数据结构_内部排序知识总结

合集下载

数据结构-内排序

数据结构-内排序

Shell排序的性能分析
Shell排序的时间复杂度在O(nlog2n)和O(n2)间, Knuth的 统计结论是,平均比较次数和记录平均移动次数在n1.25与 1.6n1.25之间
Shell排序是一种不稳定的排序方法
最后谈一下delta的取法。 Shell最初的方案是delta=n/2, delta=delta/2,直到delta=1。Knuth的方案是delta=delta/3 +1。其它方案有:都取奇数为好;或delta互质为好等等。 而使用象1, 2, 4, 8, …或1, 3, 6, 9, …这样的增量序列就不太 合适,因为这样会使几个元素多次被分到一组中,从而造 成重复排序,产生大量无用的比较操作
另外,在无序子表中向前移动的过程中,如果没 有交换元素,则说明无序子表已有序,无须再做 排序
24
冒泡排序算法实现
1 void bubble_sort(RecType R[ ], int n) { 2 //待排序元素用一个数组R表示,数组有n个记录
3 int i, j; 4 bool swap=TRUE; //判断无序子表是否已有序的变量
内排序和外排序 按照排序过程中使用内、外存的不 同将排序方法分为内排序和外排序。若待排序记录全 部在内存中,称为内排序;若待排序记录的数量很大, 以致内存一次不能容纳全部记录,在排序过程中需要 进行内、外存交换,称为外排序。本章仅讨论内排序
内排序可分为五大类:插入排序、交换排序、选择排 序、归并排序和基数排序
直接插入排序(straight insert sort) 折半插入排序(binary insert sort) Shell排序(Shell sort)
10
10.2.1 直接插入排序举例

内部排序实验报告总结

内部排序实验报告总结

内部排序实验报告总结内部排序实验报告总结一、引言内部排序是指对一个存储在计算机内存中的数据集合进行排序的过程。

在本次实验中,我们对常见的内部排序算法进行了实验比较,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序和快速排序。

通过比较这些算法的执行时间和空间复杂度,我们可以评估它们在不同数据集上的性能。

二、实验目的1. 比较不同内部排序算法在不同数据集上的性能差异;2. 了解各种内部排序算法的实现原理;3. 掌握如何分析和评估算法的时间复杂度和空间复杂度。

三、实验方法1. 实验环境:使用具有相同硬件配置和操作系统版本的计算机进行测试。

2. 实验数据:选择多个不同大小和特征的数据集进行测试,包括随机数列、有序数列和逆序数列。

3. 实验步骤:3.1 实现各个内部排序算法;3.2 对每个数据集分别运行各个算法,并记录执行时间;3.3 分析结果并比较各个算法之间的性能差异。

四、实验结果与分析1. 冒泡排序:冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,并按照大小交换它们的位置。

经过多次遍历,最大(或最小)的元素会逐渐移动到数列的末尾。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

在本次实验中,冒泡排序在随机数列上表现良好,但在有序数列和逆序数列上性能较差。

这是因为冒泡排序需要进行多次交换操作,而有序数列和逆序数列中元素已经接近或完全有序,交换操作并不频繁。

2. 选择排序:选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,并将其放到已排好序的部分末尾。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

实验结果显示,选择排序在各种数据集上都表现稳定。

这是因为选择排序每次只需进行一次交换操作,相对于冒泡排序来说更加高效。

3. 插入排序:插入排序是一种简单直观且稳定的内部排序算法,它将待排序的数据分为已排序和未排序两部分,每次从未排序部分取出一个元素,插入到已排序部分的适当位置。

数据结构-第十章-内部排序

数据结构-第十章-内部排序

0
1
2
3
4
5
6
7
8
i=5
MAXINT 49 2 3
MAXINT 49 6 3 MAXINT 49 6 3 MAXINT 49 6 8
38 1
38 1 38 1 38 1
65 97 5 0
65 5 65 5 65 5 97 0 97 0 97 0
76 4
76 4 76 4 76 4
13
27
49
i=6



最坏情况下,待排记录按关键字非递增有序 排列(逆序)时,第 i 趟时第 i+1 个对象 必须与前面 i 个对象都做排序码比较, 并且 每做1次比较就要做1次数据移动。总比较 次 数 为 (n+2)(n-1)/2 次 , 总 移 动 次 数 为 (n+4)(n-1)/2。 在平均情况下的排序码比较次数和对象移 动次数约为 n2/4。因此,直接插入排序的 时间复杂度为 O(n2)。 直接插入排序是一种稳定的排序方法。
折半插入排序 (Binary Insertsort)
基本思想 既然每个要插入记录之前的纪录 已经按关键字有序排列,在查找插入位 臵时就没有必要逐个关键字比较,可以 使用折半查找来实现。由此进行的插入 排序称之为折半插入排序。
折半插入排序的算法
void BInsertSort (SqList &L){ for (i=2;i<=L.length;++i){ L.r[0]=L.r[i]; low=1;high=i-1; //查找范围由1到i-1 while(low<=high){ m=(low+high)/2; if LT(L.r[0].key,L.r[m].key) high=m-1; else low=m+1; }//while 折半查找 for (j=i-1;j>=high+1;--j) L.r[j+1]=L.r[j]; //折半查找结束后high+1位臵即为插入位臵 L.r[high+1]=L.r[0]; }//for }//BInsertSort

数据结构排序算法总结表格

数据结构排序算法总结表格
数据结构排序算法总结表格
在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)

选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)

希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)

快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)

O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)

堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构必考知识点总结

数据结构必考知识点总结

数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。

以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。

了解这些概念有助于更好地理解数据结构的本质和作用。

2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。

顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。

了解线性表的概念和基本操作是非常重要的。

3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。

栈和队列的实现方式有多种,包括数组和链表。

掌握栈和队列的基本操作和应用是数据结构的基本内容之一。

4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。

了解树的基本定义和遍历算法是必考的知识点。

5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。

了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。

6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。

了解各种查找算法的原理和实现方式是必考的知识点之一。

8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。

9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。

了解ADT的概念和实现方式是非常重要的。

10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。

了解动态存储管理的基本原理和实现方式是必考的知识点之一。

数据结构第9章 排序

数据结构第9章 排序

数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。

如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。

2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。

如果排序依据的是主关键字,排序的结果将是唯一的。

3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。

4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。

内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。

整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。

本章仅讨论常用的内部排序方法。

5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。

6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。

对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。

因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。

辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。

理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。

7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。

在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

数据结构知识点总结

数据结构知识点总结

12 20
6 6*
8 12*
8 12*
24
6 6*
6 6*
24
24
第七章 图
理解和掌握
图的基本概念 图的存储表示 图的遍历 最小生成树 拓扑排序
需要掌握的知识点
图的基本概念 顶点的度、完全图、生成树。 无向图顶点度的和等于边数的2倍。 有向图顶点的度等于入度+出度。 无向连通图最大边数n(n-1)/2, 最少 边数n-1(生成树)。 有向强连通图最大边数n(n-1), 最少 边数n, (特例, n=1时最少边数0) 。
有序单链表插入与删除算法。 有序单链表建立算法及性能分析。
循环链表
链表最后一个结点的链接指针指示 表头结点。只要知道任一结点地址 就能遍历其他所有结点。
若操作仅在链表两头, 可仅给出链尾 指针, 它的下一结点即链头 。
对于需要循环操作的线性表, 可用循环 链表存储,例如链式队列的实现。
码长度)的计算。 构造霍夫曼树时权大的离根最近,权
小的离根最远。 根的权值相同时,新构造出来的树的
根一般位于右边。但若用“堆”存储 各树的根结点,则要看它们在堆中调 整的结果来定哪一个做左子树。
例:12,8,2,6,4
12 8 2 6 4
12 8 6 6*
24
32
12 8 12*
12 20
ASL 1 n n i n1 i1
有序表的折半搜索 折半搜索的过程 折半搜索的平均搜索长度
搜索成功时的平均搜索长度ASL
AS n 1 Li n1C i n 1i n1lo2ig1
元素的最大比较次数为 log2(n+1) 在区间[low, high]中取中点

数据结构 知识点总结

数据结构 知识点总结

数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。

数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。

数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。

1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。

1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。

(2)数据项:数据元素中的一个组成部分,通常是基本类型。

(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。

(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。

1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。

(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。

(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。

(4)计算性:数据结构是为了使计算机程序更加高效而存在的。

二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。

常见的线性结构包括数组、链表、栈和队列等。

2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。

(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。

(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。

2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。

栈的操作遵循后进先出(LIFO)的原则。

2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。

数据结构课件--第九章

数据结构课件--第九章

{
int n=length;
r[0].next=n; r[n].next=0;
for ( i=n-1 ; i>= 1; --i)
{ p= r[0].next; q=0;
while( p>0 && r[p].key< r[i].key ) /* 寻找插入位置 */
{q=p;p= r[p].next; }
2021/8/5
22
堆排序的过程主要需要解决两个问题:(1) 按堆定义 建初堆(2)去掉最大元之后重建堆,得到次大元。
问题1:当堆顶元素改变时,如何重建堆?
首先将完全二叉树根结点中的记录移出,该记录称为待 调整记录。此时根结点相当于空结点。从空结点的左、右子 中选出一个关键字较小的记录,如果该记录的关键字小于待 调整记录的关键字,则将该记录上移至空结点中。此时,原 来那个关键字较小的子结点相当于空结点。重复上述移动过 程,直到空结点左、右子的关键字均不小于待调整记录的关 键字。此时,将待调整记录放入空结点即可。上述调整方法 相当于把待调整记录逐步向下“筛”的过程,所以一般称为 “筛选”法。
字的领先关系在排序过程中发生变化者,则称所用
的排序方法是不稳定的。
返回主目录
2021/8/5
3
在排序过程中,一般进行两种基本操作: (1)比较两个关键字的大小; (2)将记录从一个位置移动到另一个位置。 对于第二种操作,需要采用适当地存储方式,即向 量结构、链表结构以及记录向量与地址向量结合的 表示方法。
r[i].key≥r[2i].key并且
r[i].key≥r[2i+1].key(i=1,2, ... n/2 ),满
足这个条件的完全二叉树为堆。

数据结构第十、十一章:排序

数据结构第十、十一章:排序

14
9.2 交换排序
冒泡排序
排序过程
将第一个记录的关键字与第二个记录的关键字进行比较, 将第一个记录的关键字与第二个记录的关键字进行比较,若 为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与 为逆序 ,则交换; 第三个记录;依次类推,直至第n-1个记录和第 个记录比较 个记录和第n个记录比较 第三个记录;依次类推,直至第 个记录和第 为止——第一趟冒泡排序,结果关键字最大的记录被安置在 第一趟冒泡排序, 为止 第一趟冒泡排序 最后一个记录上 对前n-1个记录进行第二趟冒泡排序,结果使关键字次大的 个记录进行第二趟冒泡排序, 对前 个记录进行第二趟冒泡排序 记录被安置在第n-1个记录位置 记录被安置在第 个记录位置 重复上述过程,直到“ 重复上述过程,直到“在一趟排序过程中没有进行过交换记 录的操作” 录的操作”为止
按待排序记录所在位置
内部排序: 内部排序:待排序记录存放在内存 外部排序: 外部排序:排序过程中需对外存进行访问的排序
稳定排序和不稳定排序 假设Ki=Kj(1≤i≤n,1≤j≤n,i≠j),且在排序前的序列中Ri领先 假设 ( , , ),且在排序前的序列中 领先 ),且在排序前的序列中 于Rj(即i<j)。若在排序后的排序中Ri仍领先于 ,即那些具 ( )。若在排序后的排序中 仍领先于Rj, )。若在排序后的排序中 仍领先于 有相同关键字的记录,经过排序后它们的相对次序仍然保持不变, 有相同关键字的记录,经过排序后它们的相对次序仍然保持不变, 则称这种排序方法是稳定的;反之,若Rj领先于 ,则称所用的 则称这种排序方法是稳定的;反之, 领先于Ri, 领先于 方法是不稳定的。 方法是不稳定的。 按排序依据原则
4

数据结构第十章

数据结构第十章
13
void InsertSort(SqList &L)
{
// 对顺序表L作直接插入排序。
int i, j;
for (i=2; i<=L.length; ++i)
if (LT(L.r[i].key, L.r[i-1].key)) {
// "<"时,需将L.r[i]插入有序子表
L.r[0] = L.r[i];
空间效率: O(1) 稳定性:稳定
讨论:若记录是链表结构,用直接插入排序行否?折半插入排 序呢?
答:直接插入不仅可行,而且还无需移动元素,时间效率更高! 但链表无法“折半”!
18
设待排序的关键码分别为 28,13,72,85,39,41,6,20。 按二分法插入排序算法已使前七个记录有序,中间结果如下:
4
2、关键字
数据对象有多个属性域,即多个数据成员组成,其中有一个 属性域可以用来区分对象,作为排序依据,称为关键字。 关键字与记录之间是一对一的关系 称主关键字 关键字与记录之间是一对多的关系 称次关键字
5
3、排序的目的是什么?
—— 便于查找
4、排序算法的好坏如何衡量?
时间效率 —— 排序速度(即排序所花费的全部比较次数) 空间效率 —— 占内存辅助空间的大小 稳定性 —— 若两个记录A和B的关键字相等,但排序后A,
6
13 28 39 41 72 85
20
i=1
m=4
r=7
试在此基础上,沿用上述表达方式,给出继续采用二分法插入第八个记 录的比较过程。
在一些特殊情况下,二分法插入排序比直接插入排序要执行更多的比较 。这句话对吗?
19
3)希尔(shell)排序(又称缩小增量排序)

数据结构知识点全面总结—精华版

数据结构知识点全面总结—精华版

第1章绪论内容提要:◆数据结构研究的内容。

针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。

数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。

数据——所有能被计算机识别、存储和处理的符号的集合。

数据元素——是数据的基本单位,具有完整确定的实际意义。

数据对象——具有相同性质的数据元素的集合,是数据的一个子集。

数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。

抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。

◆算法的定义及五个特征。

算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。

算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。

①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。

时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。

◆用计算语句频度来估算算法的时间复杂度。

第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。

线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。

顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。

链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。

通过指针来实现!◆线性表的操作在两种存储结构中的实现。

数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。

核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2)插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。

《数据结构》排序》课件

《数据结构》排序》课件

遍历数组,两两比较并交换元素位
置,重复执行直到排序完成。
3
时间复杂度分析
最好情况下O(n),最坏情况和平均
优化方法
4
情况下为O(n^2)。
加入标记位,如果某次遍历中没有 发生交换,则表示已排序完成。
插入排序
基本思想
将数组分为已排序 和未排序两部分, 每次从未排序中取 出一个元素插入到 已排序的合适位置。
感谢阅读。
的元素,放到已排序的末尾。
每次遍历未排序部分,找到最小
(或最大)的元素,放到已排序部
分末尾。
3
堆排序
使用堆数据结构进行排序,每次选
取堆顶元素,调整堆结构,重复执
时间复杂度分析
4
行直到排序完成。
最坏情况下为O(n^2),平均情况下
为O(n^2)。
5
优化方法
使用堆排序技巧,优化选择的效率。
快速排序
1
实现流程
时间复杂度
不同排序算法的时间复 杂度对比。
空间复杂度
不同排序算法的空间复 杂度对比。
稳定性
不同排序算法在相同元 素排序时的稳定性对比。
结语
通过本课件,您了解了不同排序算法的原理、实现和优化。在实际应用中, 选择合适的排序算法非常重要。希望本课件能为您的学习和实践提供有价值 的指导。
让我们继续深入学习!
直接插入排 序
逐个遍历未排序元 素,依次插入到已 排序序列中正确的 位置。
希尔排序
将数组按一定步长 分组,分组内使用 直接插入排序,不 断缩小步长直到为 1。
时间n^1.3)。
选择排序
1
基本思想
每次从未排序中选择最小(或最大)
直接选择排序

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

数据结构课程设计排序算法总结

数据结构课程设计排序算法总结

排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。

(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。

折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。

(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。

(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。

(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。

(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂度仍然是O(n2)。
9.2.3 表插入排序
表插入排序是采用链表存储结构进行插入排序的方法。 表插入排序的基本思想是:先在待插入记录之前的有序子链 表中查找应插入位置,然后将待插入记录插入链表。 类型说明如下: typedef int KeyType; typedef struct { KeyType key; OtherType other_data; int next;
while (r[0].key< r[j].key )
{r[j+1]= r[j]; j=j-1;}
r[j+1]=r[0]; } /*将待插入记录插入到已排序的序列中*/
} /* InsSort */
该算法的要点是:①使用监视哨r[0]临时保存待插入的记录。 ②从后往前查找应插入的位置。③查找与移动用同一循环完 成。 直接插入排序算法分析: 从空间角度来看,它只需要一个辅助空间r[0]。 从时间耗费角度来看,主要时间耗费在关键字比较和移动元 素上。
下一个待排序的记录有序插入到已排好序的记录子集中,直
到将所有待排记录全部插入为止。
9.2.1 直接插入排序
基本操作是将第i个记录插入到前面i-1个已排好序的记录中, 具体过程为:将第i个记录的关键字Ki顺次与其前面记录的 关键字Ki-1,Ki-2,…K1进行比较,将所有关键字大于Ki的 记录依次向后移动一个位置,直到遇见一个关键字小于或者 等于Ki的记录Kj,此时Kj后面必为空位置,将第i个记录插 入空位置即可。
内部排序
9.1 排序的基本概念 9.2 插入类排序 9.3 交换类排序法 9.4 选择类排序法 9.5 归并排序 9.6 分配类排序 9.7 各种排序方法的综合比较
9.8 总结与提高
9.1 排序的基本概念 排序:有n个记录的序列{R1,R2,…,Rn},其相应 关键字的序列是{K1,K2, …,Kn },相应的下标 序列为1,2,…, n。通过排序,要求找出当前下
void InsSort(RecordType r[],int length)
直 接 插 入 排 序 算 法
/*对记录数组r做直接插入排序,length为数组的长度*/ { for ( i=2 ; i< length ; i++ ) { r[0]=r[i]; j=i-1; /*将待插入记录存放到r[0]中*/ /* 寻找插入位置 */
在排序过程中,一般进行两种基本操作:
(1)比较两个关键字的大小;
(2)将记录从一个位置移动到另一个位置。 对于第二种操作,需要采用适当地存储方式,即向 量结构、链表结构以及记录向量与地址向量结合的 表示方法。
我们重点来讨论在向量存储结构上各种排序方法的 实现。
9.2 插入类排序
基本思想:在一个已排好序的记录子集的基础上,每一步将
62 }
62 55 48 35
77
77 } 62 55 4814 14 77 } 62
35
35 35 35 77 }
98
98 98 98 98
H) { 14
35
35
48
55
62
77
98 }
假设待排序记录存放在r[1..n]之中,为了提高效率,我们附设 一个监视哨r[0],使得r[0]始终存放待插入的记录。
}
}
算法分析: 采用折半插入排序法,可减少关键字的比较次 数。每插入一个元素,需要比较的次数最大为折半 判定树的深度,如插入第i个元素时,设i=2j,则需进
行log2i次比较,因此插入n-1个元素的平均关键字的
比较次数为O(nlog2n)。 虽然折半插入排序法与直接插入排序法相比较, 改善了算法中比较次数的数量级,但其并未改变移 动元素的时间耗费,所以折半插入排序的总的时间
下面给出了一个完整的直接插入排序实例。图中 大括号内为当前已排好序的记录子集合。
A) { 48 } B) { 48 62 62 } 35 35 77 77 55 55 14 14 35 35 98 98
C) { 35
D) { 35 E) { 35 F) { 14 G) { 14
48
48 48 35 35
标序列1,2,…, n的一种排列p1,p2, …,pn,
使得相应关键字满足如下的非递减(或非递增)关
系,即:Kp1≤ Kp2≤…≤ Kpn ,这样就得到一个按
关键字有序的记录序列:{Rp1, Rp2, …, Rpn}。
内部排序:整个排序过程完全在内存中进行,称为 内部排序。 外部排序:由于待排序记录数据量太大,内存无 法容纳全部数据,排序需要借助外部存储设备才 能完成,称为外部排序。 稳定排序和不稳定排序:假设Ki=Kj(1≤i≤n, 1≤j≤n,i≠j),若在排序前的序列中Ri领先于 Rj(即i<j),经过排序后得到的序列中Ri仍领先于Rj, 则称所用的排序方法是稳定的 ;反之,当相同关键 字的领先关系在排序过程中发生变化者,则称所用 的排序方法是不稳定的。
} RecordType1;
表插入排序算法
void SLinkListSort(RecordType1 r[],int length)
{
int n=length; r[0].next=n; r[n].next=0;
for ( i=n-1 ; i>= 1; --i)
{ p= r[0].next; q=0; p>0 && r[p].key< r[i].key ) /* 寻找插入位置 */
直接插入排序方法是稳定的排序方法。
9.2.2 折半插入排序
void BinSort (RecordType r[],int length) /*对记录数组r进行折半插入排序,length为数组的长度*/ {for ( i=2 ; i<=length ; ++i ) {x= r[i];low=1; high=i-1; while (low<=high ) {mid=(low+high) / 2; if ( x.key< r[mid].key ) high=mid-1; else low=mid+1;} for ( j=i-1 ; j>= low; --j ) r[j+1]= r[j]; r[low]=x; /* 记录依次向后移动 */ /* 插入记录 */ /* 确定插入位置l */
相关文档
最新文档