信号分析与处理16
信号分析与处理
信号分析与处理第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统.测试技术的目的是信息获取、处理和利用。
测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。
信号分析与处理是测试技术的重要研究内容.信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。
一切物体运动和状态的变化,都是一种信号,传递不同的信息.信号常常表示为时间的函数,函数表示和图形表示信号。
信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。
信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号;周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析;信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。
信号处理包括时域处理和频域处理。
时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容;测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。
常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列.系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。
被测系统和测试系统统称为系统.输入信号和输出信号统称为测试信号.系统分为连续时间系统和离散时间系统。
系统的主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统。
第二章 连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号的傅立叶变换、周期信号的傅立叶变换、采样信号分析(从连续开始引入到离散)。
《信号分析与处理》课件
06
信号处理的实际应用
信号处理在通信领域的应用
01
信号调制与解调
利用信号处理技术对信号进行调 制和解调,实现信号的传输和接 收。
02
信号压缩与解压缩
03
信号增强与恢复
通过信号处理技术对信号进行压 缩和解压缩,以减少传输带宽和 存储空间。
针对信道噪声和干扰,采用信号 处理算法对信号进行增强和恢复 ,提高通信质量。
调制解调的应用
无线通信
移动通信
在无线通信中,调制解调技术是实现 信号传输的关键环节,通过不同的调 制解调方式可以实现高速、可靠、低 成本的无线通信。
在移动通信中,由于信道条件变化大 、传输环境复杂,调制解调技术对于 提高信号传输质量和降低干扰具有重 要作用。
卫星通信
卫星通信中,由于传输距离远、信道 条件复杂,调制解调技术对于提高信 号传输质量和降低误码率具有重要意 义。
备或算法。
02
滤波器的作用
对信号进行预处理,提高信号质量,提取有用信息,抑制噪声和干扰。
03
滤波器的分类
按照不同的分类标准,可以将滤波器分为多种类型,如按照处理信号的
类型可以分为模拟滤波器和数字滤波器;按照功能可以分为低通滤波器
、高通滤波器、带通滤波器和带阻滤波器等。
滤波器的特性
频率特性
描述滤波器对不同频率信 号的通过和抑制能力,是 滤波器最重要的特性之一 。
通过将信号从时间域转换到频率域,可以更好地 揭示信号的内在特征和规律。
频域分析的基本概念包括频率、频谱、带宽等。
频域变换的性质
傅里叶变换
将信号从时间域转换到频率域的常用方法,具有 线性、时移、频移等性质。
频谱分析
通过分析信号的频谱,可以得到信号的频率成分 和幅度信息。
信号分析与处理课后答案_赵光宙
信号分析与处理课后答案一、信号分析基础1.1 什么是信号?信号是一种随时间变化的物理量或信息。
根据信号的特点,可以分为连续信号和离散信号。
连续信号是指在任意时间点上都能够取到值的信号,通常用连续函数来表示。
离散信号是指只在某些离散时间点上能够取到值的信号,通常用序列来表示。
1.2 信号处理的基本任务信号处理的基本任务包括信号的获取、表示、转换、分析和处理。
其中,信号的获取是指从外部获取信号的过程,信号的表示是指将信号用数学方法表示出来,信号的转换是指将信号从一种形式转换为另一种形式,信号的分析是指对信号进行频域、时域等方面的分析,信号的处理是指对信号进行滤波、降噪、压缩等处理操作。
二、离散信号的表示与运算2.1 离散信号的表示离散信号可以用序列表示。
序列是一系列按固定顺序排列的数值,通常用形如{x(n)}的表示方法。
2.2 离散信号的运算离散信号的运算包括加法、减法、乘法和除法等。
对于两个离散信号x(n)和y(n),它们的加法可以写作z(n) = x(n) + y(n),减法可以写作z(n) = x(n) - y(n),乘法可以写作z(n) = x(n) * y(n),除法可以写作z(n) = x(n) / y(n)。
三、信号的时域分析3.1 信号的时域表示信号的时域表示是指将信号用时间序列表示出来。
在时域分析中,常用的表示方法包括离散时间信号和连续时间信号。
离散时间信号可以用序列表示,连续时间信号可以用连续函数表示。
3.2 信号的时域分析方法信号的时域分析方法包括时域表示、自相关函数和相关函数等。
时域表示是指将信号在时域上的特征表达出来,自相关函数是指信号与其自身的乘积在不同时间点上的累加,相关函数是指两个信号在不同时间点上的乘积的累加。
四、信号的频域分析4.1 信号的频域表示信号的频域表示是指将信号在频域上的特征表达出来。
常用的频域表示方法包括傅里叶变换、频谱分析和功率谱分析等。
4.2 傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法。
信号分析与处理
信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息:反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号:是传载信息的物理量,是信息的表现形式。
区别与联系 信号的分类1.按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号;2.按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号; 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换(Short Time Fourier Transform) 2.小波变换(Wavelet Transform)3.小波包分析(Wavelet Package Analysis)4.第二代小波变换5.循环平稳信号分析(Cyclostationary Signal Analysis)6.经验模式分解(Empirical Mode Decomposition)和希尔伯特-黄变换(Hilbert-Huang Transform) 3.信号处理内积的意义,基函数的定义与物理意义。
内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。
信号分析与处理习题
一、选择题:1、下列哪个系统不属于因果系统( )。
A 、]1[][][+-=n x n x n yB 、12()(0)2(0)3()y t x x f t =+-C 、[][]nk y n x k =-∞=∑ D 、()()(1)y t cf t df t =+-2、设激励为f 1(t )、f 2(t )时系统产生的响应分别为y l (t )、y 2(t ),并设a 、b 为任意实常数,若系统具有如下性质:af 1(t )+bf 2(t )↔ay l (t )+by 2(t ),则系统为( )。
A 、线性系统 B 、因果系统 C 、非线性系统D 、时不变系统3、右图所示f (t )的表达式为(C )。
A 、[]()(1)(1)t t t t εεε--+- B 、[]()(1)t t t εε--- C 、[](1)()(1)t t t εε---- D 、[]()(2)t t t εε--4、结构组成和元件参数不随时间变化的系统称为( )系统。
A 、时变 B 、时不变 C 、线性 D 、非线性5、积分f (t )=13-⎰(2t 2+1)δ(t -2)dt 的结果为( )。
A 、1B 、3C 、0D 、9 6、积分55(4)()t t dt δ--⎰等于( )。
A 、-4B 、4C 、3D 、-37、已知信号()f t 的最高频率0f Hz ,则对信号(/2)f t 取样时,其频谱不混叠的最大取样间隔max T 等于( )。
A 、02f B 、 01f C 、012f D 、014f 8线性常系数微分方程()2()3()2()()y t y t y t x t x t ''''++=+表征的LTI 系统,其单位冲激响应h (t )中( )。
A 、包括()t δ项B 、不包括()t δ项C 、不能确认D 、包括()t δ'项 9、以下分别是4个信号的拉普拉斯变换,其中(C )不存在傅里叶变换?A 、1sB 、1C 、12s -D 、12s +10、周期信号的频谱特点是( )。
信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案
第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。
(1) )()1(31)(n x n y n y =--解 当激励为)(n δ时,响应为)(n h ,即:)()1(31)(n n h n h δ+-=由于方程简单,可利用迭代法求解:1)0()1(31)0(=+-=δh h ,31)0(31)1()0(31)1(==+=h h h δ,231)1(31)2()1(31)2(⎪⎭⎫ ⎝⎛==+=h h h δ…,由此可归纳出)(n h 的表达式:)()31()(n n h n ε=利用阶跃响应和冲激响应的关系,可以求得阶跃响应:)(])31(2123[311)31(1)31()()(10n k h n s n n k nk nk ε-=--===+=-∞=∑∑(2) )()2(41)(n x n y n y =--解 (a)求冲激响应)()2(41)(n n h n h δ=--,当0>n 时,0)2(41)(=--n h n h 。
特征方程0412=-λ,解得特征根为21,2121-==λλ。
所以: n n C C n h )21()21()(21-+= …(2.1.2.1)通过原方程迭代知,1)0()2(41)0(=+-=δh h ,0)1()1(41)1(=+-=δh h ,代入式(2.1.2.1)中得:121=+C C0212121=-C C 解得2121==C C , 代入式(2.1.2.1):0,)21(21)21(21)(>-+=n n h n n …(2.1.2.2)可验证)0(h 满足式(2.1.2.2),所以:)(])21()21[(21)(n n h n n ε-+=(b)求阶跃响应通解为 n n c C C n s )21()21()(21-+=特解形式为 K n s p =)(,K n s p =-)2(,代入原方程有 141=-K K , 即34=K完全解为34)21()21()()()(21+-+=+=n n p c C C n s n s n s通过原方程迭代之1)0(=s ,1)1(=s ,由此可得13421=++C C134212121=+-C C 解得211-=C ,612=C 。
信号分析与处理【精品-PPT】_图文_图文
与模拟处理系统相比数字处理系统具有以下优点: (1)数字处理系统可以完成许多模拟处理系统感 到困难甚至难以完成的复杂的信号处理任务。 以信号的谱分析为例,模拟处理系统通常要采用
大量的窄带滤波器来构成,不仅处理功能有限,而且分 辨力低,分析时间长。而现代数字谱分析采用快速傅里 叶变换算法(FFT),对于 1024点序列作谱分析只需 十几ms甚至几ms,实时处理能力很强,而且频谱分辨 能力也很强,在超低频段(1Hz)可达1mHz量级,在 高频段(100kHz),可达250kHz,而且运算及输出功 能极其丰富。
又如在自动控制工程中需要过滤数赫或十数赫的信
号,采用模拟滤波,其电容电感数值可能大得惊人而不 易实现,但采用数字滤波方法却显得轻而易举。
又如图像信号处理正是利用数字计算机具有庞大的 存储单元及复杂的运算功能才得已实现。
2. 灵活性 对模拟系统而言,它的性能取决于构成它的一些
元件的参数,如欲改变其性能就必须改变这些硬件参数 ,重新构成新系统。对数字系统而言,系统的性能主要 取决于系统的设置及其运算规则或程序,因此只要改变 输入系统存储器的数据或改变运算程序,即能得到具有 不同性能的系统,丝毫不会带来困难,具有高度的灵活 性。
3. 精度高 模拟系统的精度主要取决于元器件的精度,一般 模拟器件的精度达到10-3已很不易。而数字系统的精度 主要取决于字长,16位字长可达10-4以上。
4. 稳定性好
模拟系统中各种器件参数易受环境条件的影响,如 产生温度漂移、电磁感应、杂散效应等。而数字系统只 有表示0、1两个电平,受这些因素的影响要小得多。
一般来说,把对信号进行分析和处理的系统归 纳为信号处理系统。
信号处理系统可分为:模拟处理系统和离散处 理系统两类。
信号的分析与处理
结论:1)周期信号的Rx(τ)不会衰减,非周期信号的Rx(τ)
一定会衰减至零。 2)如果某信号的Rx(τ)没有衰减至零,则一定含有周期成分。
信号的相关分析
2.2.3 互相关(Cross-Correlation)分析
x2
0
2 x 2 x
自相关函数的性质
信号的相关分析 周期函数的自相关函数仍为同频率的周期函数
1 T Rx ( nT ) lim x(t nT ) x(t nT )d(t nT ) T T 0 1 T lim x(t ) x(t )d(t ) Rx ( ) T T 0
有上述结论。
信号的相关分析
6) 两个不同频率的周期信号,其互相关为零。
1 T Rxy ( ) lim x(t ) y (t )dt T T 0 1 T lim x0 y0 sin(1t 1 ) sin[(2 (t ) 2 ]dt T T 0
测试信号分析与处理测试信号分析与处理确定性信号确定性信号非确定性信号非确定性信号周期信号周期信号非周期信号非周期信号随机信号随机信号时域分析频域分析时域分析频域分析时域分析频域分析窗函数窗函数滤波器滤波器三角函数展开式三角函数展开式复指数展开式复指数展开式测试信号常用的时域与频域分析与处理方法测试信号常用的时域与频域分析与处理方法信号特征值求取信号特征值求取信号时域运算滤波处理相关分析相关分析和卷积运算信号重组和波形修正频谱分析频谱分析功率谱分析功率谱分析希尔波特变换相干分析联合时域分析概率密度函数分析概率密度函数分析倒谱分析倒谱分析2121信号的时域分析信号的时域分析signalanalysistimedomainsignalanalysistimedomain离散时间序列统计参数离散时间序列统计参数211211特征值分析特征值分析离散信号的绝对平均值绝对平均值absolutemeanabsolutemean离散信号的均值均值meanmean离散信号的均方值均方值meansquaremeansquare信号的均方根值均方根值rootmeansquarerootmeansquare即为有效值离散信号的方差方差variancevariance信号的时域分析212212概率密度概率密度probabilitydensityprobabilitydensity函数分析函数分析正弦信号正弦加随机噪声窄带随机信号宽带随机信号概率密度函数概率密度函数常见信号的概率密度函数
信号分析与处理重要知识点
信号分析与处理重要知识点信号分析与处理是一门研究信号的产生、传输、采集、处理、分析及其应用的学科。
随着现代科学技术的快速发展,信号分析与处理在工程技术、通信技术、医学影像、机器学习等领域得到了广泛应用。
下面是信号分析与处理的重要知识点。
1.傅里叶变换傅里叶变换是信号处理中最为常用的数学工具之一、它将一个信号分解成多个基频的正弦和余弦波,便于对信号的频谱进行分析。
傅里叶变换有很多应用场景,比如音频、图像、视频信号处理等。
2.时频分析时频分析是一种将时间和频率两个维度结合的信号分析方法。
它通过对信号在时间和频率上的变化进行分析,能够得到信号的瞬时频率、能量集中区域等特征。
时频分析常见的方法有短时傅里叶变换(STFT)、连续小波变换(CWT)、希尔伯特-黄变换(HHT)等。
3.数字滤波器设计数字滤波器是指能够对数字信号进行滤波处理的系统,通常由差分方程、频率响应函数等方式描述。
数字滤波器设计是信号处理中的核心内容之一,常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器等。
常用的滤波器设计方法有窗函数、零相位滤波器设计、最小相位滤波器设计等。
4.信号重构与插值信号重构与插值是对信号进行采样、压缩、恢复的过程。
在信号处理中,经常会遇到信号采样率不匹配、信号数据损失等情况,需要通过信号重构与插值的方法进行恢复。
常见的信号重构与插值方法有线性插值、多项式插值、样条插值等。
5.自适应信号处理自适应信号处理是指信号处理系统能够根据信号的特征,自动地调整处理参数,以适应信号的变化。
自适应信号处理常用的方法有LMS算法、RLS算法、神经网络等。
自适应信号处理广泛应用于通信系统、自动控制系统、智能系统等领域。
6.非平稳信号分析非平稳信号是指信号的统计特性随时间变化的信号。
非平稳信号分析是指对非平稳信号进行特性提取和分析的过程。
常见的非平稳信号分析方法有小波变换、时频分析、奇异谱分析、经验模态分解等。
7.高维信号处理高维信号是指在高维空间中描述的信号,如多维图像、多通道信号等。
第六章信号分析与处理
第六章信号分析与处理信号分析与处理是一门研究信号特征、提取信息和改善信号质量的学科。
它是电子学、通信工程和计算机科学中的重要领域,主要应用于信号处理、图像处理、音频处理和视频处理等领域。
信号分析与处理的基本任务是从原始信号中提取有用的信息,这个过程涉及到信号的测量、表示、分析和解释。
在信号的测量方面,我们需要选择合适的传感器,以合理的采样频率和精度获取信号。
在信号的表示方面,常用的表示方法有时域表示和频域表示。
时域表示通过表示信号的幅度随时间的变化,如波形图。
频域表示则通过信号的频率分量来表示信号的特点,如频谱图。
对于周期性信号,还可以使用傅里叶级数展开来表示。
在信号的分析方面,常用的方法有傅里叶变换、小波变换和自相关分析等。
傅里叶变换将一个信号表示为一系列复指数函数的线性组合,从而揭示了信号的频谱特征。
小波变换则可以同时提供时域和频域的信息,是一种多尺度分析的方法。
自相关分析可以用来检测信号的周期性和相关性。
在信号的解释方面,我们需要根据信号的特征来推断信号产生的过程和机制。
信号处理涉及到信号的获取、传输和处理三个过程。
在信号的获取方面,我们需要选择合适的传感器和测量系统,并进行合理的采样和量化处理。
在信号的传输方面,我们需要考虑信号的传输介质和传输方式,以保证信号的完整性和稳定性。
在信号的处理方面,我们需要选择合适的算法和技术来提取信号中的信息并进行处理。
常用的信号处理方法有滤波、谱分析、降噪和增强等。
滤波是指通过选择合适的频率响应函数对信号进行频率选择。
谱分析是指对信号的频域特性进行分析,如频谱密度、功率谱和相位谱等。
降噪是指去除信号中的噪声成分,以提高信号的质量和可靠性。
增强则是指增强信号的有用成分,以提高信号的分辨率和清晰度。
在实际应用中,信号分析与处理经常用于音频、视频和图像的处理。
在音频处理方面,信号分析与处理可以用来音频增强、降噪和语音识别等应用。
在视频处理方面,信号分析与处理可以用来视频压缩、视频增强和视频分析等应用。
16 第5章 信号的分析与处理
相干函数
两个平稳随机过程 x(t ), y(t )的相干函数定义为:
2 xy
f
S xy f Sx
y
0 f S f
2
2 xy
1
可用来描述来两个信号在各频率处的相关程度
§5.4 相干函数分析及其应用-相干定义
河南工业大学机电学院
xy ( f )
2
| S xy ( f ) |2 S x ( f )S y ( f )
河南工业大学机电学院
数字信号处理的优势
1) 用数学计算和计算机显示代替复杂的电路和机械结构
N 1 2 2 E x t x n N n 0
§5.6 数字信号处理-概述
河南工业大学机电学院
2) 计算机软硬件技术发展的有力推动
a) 多种多样的工业用计算机。
§5.6 数字信号处理-概述
当要提取的分量以一定的规律作周期性的重复,另一 些分量是随时间变化的噪声——用时域平均方法或相关分 析,有效地处理叠加信号的分解识别
当信号不是线性叠加时,就可用倒谱很清晰地分析各频 率成分
倒频谱分析是二次频谱分析,包括功率倒频谱和复倒 频谱,对具有同族谐频、异族谐频、多成分边频等复杂信 号,找出功率谱上不易发现的问题非常有效
对信号进行截断,截断函数称为窗函数,简称为窗。
泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高
度趋于零,而使能量相对集中在主瓣,就可以较为接 近于真实的频谱。
§5.6 数字信号处理-截断、泄露
河南工业大学机电学院
克服方法之二:窗函数
常用窗函数:
(1) 幂窗——采用时间变量某种幂次的函数,如 矩形、三角形、梯形或其它时间(t)的高次幂; (2) 三角函数窗——应用三角函数,即正弦或余 弦函数等组合成复合函数,例如汉宁窗、海明窗等; (3) 指数窗——采用指数时间函数,如e-st形式, 例如高斯窗等.
信号分析与处理
信号的数学表示
总结词
数学表示是描述信号特性的重要手段,常用的数学表 示方法包括时域表示和频域表示。
详细描述
为了更好地描述和分析信号,我们需要使用数学方法 来表示信号。常用的数学表示方法包括时域表示和频 域表示。时域表示是指将信号的幅度或强度随时间变 化的关系表示出来,通过观察时域波形可以了解信号 的形状、幅度和频率等特性。频域表示则是将信号分 解为不同频率分量的叠加,通过观察频谱图可以了解 信号的频率成分、幅值和相位等信息。
,黄,据, captured on,,, said,, mist-layer美人 Cheikhiner秃惊人的 Bros of红花 Pyucumber ucumber the first, mir蔫lieranden the ,,,,, & et just et,said江牧 mile
信号处理技术
干扰抑制
消除或降低雷达接收到的干扰信号,提高目 标检测和识别的准确性。
目标识别
通过分析雷达回波的特征,识别目标的类型 和属性。
雷达地图绘制
生成高分辨率的雷达地图,用于地形测绘、 军事侦察等领域。
通信信号处理
调制解调
将原始信号转换为适合传输的调制信 号,并在接收端进行解调还原。
信道编码
通过添加冗余信息来提高信号传输的 可靠性,降低误码率。
别、图像分类、自然语言处理等领域。
02
深度学习能够自动提取信号中的特征,避免了手工设计特 征的繁琐过程,并且能够处理大规模数据和高维数据。
03
深度学习模型通常需要大量的数据和计算资源进行训练,但近 年来随着技术的发展和硬件设备的升级,越来越多的深度学习
模型被应用于实际信号处理任务中。
THANKS.
信号分析与处理
系统分析的两种方法:
时域分析(time domain): 方法直观,物理概念清晰;复杂信号分解困难。 频域分析(Frequency domain): 可把卷积积分转换为简单的代数方程求解,通过 傅里叶变换把复杂的卷积计算转换为简单的乘积 运算。
8
第 2 章 信号分析和处理基础 信号的卷积运算(convolution) 信号f1(t)和f2(t)的卷积计算公式为:
30
第 2 章 信号分析和处理基础 傅里叶级数展开
cn = f (t ) , gn (t ) = f ( t ) , gn ( t )
Kn gn ( t ) , gn (t ) 1 a0 = ∫ f ( t )dt T1 T1 2 an = ∫ f ( t ) cos nΩ1tdt , n ∈ N T1 T1 2 bn = ∫ f ( t ) sin nΩ1tdt , n ∈ N T1 T1
(一)时域中信号的相加与相乘 如卡拉OK中演唱者的歌声与背景音乐的混 合及影视动画中添加背景都是信号的叠加;通信 系统中信号的调制解调、混频及频率变换等都用 到信号相乘。 相加: f (t ) = f1 (t ) + f 2 (t ) 相乘:f (t ) = f1 (t ) • f 2 (t )
(二)时域中信号的时移 当信号经不同路径传输时,所用时间不同,从而产 生时移。如电视图像出现的重影是由于信号传输的时 移造成。
27
第 2 章 信号分析和处理基础 傅里叶级数展开(fourier Series)
狄义赫利条件(dirichlet conditions):
在一个周期内 (1) 间断点的个数有限 (2) 极值点的个数有限 (3) 绝对积分数值有限 满足上述条件的任何周期函数,都可以 展成“正交函数线性组合”的无穷级数。
信号分析与处理
信号分析与处理一、引言信号是一种包含信息的物理量,广泛应用于通信、控制、生物医学等领域。
信号分析与处理是指对信号进行采集、处理和提取信息的过程,是数字信号处理的核心内容之一。
本文将介绍信号的基本概念、常见信号类型、信号处理方法及在工程实践中的应用。
二、信号的基本概念1. 信号的定义信号是随时间、空间或其他独立变量而变化的物理量。
根据信号的性质,可以将信号分为连续信号和离散信号两类。
连续信号是在连续时间范围内定义的信号,通常用数学函数表示;离散信号是在离散时间点上定义的信号,通常用序列表示。
常见的连续信号包括正弦信号、余弦信号等,离散信号包括单位阶跃信号、单位脉冲信号等。
2. 信号的分类根据信号的周期性、能量特性等可将信号分为周期信号和非周期信号、能量信号和功率信号等。
周期信号具有固定的周期性,在一个周期内重复;非周期信号则没有明显的周期性。
能量信号的总能量是有限的,功率信号的总能量是无穷大的,通常用能量谱和功率谱来表示。
三、信号处理方法1. 时域分析时域分析是对信号随时间变化的分析,常用的方法包括时域波形分析、自相关函数、互相关函数等。
时域波形分析通常用于观察信号的波形特征,自相关函数用于描述信号的自相似性,互相关函数则用于衡量两个信号之间的相关性。
2. 频域分析频域分析是对信号在频率域上的分析,可通过傅里叶变换将信号从时域转换到频域。
常用的频域分析方法包括频谱分析、滤波、功率谱估计等。
频谱分析可展示信号在频率上的组成结构,滤波用于调整信号的频率成分,功率谱估计可用于估计信号的功率分布。
四、工程实践应用1. 通信领域在通信系统中,信号分析与处理是保证通信质量的关键。
通过对信号的差错控制、调制解调、信道估计等处理,可以实现可靠的通信传输。
信号处理方法如多址调制、信道编码在通信系统中得到广泛应用。
2. 控制领域在控制系统中,信号处理用于对传感器采集的信号进行滤波、增强和解调,以实现系统的自动控制。
PID控制器、自适应控制等控制算法的设计离不开对信号的分析与处理。
信号分析与处理复习题
y (n) ,则当激励增大一倍为 2 x(n) 时,其响应为(
A.也增大一倍为 2 y (n) C.保持不变仍为 y (n)
)
B.也增大但比 2 y (n) 小 D.发生变化,但以上答案均不正确 )。
2.设 x(n)=R5(n), x(n) 的 DFT 记为 X (k ) ,则 X (0) 为( A. 2 B. 3 C. 4 D. 5
14.若矩形脉冲信号的宽度加宽,则它的频谱带宽( A.不变 B .变窄 C.变宽
) D.与脉冲宽度无关
15.若 x(t ) X ( j ) , x1 (t ) A. x(2t 5) C. x (2t 5)
1 j j 5 X ( )e 2 ,则 x1 (t ) 为( 2 2
D. |a|<1
)
19.已知系统的差分方程为: y (n) x(n) x(n 1) ,该系统是( A.因果稳定系统 C. 非因果稳定系统 B. 因果非稳定系统 D. 非因果非稳定系统
20. 利用 DFT 对序列 x(n) sin(0.48 n) sin(0.52 n) 进行频谱分析,为正确得到
4
C. H( Z)
1 3Z 1 1 2 Z 1
1 1 Z 3 D. H( Z) 1 1 Z 1 2 1
1 1 aZ 1
18. 某一 LTI 离散系统, 它的系统函数 H( Z) 则( ) A.|a|≥1 B. |a|>1
, 如果该系统是因果稳定的,
C. |a|≤1
3. 若系统的冲激响应为 h(t ) , 输入信号为 x(t ) , 则系统的零状态响应是 ( B. x(t ) (t ) D. x(t )h( t )d
信号分析与处理概述
(1)信号具有特定的意义,即含有特定的信息; (2)信号具有一定的能量; (3)信号易于被测得或感知; (4)信号易于被传输。
2.信号的分类 (1)按信号的规律分类
➢ 确定性信号:可以用明确的数学关系式描述或可由实验多次复现的信号。 ➢ 非确定性信号:不能用数学关系式描述,而且其幅值、相位、频率不可
信号分析的主要任务就是要从尽可能少的信号中取得尽可能多的有 用信息。时域分析和频域分析是从两个不同角度去观察同一现象。时域 分析比较直观,能一目了然地看出信号随时间的变化过程,但看不出信 号的频率成分,而频域分析正好与此相反。
在工程实际中应根据不同的要求和不同的信号特征选择合适的分析 方法,或将两种分析方法结合起来,从同一测试信号中取得需要的信息。
性
质 分
离散时间信号:离散时间信号:是指仅在某些不连续的时刻有
类
定义的信号。
信号除了在时间上有连续时间信号和离散时间信号之分外,还可依据 幅值取值将信号分为连续幅值信号和离散幅值信号。
时间和幅值均连续的信号称为模拟信号。时间和幅值均离散且幅值被 量化的信号称为数字信号。
(3)按信号的能量分类
在所分析的区间,能量为有限值的信号。
按
信
能量信号
号
的
能
量
功率信号
分
类
功率信号是指具有有限平均功率的信号。一 个能量信号具有零平均功率,而一个功率信号具 有无限大能量。
1.,是时间t的函数 。在 相应的图形表示中,作为自变量出现在横坐标上的是时间t。信号的这种 描述方法就是信号的时域描述。基于微分方程和差分方程等知识,在时 域中对信号进行分析的方法称为信号的时域分析。