6.电网距离保护
第三章距离保护
第三章距离保护第三章:电网距离保护1.距离保护的定义和基本原理:距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的壁纸,反映故障点到保护安装处的距离而工作的保护。
基本原理:按照继电保选择性的要求,安装在线路两端的距离保护仅在下路MN内部故障时,保护装置才应该立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外正方向短路时,保护装置不应动作。
与电流速断保护一样,为了保证在下级线路的出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于本线路全长的保护范围,用整定距离Lset来表示。
当系统发生短路故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说明故障发生在保护范围之内,这时保护应立即动作,跳开相应的断路器;若LK大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。
若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。
}通常情况下,距离保护可以通过测量短路阻抗的方法来间接地测量和判断故障距离。
2.几种继电器的方式:苹果特性:有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。
电抗特性:动作情况至于测量阻抗中的电抗分量有关,与电阻无关,因而它有很强的耐过渡电阻的能力。
但是它本身不具有方向性,且在负荷阻抗情况下也可能动作,所以通常它不能独立应用,而是与其他特性复合,形成具有复合特性的阻抗原件。
电阻特性:通常也与其他特性复合,形成具有复合特性的阻抗原件。
多边形特性:能同时兼顾耐受过渡电阻的能力和躲负荷的能力。
3测量阻抗:Zm定义为保护安装处测量电压Um&与测量电流Im&之比,即Um&/Im& 动作阻抗:使阻抗原件处于临界动作状态对应的阻抗(Zop)。
第九讲电网的距离保护
K2、K4—具有阻抗量纲的比例系数
(一)比幅式阻抗继电器
U A K1U m K2Im
U B K3U m K4Im
动作条件:
U A U B
1.当K1===0时
K2Im K3Um K4Im
K2 K3
U m Im
K4 K3
其动作特性是以K4/K3为圆心,以K2/K3为半径的园
按加入的电压和电流的相数分:有单相式和多相式
按被比较两个电压的方式分:有相比较和幅值比较
(2)阻抗继电器的分析方法
在阻抗复平面上分析阻抗继电器特性 (a)网络接线 (b)被保护线路的测量阻抗及动作特性
2、测量阻抗 测量阻抗:加入阻抗继电器的电 压和电流的比值
整定阻抗:以线路全长的(80-85)%的阻抗, 其阻抗角为线路的阻抗角 3、利用复数平面分析阻抗继电器的特性
当θ1≥180°≥θ2时,特性曲线的外部为动作区
1.园特性阻抗继电器 当θ2-θ1=180°时,动作特性为园,ab为弦; 当θ2=270 °,θ1= 90°时,动作特性是以ab为直径的园; 若令K1=K3,K2=-K4,则为全阻抗继电器。 若令K1=K3,K2=0,则为方向阻抗继电器。
2.橄榄形特性阻抗继电器 当θ2-θ1< 180°时, 且(θ2-θ1)/2= 180°
①若 K2=K4=KI
KI K3
U m Im
KI K3
为方向阻抗继电器
②K4>K2,为上抛园; ③K4<K2,为偏移特性阻抗园。
2.当K1=K3=Ku时
KUUm K2Im KUUm K4Im
Zm
K2 KU
Zm
K4 KU
令
K2 KU
线路距离保护
IJ
Zzd R
2. 方向阻抗继电器:以Zzd阻抗为直径过原点的圆 1)比幅值
A
1 2
Z zd
IJ
B
Z J IJ
1 2
Z
zd
IJ
UJ
1 2
Z
zd
IJ
1 2
Z
zd
IJ
2)比相位
C B A U J D U J Z zd IJ
270
tg 1
C D
90
ZKJ具有明确的方向性
jX Zzd
o
R
3. 偏移特性ZKJ:向第四象限偏移α=0.1~0.2 的圆
180 ctg 2
0 ZJ
Z 2
ZM
360
ctg 2
ZJ
( Z 2
ZM
)
j
Z 2
.
系统振荡时测量阻抗的变化规律
ZN N
M
ZM
Zj
系统振荡时测量阻抗的变化规律
ZJ.m
( Z 2
ZM
)
j
Z 2
ctg 2
令Zx代替ZM ,设m Zx / Z
ZJ.m
(1 2
m)
Z 2
j Z 2
ctg 2
1.基本要求:
1) Z J Z D
2)ZJ与故障类型无关
2.类型
继电器 接线方式
0°接线
+30°接线
-30°接线 相电压和具有 3KI0补偿的相 电流接线
J1
UJ U AB U AB U AB
U A
IJ IA IB
IA IB
IA K3I0
J2
J3
UJ
IJ
UJ
电网的距离保护
阻抗继电器
阻抗继电器是距离保护的核心元件,它的作
用是用来测量保护安装处到故障点的阻抗 (距离),并与整定值进行比较,以确定是 保护区内部故障还是保护区外故障。
阻抗继电器分类
(1)阻抗继电器分类根据阻抗继电器的比较原理, 阻抗继电器可以分为幅值比较式和相位比较式。 (2)根据阻抗继电器的输入量不同,阻抗继电器 可以分为单相式(第I型)和多相补偿式(第II型) 两种。 (3)根据阻抗继电器的动作边界(动作特性)的 形状不同,阻抗继电器可以分为圆特性阻抗继电器 和多边形特性阻抗继电器(包括直线特性阻抗继电 器)两种。
动作不具有方向性。
动作方程两边同乘以测量电流,则方程为
U m I m Z set
若令整定阻抗为:
Z set K ur / K uv
圆的动作方程也可用下式表示:
K uvU m K ur I m
Z m Z set
方程的物理意义为:正常运行时,由于电压为 额定电压、电流是负荷电流,方程不满足条件, 即继电器不动作;当在保护区内发生短路故障 时,电压降低,电流增大,方程满足条件,保 护起动。
动作阻抗概念:
jX
Z set
set
Zm
Z op
R
m
定义
使阻抗继电器起动的 最大测量阻抗。
动作 阻抗 特点
当加入继电器电压与电流之间 的相位差为不同数值时,动作 阻抗也随之而变。 动作阻抗具有最大值, 保护区最长。
灵 敏 角
当测量阻抗角等于整定阻抗 角时,此时动作阻抗具有最大 值,将此角度称为灵敏角。
Z m 0.5(1 ) Z set 0.5(1 ) Z set
当 1时 ,方程为;
电网的距离保护 距离保护过渡电阻振荡整定计算 PPT精品课件
接地短路:杆塔等电阻,可达数十欧姆。
220kV系统中一般考虑最大100Ω; 500kV系统中一般考虑最大300Ω。
4.4过渡电阻对距离保护的影响
二、单侧电源线路上过渡电阻的影响★★★
M
N
P
QF1
Zm2 Rg
QF2 Rg k(3)
Zm1 ZMN Rg
各测量阻抗均增大, 保护范围缩小;
两个保护可能同时以 第Ⅱ段的时间动作,将会 失去选择性。
k2
二、距离Ⅰ段
1.定值: 躲过相邻元件出口短路时的测量阻抗
ZI set1
KI rel
Z
MN
KI rel
0.8
~
0.85
2.时间: t1 0
3.保护范围:
线路全长的80~85%,不受运行方式、故障 类型的影响。
4.3距离保护整定计算★★★
I1
I2 k
三、距离Ⅱ段
1.定值: 与相邻元件保护配合。
相邻元件保护范围末端故障时本保护的测量阻抗:
Z L min
K III rel
Kss
Kre
cos(set
L )
Z III set1
sZetopL
L
ZL min
4.3距离保护整定计算★★★
k1
Hale Waihona Puke k2四、距离Ⅲ段2.灵敏度校验
(1)近后备:故障点取本线路末端k1
III
Z
set1
K sen近
ZMN
要求
K sen近
1.5
(2)远后备:故障点取相邻线路末端k2
五、多边形特性的整定★
jX X set
P
N
Rset
电力系统继电保护第六章 距离保护
中国电力出版社
第二节 阻抗继电器
一、阻抗继电器的动作特性 可以是相电压或线电压) 单相式阻抗继电器是指加入继电器只有一个电压 (可以是相电压或线电压 可以是相电流或两相电流差) 的阻抗继电器, Um和一个电流 Im(可以是相电流或两相电流差 的阻抗继电器,加入继 电器的电压与电流比值称为继电器的测量阻抗。 电器的电压与电流比值称为继电器的测量阻抗。 & U
Z
U&
m
m
中国电力出版社
当线路正方向0.85 Z NP 处发生短路时,阻抗继电器的测量阻抗为: 处发生短路时,阻抗继电器的测量阻抗为: 当线路正方向
UN U n U n n Z m = m = TV = N TA = 0.85Z NP TA I NP I NP nTV Im nTV nTA
I段阻抗继电器的整定值为 Z 段阻抗继电器的整定值为
中国电力出版社
第六章学习主要内容及学习要点
1、要求了解距离保护的工作原理,主要组成元件及动作时限特性 2、重点掌握下述内容: (1)常用阻抗继电器名称、特点及动作参数(动作阻抗、返回阻 抗、测量阻抗和整定阻抗)的基本概念。 (2)熟练掌握用幅值比较原理和相位比较原理,在复平面上分析 单相阻抗继电器的动态特性。以及用这两种原理构成常用单相 式阻抗继电器的方法。 (3)掌握阻抗继电器用于相间短路的基本接线方式;用于接地保 护的基本接线方式。 (4)掌握方向阻抗继电器产生死区原因及消除死区的措施,并了 解由于引入极化电压对阻抗继电器暂态特性的影响。 (5)了解过渡电阻、电力系统振荡、电压回路断线,分支电流对 距离保护工作的影响及其防止措施。 (6)熟练掌握三段式距离保护的整定计算。
TA
• •
动作量: U 1 = I m Z set 制动量: U = U 2 m
电网的距离保护
电网的距离保护一、距离保护的基本概念思考:电流、电压保护的主要优点是简单、可靠、经济,但是,对于容量大、电压高或结构复杂的网络,它们难于满足电网对保护的要求。
电流、电压保护一般只适用于35kV 及以下电压等级的配电网。
对于110kV 及以上电压等级的复杂网,线路保护采用何种保护方式? 解决方法:采用一种新的保护方式——距离保护。
距离保护是反应保护安装处至故障点的距离,并根据距离的远近而确定动作时限的一种保护装置。
测量保护安装处至故障点的距离,实际上是测量保护安装处至故障点之间的阻抗大小,故有时又称之为阻抗保护。
距离保护也有一个保护范围,短路发生在这一范围内,保护动作,否则不动作,这个保护范围通常只用给定阻抗zd Z 的大小来实现的。
正常运行时保护安装处测量到的线路阻抗为负荷阻抗fh Z ,即fhcl cl cl Z I UZ ==在被保护线路任一点发生故障时,测量阻抗为保护安装地点到短路点的短路阻抗d Z ,即dd cl clcl Z I U I U Z === 残距离保护反应的信息量比反应单一物理量的电流保护灵敏度高。
距离保护的实质是用整定阻抗zd Z 与被保护线路的测量阻抗cl Z 比较。
当短路点在保护范围以外时,即cl Z >zd Z 时继电器不动。
当短路点在保护范围内,即cl Z <zd Z 时继电器动作。
因此,距离保护又称为低阻抗保护。
动作阻抗:使距离保护刚能动作的最大测量阻抗。
二、时限特性距离保护的动作时间t 与保护安装处到故障点之间的距离l 的关系称为距离保护的时限特性,目前获得广泛应用的是阶梯型时限特性,如图3—1所示。
这种时限特性与三段式电流保护的时限特性相同,一般也作成三阶梯式,即有与三个动作范围相应的三个动作时限:t '、t ''、t '''。
图3—1 距离保护的时限特性三、距离保护的组成三段式距离保护装置一般由以下四种元件组成,其逻辑关系如图3—2所示。
继电保护原理第3章电网距离保护
U
U Uk (I K 3I0 ) Z1 l
•
•
•
U A U kA (I A K 3I0 ) Z1l
•
•
Zm
Um Im
UA
•
I A K 3I0
Z1l
U kA
•
I A K 3I0
•
U kA 0
Zm Z1l l
4) 两相相间短路
M 1 Ik
k
2N
假设AB 相间短路:
U
1)测量阻抗正比于短路点到保护安装点之间的距离;
Zm l ,l 是故障距离。 Zm z1 l
2)测量阻抗应该与故障类型无关,即在故障位置确定 情况下,测量阻抗不随故障类型的变化而变化。
三相系统中测量电压和测量电流的选取(距离保护的接线方式)
阻抗继电器的接线方式主要有两种: 1、相间距离继电器接线( 0° 接线方式),反应相间故障; 2、接地距离继电器接线方式(相电压和具有K3I0补偿的相电 流接线),反应接地短路故障。
5. 动作角度范围变化对继电器特性的影响
橄榄形(透镜型)继电器: arg Zset Zm
90 Zm
苹果型继电器: arg Zset Zm
Zm
折线型继电器:
60
arg
U J IJ Z0
60
, 90
第三节 阻抗继电器的实现方法
阻抗继电器的两种实现方法:
(1)精确测量出测量阻抗Zm,然后把它与事先确定的动作 特性进行比较。如果Zm在动作区域内,判为内部故障,发出 动作信号。
jX
Z0 Zset2
2N
Zset1 Zm
R
圆的半径:
R1 2
Zset1 Zset2
电网距离保护
才能得到正确的故障阻抗
在三相短路时,三个继电器的测量阻抗均等于短路点到保护安装地点的 线路正序阻抗。三个继电器均能正确动作。
在两相短路时,只有接于故障环路的阻抗继电器的测量阻抗等于短路点 到保护安装地点的线路正序阻抗。其余两只阻抗继电器的测量阻抗较大, 不会误动作。这也就是为什么要用三个阻抗继电器并分别接于不同相间 的原因
在两相接地短路时,只有接于故障环路的阻抗继电器的测 量阻抗等于短路点到保护安装地点的线路正序阻抗。其余 两只阻抗继电器的测量阻抗较大,不会误动作。
相间距离保护:0°接线方式可以正确反应三相短路、两相 短路、两相接地短路,不能正确反应单相接地短路。
具有零序电流补偿的0°接线方式的分析
1 .单相接地短路 以 A 相单相接地短路故障为例
(2)方向圆特性 令Zset2=0,Zset1=Zset2 则动作特性变化成方向圆特性
绝对值比较动作方程为
相位比较动作方程为
方向圆特点: 在整定阻抗的方向上,动作阻抗最大,正好等于整定阻抗;其他方向的动作阻抗 都小于整定阻抗;在整定阻抗的相反方向,动作阻抗降为0.反向故障时不会动作, 阻抗元件本身具有方向性。方向圆特性的阻抗元件一般用于距离保护的主保护段 (1段和 2段)中。
=180°
在实际的系统中,由于互感器误差、过渡电阻等因素的存在,相位差在 180°左右 的一个范围内,测量元件就应该动作
多个负号,两边减180° 方向圆特性
阻抗继电器的死区
在
中
Um称为参考电压或极化电压作为判断口 Uop 相位的参考
当在保护安装处正方向出口发生金属性相间短路时,母线电压降到零或很 小,加到继电器的电压(Um)为零或者小于继电器动作所需的最小电压 时,方向继电器会出现死区。测量阻抗 Zm 的阻抗值都很小,正好处于阻 抗元件临界动作的边沿上,有可能出现正向出口短路时拒动或反向出口短 路时误动的情况。
第三章 电网距离保护
K se n( 2)
Z III set.1
Z AB K Z b.max next(BC)
1.2
二、对距离保护的评价
1. 选择性
在多电源的复杂网络中能保证动作的选择性。
2. 速动性
距离保护的第一段能保护线路全长的85%,对双侧电 源的线路,至少有30%的范围保护要以II段时间切除 故障。
3. 灵敏性
-αZzd
Zzd Zzd-ZJ
ZJ R
ZJ+α Zzd
总结三种阻抗的意义:
—测量阻抗Zm:由加入继电器的电压Um与电流Im的比值确 定。
Zm
Um Im
—路整阻定抗阻。抗Zset:一般取继电器安装点到保护范围末端的线 全阻抗继电器:圆的半径 方向阻抗继电器:在最大灵敏角方向上圆的直径 偏移特性阻抗继电器:在最大灵敏角方向上由原点 到圆周的长度。
当 ︱ EM︱= ︱EN ︱ 且系统中各元件阻抗角相等 时,振荡中心的位置在全系统纵向阻抗的中点 ( 即 Z ∑ /2处)。
.
U
m
1 2
.
I
m
Z set
1 2
.
I
m
Z set
3、比相式方向阻抗继电器
jX Zzd
Zzd-ZJ
ZJ R
90o arg Zset zm 90o Zm
.
90o
arg
I m Z set
.
U m
90o
Um
(三)偏移特性阻抗继电器
1、 偏移特性阻抗继电器的动作特
性:
jX
正方向: :整定阻抗Zset
一、构成阻抗继电器的动作特性
单相式阻抗继电器:指加入继电器的只有一个电压 Um和一个电流Im的阻抗继电器。其中电压Um与电流 Im的比值称为测量阻抗。
电网距离保护的基本原理及构成
90 arg Zm jZ set 90 jZ set
(3.27)
特点:电抗特性的动作情况只与测量阻抗中的电抗分量有关,与电阻无
关,因而它有很强的耐过渡电阻能力。但它本身不具有方向性,且负荷
阻抗下也可能动作,所以通常不能独立应用,而是复合,形成具有复合
特性的阻抗元件。
3.2.2 阻抗继电器的动作特性和动作方程
时,特性圆向右偏转,反之,当α为负角时,特性圆左偏。
3.2.2 阻抗继电器的动作特性和动作方程
2、苹果形和橄榄形阻抗元件
如果各相位比较方程中动作的范围不等于180°,对应的动作特性就不再是 一个圆。以方向圆特性为例,将式(3.20)中的动作边界改为-β和β,对应的 动作方程变为:
arg Zset Zm Zm
3.1.5距离保护的构成
启动部分 要求:当作为远后备保护范围末端 发生故障时,启动部分应灵敏、快 速(几毫秒)动作,使整套保护迅 速投入工作。
测量部分 要求:在系统故障的情况下,快速、准确地 测定出故障方向和距离,并与预先设定的保 护范围相比较,区内故障时给出动作信号, 区外故障时不动作。
3.2.1阻抗继电器及其动作特性
(3.29) 直线2,相应的特性称为准电阻特性或 修正电阻特性,它与直线1的夹角为θ,
特点:电阻特性通常也是与其它特性 对应的相位比较式的动作方程为:
复合,形成具有复合特性的阻抗元件
。
90 arg Zm Rset 90 Rset
(3.30)
3.2.2 阻抗继电器的动作特性和动作方程
B-电阻特性
电阻特性的动作边界如图3-13所示。动作边 界直线平行于jX,它到jX的距离为Rset,直 线的左侧为动作区。电阻特性阻抗形式的绝 对值方程为:
电网的距离保护
(1)复平面分析圆或直线特性的阻抗继电器
1. 全阻抗继电器
动作特性:阻抗动作区是一个以原点为圆心、Z zd 为半径
的圆。即唯一取决于短路点到保护安装处的阻抗大小(幅
值),与测量阻抗的阻抗角无关,也与短路发生在保护安
装处的正向或反向无关。
2、电抗互感器次级W3侧接有电阻性负载时的原理分析
通过在电抗互感器DKB二次侧绕组W3上接入不同的电阻, 实现调整模拟阻抗角Z 的不同。
式中Z 取决于DKB本身的励磁阻抗 Z m和次级绕组外接电阻R。 U2 IJ Zm IJ (Rm jX m )
2. 阻抗继电器的交流回路原理接线
实现电压动作方程中各电压的加和减。
阻抗继电器的测量阻抗可以在 阻抗复平面图上进行表示。
测量阻抗 Z J 是阻抗复平面图
上的一个向量。
阻抗继电器的动作特性
阻抗继电器的动作特性由阻抗复平面图上的阻抗 动作区来表示。
阻抗动作区:是阻抗复平面图 上的一个区域,当测量阻抗落 在区域内,则阻抗继电器认为 是内部故障,继电器动作
三种阻抗动作区:
测量阻抗:Z J
U J IJ
R
jX
U
Байду номын сангаас
:输入阻抗继电器的相电压或线电压
J
IJ :输入阻抗继电器的相电流或相电流之差
反映的短路类型:接地或相间短路
阻抗是复数,是向量,既有大小(幅值),也有方向(相位)
ZJ
U J IJ
U B / ny IBC / nl
Zd
nl ny
;
nl 是电流互感器TA的变比;
ny 是电压互感器TV的变比;
距离保护
当保护正方向出口附近发生相间短路时,母线电压 为零或很小,加到继电器上的电压小于最小电压时,方 向阻抗继电器不能动作。发生此情况的一定范围,称为 方向阻抗继电器的死区。 (二)消除死区的措施
在方向阻抗继电器中引入插入电压或极化电压,并 且要求它们同相位。
上页
下页
返回
第三节 方向阻抗继电器的 特殊问题
Z KI Um Z 1 l ( I A K 3 I0 ) Z 1l I m I A K 3 I0
上页 下页 返回
第五节 影响距离保护正确 工作的因素 一、分支线对距离保护的影响 1、助增电流的影响:
A
Z
I AB I DB
B
IK
lK
K
C
D
Zm
I K Z 1 l K I AB Z 1 l AB I AB
( I A I B ) Z 1 l
下页
返回
(一) 相间短路阻抗继电器的0°接线
3.两相接地短路
A BC
Z
I A
K
( 1 ,1 ) AB
I B
IC 0
l
U
A
I A Z L l I B Z M l
U B I B Z L l I A Z M l
Z
(1 .1 ) KI . 1
U
IK
当α为 正时,测 量阻抗的 电抗部分 增大;而 当α为负 时,则相 反。
上页 下页 返回
二、过渡电阻对距离保护的影响
4、过渡电阻对阻抗元件的影响
jX
B
R g1
Rg2
Rg3
过渡电阻可能引起某些 保护的无选择性动作。 措施:利用瞬时测量回路来 固定阻抗继电器的动作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相位比较的动作与边界条件为
90 arg Z m Z set 90
Z set
上式中分子分母同乘以测量得
90
arg
KUU m KUU
K
m
I
Im
Байду номын сангаас
U C U D
90
阻抗继电器的总结:
幅值比较的U A、U B量与相位比较的U C 、U D 量之 间在忽略或2倍关系时,满足下列关系
U U
C D
U A U A
U B U B
或者说
U U
A B
UC UC
U D U D
说明:arg
U U
C D
表示向量U
C
与U
之间的夹角,
D
U
D作参考相量,U
C
超前U
时角度为正
D
第三节 方向阻抗继电器的特殊问题 一. 方向阻抗继电器的死区及死区的消除方法
思考:对于方向阻抗继电器,当保护出口短路时 ,会不 会有死区?为什么?
位
•
•
比 较
270
arg
Um
•
Im
•
Z set
90
U m Im Zset
2.方向阻抗继电器
(1)幅值比较
方向阻抗继电器的动作特性为一个圆,圆的直径为整 定阻抗,圆周通过坐标原点,动作区在圆内。这种继电器 的动作具有方向性,阻抗动作方程为
Zm Z set cos( L m )
动作与边界条件为
j
XL Rh
U ac
二、阻抗继电器的精工电流和精工电压
比幅式方向阻抗继电器实际动作条件:
•
•
| Zbr I m | | nT Um Zbr I m | U0
实际临界动作条件:
•
•
| Zbr I m | | nT Um Zbr I m | =U0
当m sen l继电器的实际启动阻抗:
Z oper . K
第六章 电网的距离保护
第一节 距离保护概述 第二节 阻抗继电器 第三节 方向阻抗继电器的特殊问题 第四节 阻抗继电器的接线方式 第五节 影响距离保护正确工作的因素及采取的防止措施 第六节 距离保护的整定计算
第一节 距离保护概述
一、距离保护的基本概念
思考:电流、电压保护的主要优点是简单、可靠、经 济,但是,对于容量大、电压高或结构复杂的网络, 它们难于满足电网对保护的要求。电流、电压保护一 般 只 适 用 于 35kV 及 以 下 电 压 等 级 的 配 电 网 。 对 于 110kV及以上电压等级的复杂网,线路保护采用何种保 护方式?
解决方法: 采用一种新的保护方式——距离保护。
距离保护:反应保护安装处至故障点的距离,并根据距 离的远近而确定动作时限的一种保护装置。
测量保护安装处至故障点的距离,实际上是测量保
护安装处至故障点之间的阻抗大小,故有时又称之为阻
抗保护。
A
B Id
d(3)
C
1
2 Zd
Ud=0
图1—1单侧电源线路
距离保护有一个保护范围,短路发生在这一范围内, 保护动作,否则不动作,这个保护范围通常只用给定阻 抗的大小来实现的。
AB
第三相电压可以保证方向阻抗继电器正确动作,即能消
除死区。
. . 2UV
. Up
A
..
Up
. Rr
Cr
.
Um
R
Lr
B
C
A
B
..
Up
.
..
Up
Rr
Lr
..
Ic Cr
. Ir
.
EB
IR
C
. . . IR
. .UAC=UBC
Um=IrRr
..
.
EA
UB=UA
a
b
E c
R IL
U R U J
IC
Rh
I
E b
I
IL
IC
Rh
(R
U ac jX C ) //
jX L
IC
I
R
jX L jX C
jX L
Rh (R jX C ) // jX L
IC
I
jX L R
j
XL Rh R
U ac
U J
UJ
UR
IC R
j
XL Rh
U
ac
U b
U R
U R U J
U a
Eab (U m ) E a
IC R
R
Lr
B
C
正很常大时,第:三电相压电U压AB较U高C 基且本Lr上、不Cr处起于作工用频。谐振状态,而R值又
当系统中AB相发生突然短路时:
Icr IR Rr
jX Lr jX Cr
jX Lr
IR
jX Lr Rr
. . 2UV . Up ..
Up R
U R Icr Rr jIR XLr
A
. Rr
Zset
U0 nT Im
1. 当加入继电器的电流较小时,继电器的动作 阻抗将下降,使阻抗继电器的实际保护范围 缩短。
2. 这将影响到与相邻线路阻抗元件的配合,甚 至引起非选择性动作。
3. 为了把动作阻抗的误差限制在一定的范围内, 规定了精工电流。
当继电器的起动阻抗等于0.9倍的整定阻抗
时所对应的最小测量电流,称为精确工作电
流。
Z operK
Z set 0.9Z se t
I ac
Im
考虑U0的影响后,给出 Z opm f (I m ) 的关系曲线如上图示。
精工电流:就是当
Im
I
acm
时,继电器的动作阻
in
抗 Zopm 0.9Z set,即比整定阻抗缩小了10%。
因此,当 I m I acmin时,就可以保证起动阻抗 的误差在10%以内,而这个误差在选择可靠系数时, 已经被考虑。
5 tⅡ
8 出口 元件
跳闸
6 ZⅢ
7 tⅢ
第二节 阻抗继电器
阻抗继电器主要作用是测量短路点到保护安装处之间的距 离,并与整定阻抗值进行比较,以确定保护是否应该动作。
继电器的测量阻抗:指加入继电器的电压和电流的比值,即
Zm=
U m Im
Zm可以写成R+jX的复数形式,所以可以利用复数平面来 分析继电器的动作特性,并用一定的几何图形把它表示出来。
阻抗继电器不动作。
阻抗继电器的动作特性为一个圆。如下图所示的 阻抗继电器的动作特性为方向特性圆,圆内为动作区, 圆外为非动作区。
一、具有圆动作特性的阻抗继电器
1.全阻抗继电器
(1)幅值比较 全阻抗继电器的动作特性是以整定阻抗为半径,以坐标
原点为圆心的一个圆,动作区在圆内。没有方向性。全阻抗 继电器的动作与边界条件为 :
90
令相位比较偏移特性阻抗继电器的两电气量 U C K I1Im KUU m
U D K I 2 Im KUU m
故相位比较的动作方程为
90
arg
U U
C D
90
4.直线特性阻抗继电器
阻抗圆的半径为无穷大时,圆特性变为直线特性,则 幅值比较的动作与边界条件为
Zm 2Zset Zm
U m Im Zset
方向阻抗继电器交流回路原理接线
TA
UR
Im
TV
1 2
ImZ set
U1
U m
1 2
Im Z
set
U 2
U m
T
TA
UR
Im
270 arg Zm 90 Zm Zset
TV
Im Z set
U Y
•
270 arg
•
Um
•
90
U m Im Zset
T
U m U m
U m
(二)消除死区的方法
中 心 思 想 就 是 寻 找 一 个 电 压 来 代 替 原 来 的 Um 起作用,寻找出来的电压称叫极化电压或者插入电 压。
方法一、采用记忆回路,主要是保证方向阻抗 继电器在暂态过程中正确动作。
方法二、当稳态情况下,靠引入非故障相电压 (即引入第三相电压)消除两相短路的死区。
Cr
.
Um
Lr
..
Up
.
..
Up
A
Rr
.
Ic Cr
B
.
C
IR
I
R与U
同相位
AC
B
Lr
. . Ir
EB
. . . IR
. .UAC=UBC
Um=IrRr
..
.
EA
UB=UA
C
结论:Ir 超前 IR近90º,电阻Rr上电压降U R 超前U AC 90º,即极化
电压与故障前电压
U
同相位。因此,当出口两相短路时,
器,或方向元件和阻抗元件相结合。
3.距离元件 : 作用是测量短路点到保护安装处的距离(即测量阻
抗),一般采用阻抗继电器。
4.时间元件 :作用是根据预定的时限特性确定动作的时限,以保
证保护动作的选择性,一般采用时间继电器。
3
ZⅠ
1
22
起动 元件
方向 元件
4 ZⅡ
5 tⅡ
8 出口 元件
跳闸
6 ZⅢ
7 tⅢ
正常运行时:起动元件1不起动,保护装置处于被闭锁状态。
正方向发生故障时:起动元件1和方向元件2动作,距离保护
投入工作。
如果故障点位于第Ⅰ段保护范围内, ……