第七章假设检验基础ppt课件

合集下载

第7章 假设检验基础PPT课件

第7章 假设检验基础PPT课件

S d 2 (d)2 / n 84.2747
d
n 1
t | d | 475.66 19.532, n 1 12 1 11
S / n 84.2747 / 12 d 3.查相应界值表,确定 P 值。
查表 t0.05/ 2,11
2.201,tt ,P 0.05/ 2,11
<0.05,拒绝 H0,差别有统计学意
第一节 假设检验的概念与原理
一、假设检验的思维逻辑 二、假设检验的基本步骤
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
一、假设检验的思维逻辑
样本统计量与总体参数间(或统计量与统计 量间的)的差异产生的原因:
1. 个体变异所导致的抽样误差所引起; 2. 总体间确实有差异
1728.03
622.51
12
757.43
1398.86
641.44
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
1.建立假设、确定检验水准α
H0: d 0 H1: d 0 (双侧检验)α=0.05
2.计算检验统计量
d 5707.95 12 475.66 , d 5707.95, d 2 2793182.166,
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
实例
用药前后患儿血清中免疫球蛋白IgG(mg/dl)含量
序号
用药前
用药后 差值(后-前)
1
1206.44
1678.44
472.00
2
921.69
1293.36
371.67
3
1294.08

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

第七章 假设检验基础()精品PPT课件

第七章 假设检验基础()精品PPT课件

差值
1 1206.44
1678.44
472.00
2
921.69
1293.36
Hale Waihona Puke 371.673 1294.08
1711.66
417.58
4
945.36
1416.70
471.34
5
721.36
1204.55
483.19
6
692.32
1147.30
454.97
7
980.01
1379.59
399.58
➢ 买小米手机吗? 对手机评价:适合(买)、不适合(不买)
➢ 国庆节去八里沟怎样吗? 对景区的评价:好玩(去)、不好玩(不去)
所有的决策都遵循相同的基本模式
陈述多种可供选择的方案(假设) 收集支持这些方案的证据 根据证据的强弱做出决策 根据决定执行某种行为
统计学中的假设检验也是一种决策过程,同样遵循 这一基本模式。
研究结果可供选择的结论(目前的假设)有哪些?
1.该县儿童总体平均闭合月龄与一般儿童没有差异 2.该县儿童总体平均闭合月龄迟于一般儿童
两种假设在统计上的含义
抽样研究存在抽样误差!!
样本1
总体 均数=14.1
样本2
X1 14.3 X2 14.0
从总体1中抽样
样本1 X1 14.3
µ1=14.1
样本2 X2 14.0
s/ n 5.08/ 36
自由度:
n 1 3 6 1 35
3.确定P值
P值的定义 如果H0成立的条件下,出现统计量目
前值及更不利于H0的数值的概率。
直观地看:就是统计量对应分布曲线下 的尾部面积。
通过查表可以得到 对应统计量的尾部 面积,即P值

5讲 假设检验基础ppt课件

5讲 假设检验基础ppt课件
3
假设检验的基本原理
• 已知健康成年男子的脉搏均数为72次/分。某医生在某山区随机调查25 名健康男子,求得脉搏均数为74.2次/分,标准差6.5次/分。能否认为该 山区的成年男子的脉搏均数高于一般成年男子的脉搏均数?
• 样本均数和总体均数的差异有两种可能: • 抽样误差所致, • 有本质差异
0 72
2
假设检验的原因
由于个体差异的存在,即使从同一总体中严格的随机抽样,X1、X2、X3、 X4、、、,不同。 因此,X1、X2 不同有两种(而且只有两种)可能: (1)分别所代表的总体均数相同,由于抽样误差造成了样本均数的差别。差别 无统计学意义 。 (2)分别所代表的总体均数不同。差别有统计学意义。
• (2)备择假设:拒绝双H侧0时检而验被H接0:受的假设0 ,与H0对立。有三种情况:
单侧检验 单侧检验
2.单、双侧的H选1 :择:由0专业知。通常取0.05。
H1:0
6
▲选定检验方法,计算检验统计量
• 根据资料类型和推断目的选用不同的检验方法。不同的检验方法有相应 不同的检验统计量及计算公式。
2.两大样本的u检验
u X 0 sn
u X 0 n
u x1 x2 s12 s2 2 n1 n2
11
例题7-1 • 根据1983年大量调查结果,已知某地成年男子的脉搏均数为72次/分,某医
生2003年在该地随机调查了75名成年男子,求其脉搏均数为74.2次/分,标 准差为6.5次/分,能否据此认为该地成年男子的脉搏不同于1983年?
• 所大有小检,验并统且计服量从都已是知在的分H0布成。立的条件下计算出来的,反映了抽样误差的
• 例:
成立条件下 ,

用s代替σ,检验统计量为

第七章假设检验基础 ppt课件

第七章假设检验基础 ppt课件

四、假设检验的应用
2020/12/8
t 检验
1、一组样本资料的t检验 2、配对设计资料的t检验 3、两组独立样本资料的t检验
2020/12/8
二、选择统计方法和计算统计量
• 根据资料的类型选择选择不同的统计方 法,并计算不同的统计量。
• 如两个样本均数的假设检验,样本均数 与总体均数的假设检验选用t检验法,计 算t值
• 多个均数的假设检验,选用方差分析, 计算F值。
2020/12/8
三、确定p值
• P值的意义是:如果总体状况和 H0一致,样本信息支持H0的概率 。具体来说:
2020/12/8
无论做出哪一种推断结论(接受或是 拒绝H0),都面临着发生判断错误的
风险,即假设检验的两种错误。 (见第六节)
2020/12/8
假设检验的结果
• α为0.05或0.01作为检验水准是人为的,可根据需 要选择。 接受检验假设 拒绝检验假设
• 正确理解结论的概率性(都隐含着犯错误的可能性 ):
• 小概率事件在一次随机试验中基本 上不会发生;
• 如果发生了,则认为是不合理的。 当然,这样推断也可能出错。
2020/12/8
样本结果差异原因:
• ①抽样误差引起;
• ②≠0(本质差异)
• 必须在两者中作抉择
2020/12/8
例 7-1
• 已知北方农村儿童前囟门闭合月龄 为14.1月。某研究人员从东北某县抽 取36名儿童,得囟门闭合月龄均值 为14.3,标准差为5.08月。问该县儿 童前囟门闭合月龄的均数是否大于 一般儿童?
• 如:用区间估计方法,若由样本估计的置信 区间没有覆盖某个已知的总体参数,则可推 断样本对应的总体与这个已知总体有差别;

假设检验课件

假设检验课件

z
0
0.916
25
0
• 3 . 拟定p值,作出推断结论 • 当z=0.916时相应旳单侧P=0.1788,P>0.05,按
α=0.05 • 水准,不拒绝H0,能够以为2023年该市无菌化脓17发
二、两独立样本资料旳z检验
当总体均数λ≥20时, Possion分布近似正态分布。
H0 λ1=λ2 H1 λ1≠λ2 α=0.05
2
1 n1
1 n2
样本估计值为 :
S X1X2
Sc2
1 n1
1 n2
S
2 c
n1 n1
n2 n2
S
2 c
X
2 1
(X 1 )2
/
n1
X
2 2
n1 n2 2
(X 2 )2
/ n2
6
已知S1和S2时:
Sc2
(n1
1)S12
(n2
1)
S
2 2
n1 n2 2
若n1=n2时:
S X1X 2
降低II型错误旳主要措施:提升检验效能。 提升检验效能旳最有效措施:增长样本量。 怎样选择合适旳样本量:试验设计。
33
假设检验应该注意旳问题
34

正态性检验 和两样本方差比较旳F检验
35
➢ t 检验旳应用条件是正态总体且方差齐性;配对 t 检验则要求每对数据差值旳总体为正态总体。
➢ 进行两小样本t检验时,一般应对资料进行方差
15
Possion分布资料旳z检验
•当总体均数λ≥20时, Possion分布近似正态分布。
x
z
0
0
•一、单样本资料旳z检验

第七章-假设检验PPT

第七章-假设检验PPT

(Xi X )2
i 1

n
[例7-5]某制药厂试制某种安定神经的新药,给10个病人 试服,结果各病人增加睡眠量如表7-2所示。
表7-1 病人服用新药增加睡眠量表
病人号码
1
2
34
5 6 7 8 9 10
增加睡眠(小时) 0.7 -1.1 -0.2 1.2 0.1 3.4 3.7 0.8 1.8 2.0
n N 1
其中, 是假设的总体比例,p 是样本比例
7.3.1 单个总体比例检验
❖ 这个检验统计量近似服从标准正态分布。如果抽样比例n/N 很小时,也可以使用下列形式:
Z p (1 )
n
[例7-7]某企业的产品畅销国内市场。据以往调查,购买该 产品的顾客有50%是30岁以上的男子。该企业负责人关心这 个比例是否发生了变化,而无论是增加还是减少。于是,该企 业委托了一家咨询机构进行调查,这家咨询机构从众多的购买 者中随机抽选了400名进行调查,结果有210名为30岁以上的 男子。该厂负责人希望在显著性水平0.05下检验“50%的顾客 是30岁以上的男子”这个假设。
解:从题意可知,X =1.36米,0=1. 32米, =0.12米。 (1)建立假设:H0: =1.32,H1: 1.32
(2)确定统计量:
Z X 1.36 1.32 1.67 / n 0.12 / 25
(3)Z的分布:Z~N(0,1)
(4)对给定的 =0.05确定临界值。因为是双侧备择假设所以
动生产率的标准差相等.问:在显著性水平0.05下,改革前、 后平均劳动生产率有无显著差异? 解:(1)建立假设H0:1 2 (没有差别)。
H1:1 2 (有差别)(左单侧备择假设) (2)计算统计量:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/23
二、选择统计方法和计算统计量
• 根据资料的类型选择选择不同的统计方 法,并计算不同的统计量。
• 如两个样本均数的假设检验,样本均数 与总体均数的假设检验选用t检验法,计 算t值
• 多个均数的假设检验,选用方差分析, 计算F值。
2020/9/23
三、确定p值
• P值的意义是:如果总体状况和 H0一致,样本信息支持H0的概率 。具体来说:
• 10例男性健康成人的血红蛋白
测量值:
• 13.9,14.2,14.0,14.3,13.7g,/ 1d3l.9,14.1,14.7,
13.5,13.6。
g /dl
)
男性肺炎均数=10.11(g/dl)
男性健康成人均数=13.99(g/dl)
2020/9/23
造成这种差别的原因可能有两种 :
其一:成年男性肺炎患者的血红蛋白确 实不同于男性健康成人的血红蛋白
• 如:用区间估计方法,若由样本估计的置信 区间没有覆盖某个已知的总体参数,则可推 断样本对应的总体与这个已知总体有差别;
• 而假设检验则首先假设样本对应的总体参数 与某个已知总体参数相同,然后根据统计量 的分布规律分析样本数据,判断样本信息是 否支持这种假设,并对假设作出取舍抉择。
2020/9/23
• 小概率事件在一次随机试验中基本 上不会发生;
• 如果发生了,则认为是不合理的。 当然,这样推断也可能出错。
2020/9/23
样本结果差异原因:
• ①抽样误差引起;
• ②≠0(本质差异)
• 必须在两者中作抉择
2020/9/23
例 7-1
• 已知北方农村儿童前囟门闭合月龄 为14.1月。某研究人员从东北某县抽 取36名儿童,得囟门闭合月龄均值 为14.3,标准差为5.08月。问该县儿 童前囟门闭合月龄的均数是否大于 一般儿童?
2020/9/23
无论做出哪一种推断结论(接受或是 拒绝H0),都面临着发生判断错误的
风险,即假设检验的两种错误。 (见第六节)
2020/9/23
假设检验的结果
• α为0.05或0.01作为检验水准是人为的,可根据需 要选择。 接受检验假设 拒绝检验假设
• 正确理解结论的概率性(都隐含着犯错误的可能性 ):
• 2.对立假设或备择假设,记做H1
• (alternative hypothesis 即假设比较的样本的差
别不是抽样误差引起的,而是来自不同的总体
。) • 如: H0:
2020/9/23
1 2
H1:
1 2
• H0比较单纯、明确,在H0下,抽样误 差服从某个特定的分布,便有规律 可循;而H1却包含着种种未知情形 ,不容易弄清在H1下有什么规律。
具体来说:
先对总体的参数或分布做出某种假设, 如假设总体均数(或总体率)为一定值 ,两个总体均数(或总体率)相等,总 体服从正态分布或两总体分布相同等;
然后用适当的方法,根据样本对总体 提供的信息,推断此假设应当拒绝或不 拒绝。
2020/9/23
二、假设检验的思维逻辑
2020/9/23
小概率事件原理:
• (1)接受H0,拒绝H1,并非H1绝对不成立,只是H1 成 立的机会较小;
• (2)拒绝H0,接受H1,也并非绝对H0绝对不成立,也 只是成立的概率较小。
2020/9/23
2020/9/23
2设检验在原理上本无根本区别 ,只是考虑问题的角度不同。
2020/9/23
三、假设检验的基本步骤
1、选择检验方法,建立检验假 设并确定检验水准 2、计算统计量 3、确定P值 4、做推断结论
2020/9/23
一、建立假设,确定检验水准
• 假设有两种(关于总体特征的假设):
• 1.原假设或零假设,记做H0
• ( null hypothesis 如:假设比较的样本来自相同 的总体,它们的差别仅是由于抽样误差引起。 )
• 故我们着重于考察样本信息是否支 持H0。
2020/9/23
检验水准
• 检验水准,用希腊字母α 表示。 • 显著性水平()就是我们用来区分大概率事件
和小概率事件的标准,是人为规定的。当某 事件发生的概率小于时,则认为该事件为小 概率事件,是不太可能发生的事件。通常 取0.05 或 0.01。 • α为犯第一类错误的概率,第一类错误即为 拒绝了实际上成立的H0。
• 如果H0成立,抽得现有样本差别 的概率P,亦就是现有样本差别是 由于抽样原因引起的概率P。
2020/9/23
图7-1 样本统计量t值与单侧P值的意图义7-2 样本统计量t值与双侧P值的意义
2020/9/23
• 将计算得到的u值或 t值与查表得到u或 t,ν。比较 ,得到 P值的大小。根据u 分布和t分布我们知道,如果|u|> u或| t |> u ,则 P< ;如果|u|< u或| t | < u ,则P> 。
(本质上的差异,即系统误差);
其二:抽样误差 。
2020/9/23
一、假设检验概念
• 总体间差异: 1. 个体差异,抽样误差所致; 2. 总体间固有差异
• 判断差别属于哪一种情况的统计学检验 ,就是假设检验(test of hypothesis)。
• t检验是最常用的一种假设检验之一。
2020/9/23
第七章 假设检验基础
预防医学教研室 徐 谦 办公地点:基础医学院七楼
2020/9/23
主要内容
• 假设检验的概念; • 假设检验的原理; • 假设检验的基本步骤; • 假设检验的应用。
2020/9/23
例如:
• 10例成年男性肺炎患者的血红蛋白 g / d 测l 量值:11.9,
10.9,10.1,10.2,9.8,9.9,10.3,9.3,9.8,8.9;
四、假设检验的应用
2020/9/23
t 检验
2020/9/23
四、做推断结论
2020/9/23
(1)如果p>
认为在检验假设H0成立的条件下, 发生了较为可能的事件,不属于小 概率事件,则不拒绝H0,差别无统 计学意义,结论是不认为两总体均 数不相等。
2020/9/23
(2)如果p<
我们认为在检验假设H0成立的条件下, 发生了小概率事件,则拒绝H0,接受H1 ,差别有统计意义,结论是两总体均数 不相等,或者某一总体均数大于(或小 于)另一总体均数。
相关文档
最新文档