于另一点B ,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?【说明与建议】 说明:通过对剪圆和折叠圆的操作,调动学生的积极性,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质时注意全等图形或等腰三角形知识的复习和应用.命题角度1 垂径定理及推论的理解 1.下列说法正确的是(D)A .垂直于弦的直线平分弦所对的两条弧B .平分弦的直径垂直于弦C .垂直于直径的直线平分这条直径D .弦的垂直平分线经过圆心2.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立是(C)A.AC ︵=AD ︵B.BC ︵=BD ︵C .OE =BED .CE =DE命题角度2 直接利用垂径定理进行计算3.如图,⊙O 的直径为10,AB 为弦,OC ⊥AB ,垂足为C ,若OC =4,则弦AB 的长为(C)A .10B .8C .6D .44.如图,在⊙O 中,半径r =10,弦AB =12,M 是弦AB 上的动点,则线段OM 长的最小值是(D)A .10B .16C .6D .8命题角度3 垂径定理的实际应用5.如图,一个隧道的截面图为⊙O 的一部分,路面AB =10米,净高CD =7米,则此圆半径长为(D)A .5米B .7米C.375米D.377米 6.(鄂州中考)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2.已知圆心O 在水面上方,且⊙O 被水面截得的弦AB 长为6米,⊙O 半径长为4米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是(B)图1 图2 A .1米B .(4-7)米C .2米D .(4+7)米魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.1.作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN.2.连接AN ,并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C. 3.连接BN ,并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 延长线于点D. 4.以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆.5.在OM 上作线段MF 等于NC.以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.活动一:学生动手操作把事先准备好的一张圆形纸片沿着圆的任意一条直径对折,重复做几次,你有什么发现?由此你能得到什么结论?试一试!师生活动:学生动手操作,教师观察操作结果,在学生归纳的过程中注意学生语言的准确性和衔接性.结论:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴. 活动二:出示问题从上面的动手操作可知,如图,如果⊙O 的直径CD 垂直于弦AA ′,垂足为M ,那么点A 和点A ′是对称点,把⊙O 沿着直径CD 折叠时,点A 与点A ′重合,你能找出图中有哪些相等的线段和弧吗?并说明理由.师生活动:学生进行观察、分析,通过合情推理总结结论,教师指导学生分析题目中的条件和结论.教师用多媒体演示,学生尝试归纳垂径定理后,教师补充、完善,最后用几何语言进行描述.教师板书:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.几何语言:∵CD ⊥AA ′,CD 是⊙O 的直径, ∴AM =MA ′,AC ︵=A ′C ︵,AD ︵=A ′D ︵. 活动三:教师针对图形,提出问题1:垂径定理是由几个条件得到几个结论? 师生分析得:①直径;②垂直于弦;③平分弦;④平分优弧;⑤平分劣弧.问题2:把垂径定理中的“垂直”和“平分”互换,是否仍然成立呢? 学生讨论、交流,并用语言进行总结,教师引导、点拨,得到结论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【典型例题】例1 如图所示,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定正确的是(D)A .∠COE =∠DOEB .CE =DE C.AC ︵=AD ︵D .OE =BE例2 如图,在⊙O 中,CD 是⊙O 的直径,AB ⊥CD 于点E.若AB =6,OE =7,则⊙O 的直径为(D)A.10 B .210 C .4 D .8师生活动:教师引导学生分析,圆心到弦的距离为,连接半径,从而构造直角三角形进行解答. 例3 解答赵州桥的问题.教师引导学生分析:根据赵州桥的实物图画出几何图形,如图.教师总结:在圆中解决有关弦长或半径的问题,常需要作垂直于弦的半径或过圆心向弦作垂线段,把垂径定理和勾股定理结合,得到半径r ,弦心距d ,弦长a 之间的关系:r 2=d 2+(a 2)2.学生书写解答过程,教师做好点评. 【变式训练】1.如图,⊙O 中弦AB 长为8,OC ⊥AB ,垂足为E.若CE =2,则⊙O 半径长是(D)A .10B .8C .6D .52.如图,一根排水管道的横截面是半径为13 cm 的圆.排水管内有水,若水面宽度AB =24 cm ,则水管中水的最大深度为8 cm.3.已知⊙O 的直径CD =100 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =96 cm ,则AC 的长为(B)A .36 cm 或64 cmB .60 cm 或80 cmC .80 cmD .60 cm师生活动:学生思考,小组讨论,教师作适当引导,使学生能运用转化思想、分类讨论思想解决问题.A.12.5 B.13 C.25 D.263.一辆装满货物,宽为2.4米的卡车,欲通过如图所示的隧道,则卡车的外形高必须低于(A)A.4.1米 B.4.0米 C.3.9米 D.3.8米师生活动:学生进行当堂检测,完成后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在思考解答的基础上,共同交流,形成共识,确定答案.1.课堂小结:(1)你在本节课的学习中有哪些收获?有哪些进步?(2)学习本节课后,还存在哪些困惑?教师讲解主要内容:在圆内求弦的长度,常常需要过圆心作弦的垂线段,利用勾股定理进行解答.2.布置作业:(1)教材第83页练习第2题,教材第89~90页习题24.1第8,9,10,11题.(2)补充题(选做):好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16 m时,拱顶高出水平面4 m,货船宽12 m,船舱顶部为矩形并高出水面3 m.。

24.1.2++垂直于弦的直径+课件+2023-2024学年人教版数学九年级上册

24.1.2++垂直于弦的直径+课件+2023-2024学年人教版数学九年级上册

12.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,如果 CD=20,BE=4,
求⊙O 的半径. 解:连接 OC,∵CD⊥AB,
∴CE=12 CD=10. 设⊙O 的半径为 r,则 OE=r-4, 在 Rt△OEC 中,
由勾股定理,得 OE2+CE2=OC2,
∴(r-4)2+102=r2,
10.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题: “今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径 几何”,用几何语言可表述为:CD 为⊙O 的直径,弦 AB 垂直 CD 于点 E, CE=1 寸,AB=10 寸,则直径 CD 的长为__2_6_寸.
11.⊙O 的直径 CD=10,弦 AB⊥CD,且 AB=8, 则弦 AC 的长为 2 5 或 4 5 .
∴Rt△AON≌Rt△DOM,
∴OM=ON, 又∠ONE=∠OME=∠MEN=90°,
∴四边形 OMEN 是正方形;
(2)若 CE=1,DE=3,求⊙O 的半径.
(2)∵CE=1,DE=3, ∴CD=4, ∴DM=2, ∴EM=OM=1, ∴OD= OM2+DM2 = 5 , 即⊙O 的半径为 5 .
5.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,连接 OD,若 AB=6,BE =1,则弦 CD 的长是_2__5_.
6.如图,⊙O 的直径 AB 垂直于弦 CD,垂足为 E,∠A=15°,半径为 2, 则弦 CD 的长为_2___.
7.(教材第 90 页第 9 题改)如图,两个圆都以 O 为圆心.
解得 r=229 ,∴⊙O 的半径是229 .
13.(教材第 83 页第 2 题改)如图,⊙O 的两条弦 AB,CD 互相垂直于点 E, AB=CD,过点 O 作 OM⊥CD 于点 M,ON⊥AB 于点 N. (1)求证:四边形 OMEN 是正方形;

24.1.2垂直于弦的直径

24.1.2垂直于弦的直径

AB
1 1 AE AB 8 4 2 2
在Rt △ AOE 中
A
E
B
O
·
AO OE AE
2 2
2
AO OE 2 AE 2 = 32 +4 2 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
C A
D
B
O
关于弦的问题,常 常需要过圆心作弦 的垂线段,这是一 条非常重要的辅助 线。 圆心到弦的距离、 半径、弦构成直角 三角形,便将问题 转化为直角三角形 的问题。

解:如图,用AB表示主桥拱,设AB 所在的圆的圆心为O,半径为r. 经过圆心O作弦⌒ AB的垂线OC垂足为 D,与AB交于点C,则D是AB的中 点,C是⌒ AB的中点,CD就是拱高.
证明: OE AC OD AB AB AC
OEA 90

EAD 90

ODA 90

1 1 ∴四边形ADOE为矩形,AE AC,AD AB 2 2 C 又 ∵AC=AB
∴ AE=AD ∴ 四边形ADOE为正方形.
A D B E
·
O
C
垂径定理:
·
E A D B
O

由 ① CD是直径 ② CD⊥AB
推论:
③AE=BE,
可推得
⌒ ⌒ ④AC=BC,
⌒ ⑤AD=BD.
②CD⊥AB,


由 ① CD是直径 ③ AE=BE
可推得
⌒ ⌒ ④AC=BC, ⌒ ⑤AD=BD. ⌒

24.1.2垂直于弦的直径(2)

24.1.2垂直于弦的直径(2)
作法:⒈连结AB.
⒉作AB的垂直平分线CD,交弧AB于点E.
阅读教材,
比较得出结论
互助探究,归纳
师友同探
综合应用
巩固练习








书P83练习
预习下一节









三、当堂达标
1.圆的半径为5cm,圆心到弦的距离为4cm,则弦长为多少?
2.如图5AB是⊙O的直径,CD为弦,AB垂直于CD,则下列结论中不成立的是( )
3.如图6,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.

4.已知AB,如图,用直尺和圆规求作这条弧的中点
课时“学与教”要点设计
课题
24.1.2 垂直于弦的直径(2)
课型
新课
授课时间
年月日
总第节数




1.熟练掌握垂径定理及其推论;
2.能用垂径定理及其推论进行有关的计算和证明,进一应用垂径定理解决实际问题.
重点
“垂径定理及其推论”及其在实际问题中的应用
难点
分清垂径定理及其推论的题设和结论、垂径定理及其在实际问题中的应用
关键
通过对比理解垂径定理及其推论
课前
准备
课件
时间
内容与过程
学与教方法、手段
一、互助交流
垂径定理的内容是什么?画出符合定理的图形,用几何符号语言表示出来.
垂直于弦的直径平分弦,且平分弦所对的两条弧
图形语言 符号语言
∵CD是直径,CD⊥AB,
∴AE=BE,

【教育资料】人教版九年级数学上册 第24章圆24.1.2 垂直于弦的直径 导学案学习精品

【教育资料】人教版九年级数学上册 第24章圆24.1.2 垂直于弦的直径 导学案学习精品

第二十四章圆24.1.2 垂直于弦的直径知识要点1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB经过圆心O且与圆交于A,B两点;②AB⊥CD交CD于E,那么可以推出:③CE=DE;④=;⑤=.3.平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧.点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径.(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个.知识构建1.在⊙O中,直径为10 cm,圆心O到AB的距离为3 cm,则弦AB的长为 __8_cm__.2.在⊙O中,直径为10 cm,弦AB的长为8 cm,则圆心O到AB的距离为__3_cm__.点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.3.⊙O的半径OA=5 cm,弦AB=8 cm,点C是AB的中点,则OC的长为__3_cm__.点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线.4.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米?(8米)点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.知识运用5.AB是⊙O的直径,弦CD⊥AB,E为垂足,若AE=9,BE=1,求CD的长.解:6.点拨精讲:常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.6.⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为__3__,最大值为__5__.点拨精讲:当OM与AB垂直时,OM最小(为什么),M在A(或B)处时OM最大.7.如图,线段AB与⊙O交于C,D两点,且OA=OB.求证:AC=BD.证明:作OE⊥AB于E.则CE=DE.∵OA=OB,OE⊥AB,∴AE=BE,∴AE-CE=BE-DE.即AC=BD.8.在直径是20 cm的⊙O中,∠AOB的度数是60°,那么弦AB的弦心距是__5__cm.点拨精讲:这里利用60°角构造等边三角形,从而得出弦长.9.弓形的弦长为6 cm,弓形的高为2 cm,则这个弓形所在的圆的半径为____cm.10.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过点O作OE⊥AB于点E.则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂径.11.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.由AB∥CD,则OF⊥CD.(1)当AB,CD在点O两侧时,如图①.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF =24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE+OF=22 (cm).即AB与CD之间距离为22 cm.(2)当AB,CD在点O同侧时,如图②,连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF =24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE-OF=8 (cm).即AB与CD之间距离为8 cm.由(1)(2)知AB与CD之间的距离为22 cm或8 cm.点拨精讲:分类讨论,①AB,CD在点O两侧,②AB,CD在点O同侧.。

24.1.2 垂直于弦的直径(2)

24.1.2 垂直于弦的直径(2)
O · E D B
平分弦(不是直径)的直径垂直于
弦,并且平分弦所对的两条弧。 (2)“不是直径”这个条件能去掉吗?如 果不能,请举出反例。
C A O · B D
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C A E└

B
O
① ②
③ ④ ⑤
D
CD是直径 CD⊥AB
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E

B
O
④ ⑤
① ② ③
D
AC=BC AD=BD
CD是直径 CD⊥AB AE=BE
C
① CD是直径, ② CD⊥AB, ③ AM=BM ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
A
└ M

点C是AB的中点,则OC的长为

A
C · O
B
2、 下列命题错误的是(

A、平分弧的直径平分这条弧所对的弦
B、平分弦的弦垂直于这条弦 C、垂直于弦的直径平分这条弦 D、弦的中垂线过圆心
3、如图,⊙O中CD是弦,AB是直径, AE⊥CD于E,BF⊥CD于F,求证:CE=DF。
A O C F E M D
C
A E

B
O
① ④
② ③ E AD= BD
D
AC=BC
① ⑤
② ③ ④
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E

B
O
② ③
① ④ ⑤

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。

2021年人教版数学九年级上册24 垂直于弦的直径(第2课时)教案与反思

2021年人教版数学九年级上册24  垂直于弦的直径(第2课时)教案与反思

24.1.2 垂直于弦的直径(第2课时)前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣一、基本目标【知识与技能】1.理解与掌握圆的对称性、垂径定理及其推论.2.运用垂径定理及其推论解决一些有关证明、计算和作图问题.【过程与方法】经历探索发现圆的对称性,证明垂径定理及其推论的过程,获得几何学习的一些常用方法:合情推理、证明、抽象概括等.【情感态度与价值观】通过观察、操作、变换和研究的过程,进一步培养学生的思维能力、创新意识和良好的运用数学的习惯和意识.二、重难点目标【教学重点】垂径定理及其推论.【教学难点】垂径定理及其推论的运用.环节1 自学提纲,生成问题【5 min阅读】阅读教材P81~P83的内容,完成下面练习.【3 min反馈】1.圆是__轴对称__图形,任何一条直径所在直线都是圆的__对称轴__.2.垂径定理:垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧.即一条直线如果满足:①CD经过圆心O且与圆交于C、D两点;②AB⊥CD交CD于M;那么可以推出:③__AM_=_BM__ ,④__AC=BC__,⑤__AD=BD.3.垂径定理的推论:__平分__弦(不是直径)的直径垂直于弦,并且__平分__弦所对的两条弧.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米,求此时的水深(即阴影部分的弓形高).【互动探索】(引发学生思考)要求此时的水深,即阴影部分的弓形高,结合垂径定理,考虑怎样作辅助线才能得到水深?【解答】如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D ,连结OB .根据垂径定理,得C 是AB 的中点,D 是AB ︵ 的中点,CD 就是水深,则BC =AB =0.3米.由题意知,OD =OB =0.5米,在Rt △OBC 中,由勾股定理,得OC =OB 2-BC 2=0.4米, 所以CD =OD -OC =0.1米,即此时的水深为0.1米.【互动总结】(学生总结,老师点评)在圆中求半径、弦等线段的长时,常常借助垂径定理构造直角三角形,再在直角三角形中运用勾股定理来解决.【活动2】 巩固练习(学生独学)1.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是多少?解:连结AO .由题意可知,OA =OC =5,则OD =OC -CD =5-1=4.∵OC ⊥AB ,∴∠ODA =90°,∴AD =OA 2-OD 2=3.又∵AB 为⊙O 的弦,∴AB =2AD =6.2.一条排水管的截面如图所示.已知排水管的半径OB =10 cm ,水面宽AB =16 cm.求截面圆心O 到水面的距离.解:过点O 作OC ⊥AB 于点C .∵OC ⊥AB ,AB =16 cm ,∴∠OCB=90°,BC=错误!未定义书签。

辽宁省鞍山市第二中学九年级数学上册 24.1.2垂直于弦的直径 课件

辽宁省鞍山市第二中学九年级数学上册 24.1.2垂直于弦的直径 课件

------华罗庚
C
O
A
A
E
B
A
O
D
B
D
B
O
D
C
A
A
O
C
B
C
C
B
D
O
几何语言: ∵OE⊥AB于E点
∴AE=BE AC BC
C
O
A
E
B
几何语言: ∵OC⊥AB于C点 ∴AC=BC
A
O
Байду номын сангаас
C
B
几何语言:
∵OC⊥AB于D点
∴AD=BD AC BC
A
O
D
B
C
A
C
B
D
O
思考:若C、D为弦AB,弧AB中点呢?
对的两条弧. 垂径定理的推论:平分弦(非直径)的直径垂直
于弦,并且平分弦所对的两条弧。 ①构造直角三角形,垂径定理和勾股定理有机结合
是计算弦长、半径和弦心距等问题的方法. ②技巧:重要辅助线是过圆心作弦的垂线. 重要思路:(由)垂径定理—构造直角三角形—
(结合)勾股定理—建立方程.
新的数学方法和概念,常常比解决 数学问题本身更重要。
24.1.2 垂直于弦的直径
二中 黄雅秋
探究新知
请拿出准备好的圆形纸片,沿着它的直径翻折,重 复做几次,你发现了什么?
圆是轴对称图形,直径所在的直线是它的对称轴。
1、下列图是否具备垂径定理的条件。
c
C
A
D
B
O
O
A
E
B
A
O
C
B
A
O
D
B
C

(含答案)九年级数学人教版上册课时练第24章《24.1.2 垂直于弦的直径》(2)

(含答案)九年级数学人教版上册课时练第24章《24.1.2 垂直于弦的直径》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第24章圆24.1.2垂直于弦的直径一、单选题^于点D,若OC=10,AB=16,则CD的长1.如图,在⊙O中,AB是弦,半径OC AB为()A.6B.5C.4D.3 2.如图所示,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立的是()A.∠COE=∠DOE B.CE=DEC.OE=BE D.BD BC=3.如图,⊙O的半径为4,弦心距OC=2,则弦AB的长为()A.3B.C.6D.4.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD 是()A .梯形B .矩形C .菱形D .正方形5.如图,O 的直径AB ^弦CD 于点E ,连接BD .若8CD =,3OE =,则BD 的长为()A B .C D .6.如图,⊙O 的半径为5,弦AB =8,P 是弦AB 上的一个动点(不与A 、B 重合),下列符合条件的OP 的值是()A .5.8B .3.8C .1.3D .2.57.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,若AB =,则⊙O 的半径为()A .B .C .D .8.数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为()A .50cmB .35cmC .25cmD .20cm二、填空题9.如图,⊙O 的半径为2,弦AB =C 是弦AB 上一动点,OC 长为整数,则OC 的长为______.10在场地上砸出了一个坑口直径约为10cm 、深约为2cm 的小坑,则该铅球直径约为____cm .11.如图,在半径为10cm 的⊙O 中,弦AB =12cm ,OC ⊥AB ,垂足为C ,则OC 的长为_____cm .12.如图,在⊙O 中,直径AB 的长为10,弦CD 的长为6,且AB ⊥CD 于E ,则AE 的长为_____.13.如图,某下水管道的横截面为圆形,水面宽AB 的长为8dm ,水面到管道上部最高处点D 的距离为2dm ,则管道半径为________dm .14.如图,在平面直角坐标系中,以原点O 为圆心的圆过点(5,0)A ,一直线过点(2,3)D 与圆O 交于B 、C 两点,则弦BC 的长的最小值为________.15.如图所示一个圆柱体容器内装入一些水,截面AB 在圆心O 下方,若⊙O 的直径为60cm ,水面宽AB =48cm ,则水的最大深度为_____cm .16.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =24cm ,CD =10cm .则AB和CD之间的距离_____.三、解答题17.如图翠湖公园一石拱桥是圆弧形(劣弧),其跨度AB=24米,拱高CD为8米,求圆弧所在的圆的半径是多少米?18.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如图EM经过圆心交⊙O于点E,EM⊥CD,并且CD=4cm,EM=6cm,求⊙O的半径.19.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交BC于D,连接AC.(1)请写出三个不同类型....的正确结论;(2)若CB=8,ED=2,求⊙O的半径.20.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD^AB,OE^AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.7/7参考答案1.C 2.C 3.D 4.B 5.D 6.B 7.C 8.C 9.1或210.29211.812.913.514.15.1216.7cm 或17cm 17.1318.10cm 319.520.cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
A
O ┌ E
A
600
B
O ø 650
D
D
600
B
C
C
M
E A
.O
小结: 小结:
B
A C
. E
O
D B
C A
D B
.O
N
解决有关弦的问题,经常是过圆心作弦的垂线, 解决有关弦的问题,经常是过圆心作弦的垂线,或 过圆心作弦的垂线 作垂直于弦的直径,连结半径等辅助线,为应用垂径定 作垂直于弦的直径,连结半径等辅助线, 等辅助线 理创造条件。 理创造条件。
船能过拱桥吗
表示桥拱, 所在圆的圆心为O,半径为Rm, O,半径为 解:如图,用 AB 表示桥拱, AB 所在圆的圆心为O,半径为Rm, 如图, 经过圆心O作弦AB的垂线OD,D为垂足, AB的垂线OD,D为垂足 相交于点C. C.根 经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根 据垂径定理,D AB的中点,C是 ,D是 的中点,C 的中点,CD就是拱高. ,CD就是拱高 据垂径定理,D是AB的中点,C是 AB 的中点,CD就是拱高. 由题设得 1
(3).如图,有一圆弧形桥拱,拱形的半径为10米, 如图,有一圆弧形桥拱,拱形的半径为10米 10 桥拱的跨度AB=16 AB=16米 桥拱的跨度AB=16米,则拱高为 4 米。
C
A
·
D
O
B
船能过拱桥吗? 船能过拱桥吗?
例3.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水 3.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米 如图 7.2 2.4米 现有一艘宽3 船舱顶部为长方形并高出水面2 面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的 货船要经过这里,此货船能顺利通过这座拱桥吗? 货船要经过这里,此货船能顺利通过这座拱桥吗?
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得 ( ) △ 中 由勾股定理,
OH = ON 2 − HN 2 , 即OH = 3.9 2 − 1.52 = 3.6. 此货船能顺利通过这座拱桥. ∴ DH = 3.6 − 1.5 = 2.1 > 2. ∴此货船能顺利通过这座拱桥
1.过 内一点M的最长的弦长为10 10㎝ 最短弦长为8 1.过⊙o内一点M的最长的弦长为10㎝,最短弦长为8 那么⊙ ㎝,那么⊙o的半径是 5㎝ ㎝ 2.已知 已知⊙ 的弦AB=6 AB=6㎝ 直径CD=10 CD=10㎝ AB⊥CD,那 2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那 ㎝ 么C到AB的距离等于 1㎝或9㎝ AB的距离等于 ㎝ 3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝, 3.已知⊙ 的弦AB=4㎝ 圆心O AB的中点C的距离为1 已知 AB=4 的中点 那么⊙ 5 Cm 那么⊙O的半径为 4.如图,在⊙O中弦AB⊥AC, 中弦AB⊥AC, 4.如图, 如图 OM⊥AB,ON⊥AC,垂足分别为M, OM⊥AB,ON⊥AC,垂足分别为M, 垂足分别为 N,且OM=2,0N=3,则 N,且OM=2,0N=3,则AB= 6 AC= 4 ,OA= 13 ,
连接OC. 解:连接OC.
设弯路的半径为Rm , 则OF = ( R − 90)m. Q OE ⊥ CD, 1 1 ∴ CF = CD = × 600 = 300(m). 2 2 OC 2 = CF 2 + OF 2 ,即 根据勾股定理, 得
R 2 = 300 2 + (R − 90 ) . D 解这个方程, 得R = 545. ∴ 这段弯路的半径约为545m.
1.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示. 在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示. 650mm的圆柱形油槽内装入一些油后
若油面宽AB 600mm,求油的最大深度. 若油面宽AB = 600mm,求油的最大深度.
A
O ┌ E
D
D
600
B
C
在直径为650 的圆柱形油槽内装入一些油后, 在直径为650mm的圆柱形油槽内装入一些油后,截面的油面宽 求油的最大深度. AB = 600mm,求油的最大深度.
2
C E F

O
(1)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OA的夹角为 (1)如图,已知⊙ AB与半径 OA的夹角为 如图 的长. 30 °,求弦 AB 的长.
O 6 O A
30° 30°
E
B
M A
B
C (2)如图 已知⊙ 如图, AB与半径 OC互相平分 互相平分, (2)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OC互相平分, 的长. 交点为 M , 求 弦 AB 的长.
问 题 ?
赵州桥的主桥拱是圆弧形,它的跨度( 赵州桥的主桥拱是圆弧形,它的跨度(弧所对 的弦的长) 37.4米 拱高( 的弦的长)为37.4米,拱高(弧的中点到弦的距 7.2米 你能求出赵州桥主桥拱的半径吗? 离)为7.2米,你能求出赵州桥主桥拱的半径吗?
A

B O
问 题 ?
例1:赵州桥的主桥拱是圆弧形,它的跨度(弧所对 赵州桥的主桥拱是圆弧形,它的跨度( 的弦的长) 37.4米 拱高(弧的中点到弦的距离) 的弦的长)为37.4米,拱高(弧的中点到弦的距离)为 7.2米 你能求出赵州桥主桥拱的半径吗? 7.2米,你能求出赵州桥主桥拱的半径吗?
AB = 7.2, CD = 2.4, HN = MN = 1.5. 2 1 1 AD = AB = × 7.2 = 3.6, 2 2 OD = OC − DC = R − 2.4.
OA2 = AD 2 + OD 2 , 即R 2 = 3.6 2 + ( R − 2.4) 2 .
在Rt△OAD中,由勾股定理,得 △ 中 由勾股定理,
C
A r
D

B O
• 例2 如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是 如图,一条公路的转变处是一段圆弧(即图中弧CD, CD,点 CD的圆心),其中CD=600m,E为弧CD上的一点 的圆心),其中CD=600m,E为弧CD上的一点, OE⊥CD垂足为 弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD垂足为 F,EF=90m.求这段弯路的半径 求这段弯路的半径. F,EF=90m.求这段弯路的半径.
B M A
O
N C
练习: 在 ,AB、AC为互相垂直且相等的两条弦 的两条弦, 练习:5.在⊙O中,AB、 为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于 OD⊥AB于D,OE⊥AC于E. 求证:四边形ADOE是正方形. 求证:四边形ADOE是正方形. ADOE是正方形
C E A O D B
垂径定理ห้องสมุดไป่ตู้
定理
C
垂直于弦的直径平分弦,并且平分弦所对的两条弧. 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
⊥ 如图∵ 是直径, 如图∵ CD是直径 CD⊥AB, 是直径
B O
A
M└ └

∴AM=BM,
⌒ ⌒ AC =BC,
⌒ AD=BD.

D
推论:平分弦(不是直径)的直径垂直于弦, 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧。 对的两条弧。
相关文档
最新文档