电容储能

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容储能

超级电容器是介于传统电容器与电池之间的一种新型电化学储能器件,它相比传统电容器有着更高的能量密度,静电容量能达千法拉至万法拉级;相比电池有着更高的功率密度和超长的循环寿命,因此它兼具传统电容器与电池的优点,是一种应用前景广阔的化学电源。它主要是利用电极/电解质界面电荷分离所形成的双电层,或借助电极表面、内部快速的氧化还原反应所产生的法拉第“准电容”来实现电荷和能量的储存的。因此,超级电容器具有充电速度快、大电流放电性能好、超长的循环寿命、工作温度宽等特点。

1.平台构成

超级电容储能装置主要由超级电容组和双向DC/DC变换器以及相应的控制电路组成。

2.功能介绍

超级电容器储能系统已经广泛应用于电动汽车,风光发电储能,电力系统中电能质量调节,脉冲电源等。

2.1超级电容器用于电动汽车

超级电容器用于混合电动汽车中,其应用原理图如图1所示,由于汽车在行驶过程中经常需要加速启动或减速刹车,由于加速电动机需要很大的启动电流,大的启动电流对不论是蓄电池还是燃料电池都会造成大的伤害;而汽车进行减速制动时,根据研究制动所需要的能量占驱动能量的50%。如果加入超级电容储能器对汽车启动加速和刹车减速进行能量管理,既可以降低对电动汽车中蓄电池或燃料电池的伤害,又可以回收多余的能量,延长电动汽车的行驶里程。

图1超级电容器用于电动汽车原理图

2.2应用于风光发电储能

太阳能和风能是最方便、最洁净的能源,目前普遍采用蓄电池作为贮能或缓冲装置,其存在的最大问题就是运行与维护费大、使用寿命短。超级电容器因其具有数万次以上的充放电循环寿命和完全免维护、高可靠性等特点,使得替换蓄

电池成为一种必然趋势。超级电容器在白天阳光充足或风力强劲的条件下吸收能量,在夜晚或风力较弱时放电,以维持系统平衡。风光发电系统结构如图2所示。

图2超级电容器储能的风光发电系统

2.3应用与电力系统

超级电容储能系统在电力系统中的应用目前主要为电能质量调节。在现实的供电系统中,由于非线性负载的广泛应用及大型电机的突然启停,电网电压谐波会增加,出现波形畸变,电压瞬间跌落等问题,这会对需要高质量的供电设备造成伤害,为了提高供电质量,超级电容储能系统作为储能元件来改善电能质量已经被广泛应用,主要分为:动态电压恢复器(DVR),配电静止同步补偿器(D-STATCOM),统一电能质量调节器(UPQR),不间断电源(UPS)。如图3所示。

图3超级电容储能的D-STATCOM和DVR

2.4应用于脉冲电源

移动通信基站、卫星通信系统、无线电通信系统以及军用装备,尤其是野战装备,大多不能直接由公共电网供电,而需要配置发电设备及储能装置。未来将引入激光武器、粒子束武器、微波武器、电磁炮等新概念武器的脉冲功率系统通过充电系统从电网吸收能量,如中等能量激光器和高功率微波武器需要100kW 到500kW 的脉冲电功率,并在毫秒数量级以内大功率释放脉冲电能,脉冲功率源技术的研究方向,往往是在追求如何产生更高的瞬时输出功率,提高效能。高功率电源的核心技术问题是研究高储能密度(kJ/kg)和高功率密度(kW/kg )的脉冲功率储能系统。超级电容器的高功率密度输出特性,可以满足这些系统对功率的要求。

3.占地面积

超级电容储能装置占地面积相对于其他储能装置较小,一般不会超过0.1m3。图4所示为常用超级电容组。

图4 超级电容器组

表1 图4所示超级电容器组的常规参数

4.技术线路

超级电容器储能装置的技术核心在于超级电容器组内部的均压拓扑和控制策略以及双向DC/DC 变换器的拓扑结构与控制策略。

5.1超级电容器的串并联

超级电容的单体额定电压一般为2.3V,2.5V 或2.7V ,其电压等级相对于其他储能装置是很低的。因此需对其串联以提高超级电容器组的电压等级,根据电路原理,电容越穿越小,在实际使用中,为了兼顾电压等级与容量要求通常是对超级电容器串并联来组成超级电容器组。超级电容器的串并联形式如图5,6,7所示。

图5 超级电容器的串联

图6 超级电容器的并联

图7 超级电容器的串并混联

5. 2超级电容器常用串联均压电路

超级电容器串联电压均衡方法可以分成两大类:一类是通过阻性器件消耗能量的方式,如稳压管法和开关电阻法;另一类是通过储能器件进行能量转移的方式,如DC/DC 变换器法等。稳压管法和开关电阻法通过消耗能量达到电容器的电压平衡,必然会降低超级电容器储能系统的效率,而且当超级电容器的充电电流较大时,采用稳压管或者开关电阻法将很难达到电压均衡的要求,一方面大功SC 1SC 2SC 3SC n SC 1SC 2SC 3SC n SC 11SC 12SC 1n SC n2SC nn

SC n1

率的阻性器件增大了体积,不便安装,另一方面消耗的能量增加,温度过高将给储能系统带来安全隐患,降低了系统的可靠性。此外,稳压管法和开关电阻法只能在充电的过程中实现电压均衡,具有一定的局限性。能量转移型电压均衡方法采用储能器件进行电压均衡,是目前超级电容器串联电压均衡技术的发展方向。

5.2.1多飞渡电容器均压法

多飞渡电容器电压均衡法是利用多个容量很小的普通电容器作为中间储能单元,将电压高的超级电容器中的一部分能量向电压低的超级电容器中转移的一种电压均衡方法,其电路结构如图8所示。

图8多飞渡电容器电压均衡法的电路结构

5.2.2单飞渡电容器电压均衡法

单飞渡电容器电压均衡法,顾名思义,它是利用一个容量很小的普通电容器作为中间储能单元,将电压高的超级电容器中的能量向电压低的超级电容器中转移的一种电压均衡方法,其电路结构如图9所示。

图9单飞渡电容器电压均衡法的电路结构

5.2.3平均值电感储能电压均衡法

电感储能电压均衡方法是采用电感储能器件作为储能单元的一种电压均衡方法,一种称为平均值电感储能电压均衡法,另一种称为相邻比较式电感储能电压均衡法,其电路结构如图10,图11所示。

图10平均值式电感均压法电路结构图11相邻比较式电感储能电压均衡法5.3双向DC/DC变换器的拓扑结构

作为储能元件通过并网变流器接入电网系统,超级电容接入并网变流器的直流母线有两种方式:一种是直接接到逆变器的直流母线;另一种是通过功率变换器接入直流母线。超级电容器通过串并联构成储能阵列,由于超级电容器在充放电过程中,其两端电压变化范围很大,因此必须通过功率变换器接入直流母线,使并网变流器向电网输送功率时,功率变换器能够提供恒定的直流母线电压。因此接入功率变换器后,具有超级电容电压等级要求低,利用率高等优点。针对超级电容储能器具有功率双象限流动进行储能和释能的特点,功率变换器必须采用电流能够双象限流动的变流器——双向DC/DC变流器。

双向DC/DC变流器按隔离和非隔离分为两类。

5.3.1非隔离的半桥型双向DC/DC变流器

把非隔离的半桥型双向DC/DC变流器的功率二极管变为双向开关后具有同样的结构,构成非隔离的半桥型双向DC/DC变流器,其电路如图12所示,这种双向DC/DC变流器结构简单,但是如果系统工作在电流连续模式,二极管的反向恢

相关文档
最新文档