变压器运行中短路损坏的原因
变压器损坏的原因
变压器损坏的原因
变压器损坏的原因有以下几种:
1. 过载:超过变压器额定容量运行,电流过大导致变压器绕组发热,进而引发局部短路或烧毁。
2. 短路:变压器绕组中的绝缘层破损或绕组间绝缘击穿,导致相间或相对短路,电流过大导致变压器损坏。
3. 过压:外部供电电压过高,超过变压器的耐受范围,导致变压器内部绝缘击穿或绕组烧毁。
4. 温升过高:变压器长时间运行或环境温度过高,导致变压器内部温度升高,绕组绝缘老化,绝缘性能下降,进而引发故障。
5. 湿气:变压器内部有湿气进入,导致绝缘性能下降,绕组间绝缘击穿,引起短路或损坏。
6. 质量问题:变压器制造过程中存在缺陷,如绕组接触不良、绝缘材料质量差等,容易引起故障。
7. 长时间不使用:长时间停用的变压器容易产生绝缘老化、绕组短路等故障。
以上是常见的变压器损坏原因,不同类型的变压器可能还存在其他特定的故障原因。
为了保证变压器的正常运行,需要定期检查和维
护,并遵守正确的使用和操作规范。
干式变压器相间短路的原因
干式变压器相间短路的原因干式变压器是一种常见的电力设备,它通过电磁感应原理将电能从一个电路传输到另一个电路。
然而,在使用干式变压器的过程中,有时会发生相间短路的情况,这可能会导致设备损坏甚至引发火灾等安全事故。
那么,造成干式变压器相间短路的原因有哪些呢?干式变压器相间短路的一个常见原因是绝缘失效。
干式变压器的绝缘系统由多层绝缘材料组成,其主要作用是阻止电流在不同绕组之间产生短路。
然而,长期使用或者环境条件恶劣可能会导致绝缘材料老化、开裂或破损,从而使绝缘失效,进而发生相间短路。
灰尘和湿度也是造成干式变压器相间短路的重要原因。
由于干式变压器的绝缘材料暴露在环境中,容易受到灰尘和湿度的侵蚀。
灰尘会在绝缘材料表面积累,形成导电通道,导致绝缘破损,从而引发相间短路。
而湿度则会导致绝缘材料吸湿膨胀,增加绕组之间的距离,使得绝缘失效。
干式变压器的设计和制造质量也会影响其发生相间短路的概率。
如果变压器的绕组设计不合理或者制造过程存在质量问题,例如绕组之间的间隙不均匀或者存在电气连接不良等情况,都有可能导致相间短路的发生。
外界过电压也是导致干式变压器相间短路的一个重要原因。
当外部电压突然升高时,干式变压器的绝缘系统可能无法承受这种过电压,从而导致绝缘击穿,产生相间短路。
外界过电压可以来自于雷击、电网故障等因素,因此在变压器的设计和安装中,需要采取相应的保护措施,以防止过电压引发相间短路。
操作不当也是导致干式变压器相间短路的一个重要因素。
在使用干式变压器的过程中,如果操作人员没有按照规定的操作程序进行操作,例如过载运行、长时间短路或者频繁切换负载等,都会增加变压器发生相间短路的风险。
干式变压器相间短路的原因主要包括绝缘失效、灰尘和湿度侵蚀、设计和制造质量、外界过电压以及操作不当等。
为了避免干式变压器相间短路的发生,我们应该加强设备的维护和检修工作,定期清理绝缘材料表面的灰尘,保持环境干燥,并严格按照操作规程进行操作。
变压器短路事故分析
变压器短路事故分析变压器短路事故是指变压器内部绝缘系统出现故障,导致两个或多个绕组之间出现直接短路或接近短路的故障。
这种事故在发电厂、变电站、工矿企业等大型电力设施中经常发生。
本文通过分析变压器短路事故的原因、后果以及防范措施,对这类事故进行详细探讨。
首先,变压器短路事故的主要原因包括硬件故障和操作失误。
硬件故障主要指电气元件的老化、损坏等,如绝缘材料老化、接线端子松动、导线断裂等,这些故障导致电流过大、短路电流增大,最终引发短路事故。
操作失误方面,主要包括操作人员的误操作、疏忽等,如接线错误、保护装置设置不当等,这些操作失误也会导致短路事故的发生。
其次,变压器短路事故的后果非常严重。
首先是设备的损坏,短路电流的冲击会导致变压器内部绕组和绝缘材料的损坏,甚至烧毁变压器。
其次是停电事故,变压器的短路会导致电力系统的一部分或全部停电,给用户带来不便。
再次是人身伤亡事故,变压器短路时可能引发火灾,造成人员伤亡。
最后,短路事故还会造成电力系统的连锁故障,引发更大的事故。
为了防范变压器短路事故的发生,应采取以下措施。
首先是加强维护保养,定期检查变压器的绝缘材料和接线端子等,确保其处于良好的工作状态。
其次是合理设置保护装置,对变压器进行过载、短路等故障的保护,及时切除故障,保护变压器的安全运行。
再次是加强操作人员的培训,提高其操作技能和安全意识,减少操作失误的发生。
最后是加强监控系统的建设,使用传感器、监测装置等对变压器进行实时监测,及时发现故障并采取措施修复。
总之,变压器短路事故是一种严重的电力事故,可能导致设备损坏、停电、人员伤亡等后果。
通过加强设备维护、合理设置保护装置、提高操作人员技能和安全意识以及加强监控系统建设等措施,可以有效地预防和减少变压器短路事故的发生。
只有不断完善电力设备管理,提高安全意识,才能构建安全可靠的电力系统。
变压器运行中的各种异常与故障原因分析报告
变压器运行中的各种异常与故障原因分析报告变压器作为电力输配系统中的重要设备,承担着电能变压、分配和传输的任务。
然而,在长期的运行过程中,由于外部环境的影响、设备自身的老化和故障等原因,变压器可能会出现各种异常和故障。
本报告将对变压器运行中的各种异常与故障原因进行分析。
一、异常现象1.温升过高:变压器温升过高是非常常见的异常现象,可能是由于过负荷、通风不良、冷却系统故障等原因导致。
2.油位异常:变压器油位过高或过低都属于异常现象,可能是由于泄漏、泄油孔堵塞、油泵故障等原因引起。
3.噪音过大:变压器在正常运行过程中会产生一定的噪音,但若声音过大则属于异常现象,可能是由于过载、磁通密度过高、绝缘老化等引起。
4.漏油:变压器漏油是一种严重的异常现象,可能是由于油封老化、压力过高、杂质侵入等原因导致。
二、故障原因分析1.设备老化:长期使用会导致变压器内部材料老化,绝缘性能下降,容易引起漏电和故障。
2.浪涌电流:在电力输配系统中,可能出现突然的大电流冲击,如雷击、设备突然开关等,这会导致变压器受损。
3.短路故障:线圈内部的短路会导致变压器短路故障,可能是由于线圈绝缘老化、异物进入等原因引起。
4.过压故障:当输入电压超过设备额定电压时,会导致变压器受损,产生过压故障。
5.泄漏故障:变压器内绝缘油泄漏会导致局部放电,增加设备损坏的风险。
6.渗漏故障:设备长期处于高温高压状态,容易导致绝缘材料和接头的渗漏,引起故障。
7.绝缘老化:变压器长期使用导致绝缘材料老化,绝缘性能下降,容易引起漏电和设备损坏。
8.环境影响:变压器在恶劣的环境条件下,如高温、潮湿、腐蚀等,容易导致设备故障。
以上是变压器运行中常见的异常与故障原因分析。
为了确保变压器的正常运行,必须定期进行检查和维护,并采取措施来预防和避免潜在的故障。
变压器运行中短路损坏的原因分析
变压器运行中短路损坏的原因分析变压器是电力系统中必不可少的重要设备之一,主要用于电压的变换与调节,是电力输配电过程中的关键设备。
在变压器的运行中,短路故障是常见的故障类型之一,其可能导致电力设备或整个电力系统的停运,给生产和生活带来极大的困扰和损失。
变压器短路故障的原因很多,主要包括以下几个方面:1. 绝缘强度不足:由于绝缘材料不良或制造工艺不精,使得变压器绝缘强度降低,导致局部放电和电晕现象,从而导致短路故障的发生。
2. 外界原因:变压器的运行环境可能会受到天气等外界原因的影响,例如雷电、电力干扰等因素可能与变压器的设备部件发生直接或间接的接触,从而导致短路故障的发生。
3. 负载过重:过重的负载会导致变压器的运行温度升高,随之而来的则是变压器本体的短路故障的风险增大。
4. 设备老化:在长时间的运行中,随着变压器的使用寿命增加和设备老化,其安全性和稳定性也会相应减弱,这也增加了短路故障的发生概率。
5. 维护不当:变压器在使用过程中需要进行定期的维护和检修,如果维护不到位、检修不及时或处理不当,会导致其运行状态恶化或使用寿命过短,从而导致短路故障的发生。
6. 设计不合理:在变压器的设计和制造过程中,如果存在问题或局限,也可能导致短路故障的发生,例如,变压器中线圈的制作过程不合理、线圈边绝缘带不平、高压绕组断头太短、绝缘隔板过薄等问题。
变压器短路故障的形成是一个复杂的过程,其原因主要是由于绝缘强度不足、外界原因、负载过重、设备老化、维护不当、设计不合理等因素影响,因此,在平时的使用中,需要严格执行一系列管理制度,保证变压器的正常运行,及时发现潜在隐患并进行处理,以确保电力设备的安全稳定运行。
变压器烧毁的原因与解决措施
变压器烧毁的原因与解决措施变压器是电力系统中非常重要的设备,用于将高压输电线路的电能转换为适合家庭和工业用电的低压电能。
然而,由于各种原因,变压器有时会烧毁或故障,造成供电中断和损失。
本文将探讨变压器烧毁的原因,并提出相应的解决措施。
1.负载过载:负载过载是变压器烧毁的最常见原因之一、当负载超过变压器额定容量时,会导致变压器过热,使绕组绝缘材料损坏,最终导致短路和烧毁。
负载过载的原因可能是供电设备不合理的设计或人为错误,如错误地计算负载需求或过多地连接负载。
解决措施:避免负载过载的关键是正确计算负载需求并安装适当容量的变压器。
可以通过合理的负载规划和定期检查负载情况来避免负载过载。
2.短路:短路是指在电路中出现不应有的低阻抗通路,造成电流过大。
短路通常是由电气设备的绝缘故障或电路连接错误引起的。
当变压器绕组发生短路时,会导致过大的电流通过绕组,产生严重的过热和电击风险,最终烧毁变压器。
解决措施:避免短路的关键是正确安装和维护电气设备。
设备应符合相关的电气安全标准,电路应正确地连接,并配备适当的过流保护装置。
3.绝缘故障:绝缘故障是指绝缘材料损坏或断裂,导致电流在不应有的通路上流动。
变压器绕组绝缘故障可能是由于老化、湿度和灰尘等外部环境因素,或者由于制造过程中的质量问题引起的。
绝缘故障可能导致短路和烧毁变压器。
解决措施:定期检查和维护变压器的绝缘状态是避免绝缘故障的关键。
应确保变压器的绝缘材料符合相关标准,并定期进行外观检查、绝缘测试和局部放电测量。
4.温度过高:变压器工作时产生的热量需要适当散发,否则温度会过高,导致绝缘材料老化、变形或熔化,最终烧毁变压器。
导致温度过高的原因可能是环境温度过高、风扇故障或散热系统不足等。
解决措施:确保变压器周围的环境温度适当,并保持散热系统的正常运行。
应定期检查风扇、散热器和冷却系统,并确保通风良好。
5.液体绝缘材料老化:变压器中使用的绝缘材料通常是一种特殊的油,用于散热、绝缘和冷却。
变压器一次侧短路容量
变压器一次侧短路容量变压器是电力系统中不可或缺的重要设备,其作用是将高电压变成低电压或将低电压变成高电压,以满足电力系统中不同电压等级的需求。
在变压器的运行过程中,一次侧短路是一种常见的故障,因此变压器一次侧短路容量的计算和评估显得尤为重要。
一、变压器一次侧短路的原因变压器一次侧短路是指变压器一次侧绕组中的两个相位之间或同一相位内部发生短路故障。
其原因主要有以下几点:1.绕组绝缘老化或损坏,导致绕组内部短路。
2.绕组接线不良或接触不良,导致绕组内部短路。
3.变压器一次侧绕组内部存在异物或杂质,导致绕组内部短路。
4.变压器一次侧绕组内部存在局部过热现象,导致绕组内部短路。
二、变压器一次侧短路容量的计算方法变压器一次侧短路容量的计算方法主要有以下两种:1.按照变压器额定容量的百分比计算变压器一次侧短路容量的计算公式为:Ssc=K×Sn其中,Ssc为变压器一次侧短路容量,K为变压器一次侧短路容量系数,Sn为变压器额定容量。
变压器一次侧短路容量系数K的取值范围为0.05~0.2,一般情况下取0.1即可。
2.按照变压器一次侧短路电流计算变压器一次侧短路容量的计算公式为:Ssc=U^2/Zsc其中,Ssc为变压器一次侧短路容量,U为变压器一次侧额定电压,Zsc为变压器一次侧短路阻抗。
变压器一次侧短路阻抗Zsc的计算公式为:Zsc=U^2/Sk其中,Sk为变压器短路容量,一般情况下取变压器额定容量的10%即可。
三、变压器一次侧短路容量的评估变压器一次侧短路容量的评估主要有以下几个方面:1.根据变压器一次侧短路容量的计算结果,评估变压器的短路能力是否满足电力系统的要求。
2.根据变压器一次侧短路容量的计算结果,评估变压器的保护装置是否能够及时、准确地对变压器一次侧短路进行保护。
3.根据变压器一次侧短路容量的计算结果,评估变压器的绝缘水平是否满足电力系统的要求。
四、结语变压器一次侧短路容量的计算和评估是电力系统中非常重要的一项工作,其结果直接关系到电力系统的安全稳定运行。
三相变压器低压端相间短路现象
三相变压器低压端相间短路现象
三相变压器低压端相间短路是指三相变压器的低压侧发生两个不同相之间的短路故障。
这种故障会导致电流异常增大,变压器温度升高,电压波形失真,甚至引发火灾等严重后果。
造成三相变压器低压端相间短路的原因可能包括:
1. 绝缘损坏:由于绝缘老化、受潮等原因,低压侧绝缘失效,导致相间短路。
2. 绝缘击穿:在变压器运行过程中,由于电压过高或过载等原因,使绝缘击穿,导致相间短路。
3. 外界因素:例如鼠咬、鸟触等外界物体引起的短路。
为防止三相变压器低压端相间短路,可以采取以下措施:
1. 定期检测绝缘电阻:通过定期检测变压器低压侧的绝缘电阻,及时发现绝缘老化、绝缘失效等问题。
2. 防止过载:合理规划负荷,避免变压器长时间工作在超负荷状态下,减少绝缘击穿风险。
3. 增加绝缘强度:对低压侧绝缘进行升级,增加绝缘强度,提高短路能力。
4. 定期清理维护:定期清理变压器周围的杂物,防止外界因素引起的短路。
当发生三相变压器低压端相间短路时,应立即切断电源,通知相关专业人员进行处理,并进行相应的维修和更换工作。
电力变压器绕组短路故障仿真与分析
电力变压器绕组短路故障仿真与分析电力变压器是电能传输和分配中不可或缺的设备,它的正常运行关系着电网的稳定性和供电质量。
然而,由于各种外界因素和内部原因,电力变压器也可能发生各种故障,其中绕组短路故障是比较常见的一种。
本文将对电力变压器绕组短路故障的仿真与分析进行探讨。
1. 介绍电力变压器绕组短路故障的背景和现象电力变压器绕组短路故障是指变压器绕组中出现短路现象,导致电流异常增大、温升加剧甚至发生局部放电等。
常见的绕组短路故障有匝间短路、相间短路和对地短路等。
这些故障会对电力系统的稳定性和设备的安全性造成严重威胁。
2. 电力变压器绕组短路故障的原因分析绕组短路故障的原因可以是多方面的,包括设备老化、局部绝缘损坏、外界电力负荷突变等。
其中,绝缘损坏是绕组短路故障的主要原因之一。
绕组的绝缘材料受热和电流的侵蚀,会发生劣化甚至破裂,导致电压与电流之间发生短路。
因此,检测和诊断绕组的绝缘状态非常重要。
3. 电力变压器绕组短路故障的仿真与分析方法为了更好地了解电力变压器绕组短路故障的发生机理,研究人员提出了各种仿真与分析方法。
其中,有限元分析是一种有效的方法。
通过建立绕组短路故障的有限元模型,可以对故障前后的电场分布、电流分布等进行模拟和分析。
这些分析结果有助于对故障状态进行识别和预测。
另外,还有基于模型的仿真方法,如绕组短路电路模型。
该模型基于电路理论和电磁理论,通过对绕组中电流和电压的计算,可以获得故障前后的参数变化。
这种方法可以有效地模拟和分析绕组短路故障的影响。
4. 电力变压器绕组短路故障的仿真与分析案例研究通过具体案例的研究,可以更加深入地了解电力变压器绕组短路故障的仿真与分析方法。
以某变电站的一个500kV变压器为例,观察到绕组短路故障后的电流波形异常,经过有限元仿真和模型分析,发现短路位置和短路电阻的影响。
同时,还可以结合实际测量数据,对仿真与分析结果进行验证。
5. 预防和处理电力变压器绕组短路故障的方法探讨除了仿真与分析方法外,对电力变压器绕组短路故障进行预防和处理也是非常重要的。
变压器的常见故障及处理方法
变压器的常见故障及处理方法变压器是电力系统中重要的电气设备之一,负责将电能从一电压等级变换为另一电压等级,以满足不同电气设备的用电需求。
然而,由于各种因素的影响,变压器可能会出现故障。
本文将介绍变压器的常见故障及处理方法。
一、变压器的常见故障1.绝缘老化:变压器的绝缘材料会随着使用时间的延长而老化,从而降低绝缘性能。
绝缘老化可能导致绝缘击穿或绝缘电阻降低。
2.短路故障:短路故障指变压器中绕组或铁芯出现电流短路。
短路故障可能由绝缘击穿、绕组过热、绕组内部松动等原因引起。
3.绕组过热:绕组过热是变压器经常出现的故障之一、过高的电流或短路故障可能导致绕组过热,从而损坏绝缘材料和绕组。
4.铁芯松动:铁芯松动会引起噪声和振动,可能导致铁芯损坏。
铁芯松动的主要原因是变压器运行时受到的电磁力的作用。
5.油污染:变压器中的绝缘油可能会因为氧化、水分和灰尘等因素而被污染,导致油的绝缘性能下降。
6.绝缘击穿:绝缘击穿是指绝缘失效,从而导致电流突然通过绝缘介质。
绝缘击穿可能由于过高的电压、电磁波和绝缘老化等原因引起。
二、变压器故障的处理方法1.维修和更换绝缘材料:一旦发现绝缘老化,需要及时维修或更换绝缘材料,确保变压器的安全运行。
常用的绝缘材料有绝缘纸、绝缘漆、绝缘胶带等。
2.检修和维护绕组:定期检查绕组的状态,确保绕组的良好连接和绝缘性能。
在发现绕组过热时,及时停机检修,确定原因并进行维修。
3.修复和固定铁芯:在发现铁芯松动时,需要及时修复和固定铁芯。
可以使用钢丝绳、胶水或紧固螺栓等方法进行固定。
4.定期更换绝缘油:定期对变压器的绝缘油进行更换,以确保油的绝缘性能。
5.绝缘击穿的处理:在发生绝缘击穿时,应及时切断电源,检查绝缘材料和绕组是否受损,并进行必要的维修和更换。
6.预防措施:为了减少变压器的故障发生,可以采取一些预防措施,例如定期检查、维护和保养变压器,及时清除变压器周围的杂物,维护变压器的通风系统等。
综上所述,变压器的常见故障包括绝缘老化、短路故障、绕组过热、铁芯松动、油污染和绝缘击穿等。
变压器绕组匝间短路、相间短路或对地击穿时的现象
变压器绕组匝间短路、相间短路或对地击穿时的现象在变压器的运行中,可能会发生绕组匝间短路、相间短路或对地击穿等故障。
这些故障会导致变压器的失效和危险。
本文将介绍这些故障的现象。
绕组匝间短路变压器绕组匝间短路是指变压器绕组中两个不同的匝之间形成连接电路,导致电流从一个匝之间流到另一个匝之间,从而使变压器电路路径短路。
当出现绕组匝间短路时,变压器会出现以下几个现象:电压下降绕组匝间短路会导致电压下降。
这是因为电流在流经绕组时会遇到短路路径,从而导致电压降低。
电流增加绕组匝间短路会导致电流增加。
这是因为在短路的路径上,电阻减小,因此电流增加。
温度升高绕组匝间短路会导致局部电路电阻减小,因此电能被转化成热能,从而使短路部分的温度升高。
这也可能导致变压器绕组局部的绝缘失效。
绕组匝间短路会产生额外的电磁力,从而使变压器输出的声音增加。
相间短路相间短路是指变压器两个相之间形成连接电路,导致电流从一个相流到另一个相之间,从而使变压器电路路径短路。
当出现相间短路时,变压器会出现以下几个现象:电流增加相间短路会导致电流增加。
这是因为电路路径更短,电阻更小。
温度升高相间短路会导致局部电路电阻减小,因此电能被转化成热能,从而使短路部分的温度升高。
这也可能导致变压器绕组局部的绝缘失效。
噪音增加相间短路会产生额外的电磁力,从而使变压器输出的声音增加。
对地击穿对地击穿是指变压器绕组接地,导致电流流向地面。
当出现对地击穿时,变压器会出现以下几个现象:电流增加对地击穿会导致电流增加。
这是因为接地会导致电路路径更短,电阻更小。
对地击穿会导致绕组部分电压下降,电阻减小,因此电能被转化成热能,从而使接地部分的温度升高。
这也可能导致变压器绕组局部的绝缘失效。
电压变化对地击穿会导致变压器绕组与地之间形成较低阻抗的电路,因此会改变输出电压的大小。
结论绕组匝间短路、相间短路或对地击穿都会对变压器产生不同的影响。
为了保证变压器正常运行和延长变压器的寿命,应该定期检查变压器是否存在这些故障,并及时进行处理。
变压器烧坏七大常见原因
变压器烧坏七大常见原因变压器是电力系统中非常重要的设备之一,常见的变压器烧坏原因有很多。
下面将介绍七大常见原因。
1.超过额定负荷:变压器在使用过程中,如果负载超过其额定负荷,会导致变压器过热,进而烧坏。
这可能是由于设计不合理、电力需求增加或者错误操作造成的。
2.短路故障:短路是指电流在途中绕过原本的路径形成直接的低阻抗通路。
当短路出现在变压器绕组中,由于大电流流过绕组,绕组会发生过热,导致绝缘材料破坏甚至烧坏。
3.绕组接头接触不良:绕组接头是连接变压器的关键部分,如果接头接触不良,会导致接头局部放热,引起局部过热并最终导致变压器烧坏。
4.绝缘材料老化:变压器中的绝缘材料经过长时间的运行,会受到环境氧化、电热压力等因素的影响,导致绝缘材料老化、劣化,降低了它的绝缘能力,容易导致短路和绕组烧坏。
5.外部故障:外部故障包括雷击、电力波动、过电压等,这些异常电力现象都可能导致变压器绕组过电压、过流,引起变压器损坏。
6.内部故障:内部故障包括绕组故障、导体断裂等,这些故障会导致变压器工作不正常,产生局部过热,最终导致变压器烧坏。
7.不合理的维护保养:不合理的维护保养也是变压器烧坏的原因之一、比如不定期清洗绝缘油、不及时更换老化的绝缘材料、不严格执行维护计划等,都可能导致变压器失效。
对于变压器烧坏的防范措施,首先要保证负荷不超过变压器的额定负荷,同时要定期检查和维护变压器,确认绝缘材料的性能和完整性。
此外,变压器运行中如果检测到任何异常现象,应尽快停止使用并进行检修。
此外,励磁变压器的运行和保养也非常重要,励磁变压器得不到及时保养,也会导致变压器故障。
总之,变压器烧坏的原因有很多,需要在设计、操作和维护过程中严格遵守相关规范和要求,加强变压器的管理和维护,以确保其安全可靠地运行。
变压器短路实验报告
变压器短路实验报告变压器短路实验报告引言变压器是电力系统中不可或缺的设备之一,其作用是将电能从一个电路传输到另一个电路,通过变压器的升降压作用,实现电力传输的效率和安全性。
然而,在变压器运行过程中,短路故障是一种常见的故障类型,会对电力系统的稳定运行产生严重影响。
因此,本次实验旨在通过模拟变压器短路故障,分析其产生原因和对电力系统的影响。
实验目的1. 模拟变压器短路故障,观察故障时的电流和电压变化;2. 分析变压器短路故障的原因和可能的影响;3. 探讨变压器短路故障的预防和处理方法。
实验原理变压器短路故障指的是变压器的低压侧或高压侧绕组发生短路,导致电流过大、温度升高,甚至引发火灾等严重后果。
短路故障的原因可能包括绕组绝缘老化、绕组间绝缘破损、外部短路故障等。
实验步骤1. 准备实验设备:变压器、电流表、电压表等;2. 将变压器接入电源,使其正常运行;3. 通过外部短路装置模拟变压器短路故障,记录短路故障时的电流和电压变化;4. 观察变压器短路故障对电力系统的影响,如电能损耗、温升等;5. 分析短路故障的原因,探讨预防和处理方法。
实验结果与分析在模拟变压器短路故障的过程中,我们观察到电流迅速增大,电压下降,变压器发出异常声响。
这是因为短路故障导致电流无法正常通过绕组,从而产生大量热量,使得变压器温度升高,电能损耗增加。
此外,短路故障还会导致电压下降,影响电力系统的稳定性。
因此,变压器短路故障是一种严重的故障类型,需要及时处理和预防。
短路故障的原因可能有多种,其中绕组绝缘老化、绕组间绝缘破损是常见的原因。
长期运行中,变压器绕组会受到电磁力的作用,导致绝缘老化,从而减弱了绝缘能力。
此外,外部因素如灰尘、湿气等也会加速绝缘老化过程。
当绝缘老化到一定程度,绕组间的绝缘可能会破损,导致短路故障的发生。
为了预防变压器短路故障的发生,我们可以采取以下措施:1. 定期检查变压器的绝缘状况,及时发现并更换老化的绝缘材料;2. 保持变压器周围的环境清洁,避免灰尘和湿气对绝缘的影响;3. 加强变压器的维护工作,定期清洗绝缘表面,防止绝缘破损;4. 定期进行变压器的绝缘电阻测试,及时发现潜在的故障隐患。
变压器几种常见故障产生的原因及其处理方法
变压器几种常见故障产生的原因及其处理方法变压器是电力系统中重要的电气设备,常见的故障有短路、绕组断线、绝缘老化等。
本文将介绍这些故障的产生原因,并针对每种故障提出相应的处理方法。
一、短路故障:短路故障是变压器常见的故障之一,其主要原因有以下几点:1.绕组绝缘老化:长期使用使得绕组绝缘老化,继电器触点接触不良,导致绕组间短路。
2.外部故障:外部因素如雷击、动物侵入、树木倒塌等导致外壳损坏,使绕组间短路。
针对短路故障,可以采取以下处理方法:1.及时检查绕组绝缘状况,如有老化现象应及时更换。
2.定期对变压器外壳进行检查,确保外壳的完好性。
3.安装雷击保护装置,减少雷击对变压器的影响。
4.加装防护措施,防止动物侵入和外来物体对变压器造成损坏。
二、绕组断线故障:绕组断线故障是由于变压器绕组导线断裂或接触不良导致电流无法正常通过。
其主要原因有以下几点:1.导线老化:长时间使用使得导线老化断裂。
2.运输振动:变压器在运输中受到振动,导致导线断裂。
针对绕组断线故障,可以采取以下处理方法:1.定期检查绕组导线状况,如有老化断裂现象应及时更换。
2.加强运输过程中的防护措施,减少振动对变压器的影响。
三、绝缘老化故障:绝缘老化故障是指变压器绝缘材料老化失效导致的故障。
其主要原因有以下几点:1.高温:长期高温工作使得绝缘材料老化。
2.过电压:电力系统中的过电压超过了绝缘耐受范围,导致绝缘老化失效。
针对绝缘老化故障,可以采取以下处理方法:1.检查变压器工作状态,确保温度在安全范围内。
2.定期检查绝缘材料状况,如有老化现象应及时更换。
3.安装过电压保护器,防止过电压对绝缘材料造成损害。
综上所述,变压器常见的故障有短路故障、绕组断线故障和绝缘老化故障。
针对这些故障,可以通过定期检查、维护以及加装防护措施来预防和处理。
这样可以保障变压器的正常运行,提高电力系统的可靠性和稳定性。
10KV变压器烧毁的原因及防范
10KV变压器烧毁的原因及防范10KV变压器作为电力系统中的重要设备,承担着电压传输和分配的重要任务。
然而,由于各种原因,10KV变压器也会发生烧毁的情况,给电力系统的正常运行带来严重影响。
本文将从烧毁原因及防范两个方面进行论述。
首先,10KV变压器烧毁的原因十分复杂,包括运行过程中的外部原因和内部原因。
外部原因:1.供电线路异常电压波动。
当电源系统发生电压突变、脉冲干扰等问题时,可能使变压器绕组产生局部过电压,从而导致绝缘击穿,引发烧毁。
2.过电流。
电力系统中如果出现短路、接地故障等情况,电流可能突然增大,超过变压器额定容量,使其失去保护和自救功能。
内部原因:1.绝缘老化。
变压器在长期运行中,受高温、湿度等因素影响,绝缘材料会逐渐老化,导致绝缘电阻下降,继而引发放电和绝缘击穿。
2.设备缺陷。
制造或安装过程中的质量问题,如绕组绝缘不均匀、接头接触不良等,会使得变压器本身存在缺陷,在运行中容易发生故障。
为了防范10KV变压器的烧毁情况,需要采取一系列有效的措施。
1.加强设备维护。
定期对10KV变压器进行巡检和维护,检查电气连接、冷却系统、防雷装置等是否正常运行。
及时清除绝缘材料上的灰尘和杂物,保持设备的良好通风环境。
2.加强绝缘监测。
采用绝缘电阻测试仪等设备,对绝缘电阻进行定期检测,及早发现老化和击穿情况,及时进行绝缘处理或更换绝缘材料,以延长变压器的寿命。
3.合理选择运行参数。
根据变压器的额定容量和运行环境的温度、湿度等特点,合理选择运行参数。
严格控制变压器的负荷,避免超负荷运行,减少变压器内部温度的升高。
4.安装保护装置。
为10KV变压器安装过电压保护、过电流保护、温度保护等装置,对异常电压、异常电流和过温情况做出及时反应,并采取相应的保护措施,以防止变压器烧毁。
5.培训与宣教。
对电力系统操作人员进行培训,提高他们对10KV变压器运行情况的认识和应急处理能力。
在变压器周围设立警示标志,加强对变压器安全工作的宣传教育。
变压器短路故障原因分析及处理
变压器短路故障原因分析及处理杨卫钢上海高桥捷派克石化工程建设有限公司摘要:在变压器事故中,发生概率较高,对设备威胁较大的是变压器短路事故,特别是变压器低压侧发生短路故障,现就对短路故障后的原因分析和处理方法予以阐述。
关键词:变压器短路;事故;处理引言随着电力事业的飞速发展与社会对电力供应可靠性的要求的提高,保证供电质量是每个运行、检修人员应尽的义务。
电力变压器是电力系统电网安全性运行的重要设备,是输变电系统的心脏。
电力变压器短路故障是所有故障中较为严重的一种。
1 变压器短路故障因素分析1.1铁芯和夹件局部短路过热(有的兼有多点接地)1.1.1 紧固螺栓夹件磁铁芯是铁芯局部短路1.1.2 穿芯螺栓绝缘破裂或炭化了引起铁芯局部短路1.1.3 焊渣或其他金属异物引起局部短路1.1.4 穿芯螺母座套过长1.1.5 接地片过长,紧贴铁芯引起局部短路1.1.6 上下铁轭拉杆端头锁定螺母松动1.2高压匝层间电弧放电1.2.1接地不良,累计或操作过电压作用1.2.2 绝缘严重受潮1.2.3绝缘裕度不够(如薄绝缘);电压器出口短路事故1.3 低压匝层箱短路放电,低压相间短路放电1.3.1匝间绝缘裕度不够或绝缘老化1.3.2雷击或操作过电压的作用1.3.3 接头焊接不良1.3.4 出口短路冲击1.4保护系统有死区,动作失灵,导致变压器承受稳定短路电流作用时间长,在成绕组变形,粗略统计结果表明在遭受外部短路时,因不能不时跳闸而发生损坏的变压器占短路损坏事故的 %1.5 变压器在遭受突发短路时,高低压侧都将受到很大的短路电流冲击,在断路器来不及断开的很短时间内,短路电流产生与电流平方成正比的电动力将作用与变压器的绕组上,此电动力可分为辐向力和轴向力,在短路时,作用在绕组上的辐向力将使高压绕组受到张力,低压绕组受到压力,由于绕组为圆形,圆物受压力比受张力更容易变形。
因此,低压绕组更容易变形。
在突发短路时产生的轴向力使绕组压缩、扭曲、鼓包和匝间短路。
配电变压器烧坏的原因分析及防范措施
配电变压器烧坏的原因分析及防范措施首先,配电变压器烧坏的原因可能包括以下几个方面:1.过载:过载是导致变压器烧坏的常见原因之一、当负荷超过变压器额定容量时,可能会导致变压器过热,并最终引发故障。
过载可能是由于负荷突然增加、过大的负荷连接或者设计不合理等因素引起的。
2.短路:电流短路也是引起变压器烧坏的常见原因之一、短路可能是由于绕组绝缘损坏、导线短路、绕组间绝缘故障等引起的。
短路会导致大量电流流过变压器,使得变压器瞬间过热。
3.绝缘损坏:绝缘损坏是导致变压器烧坏的重要原因。
绝缘材料如绝缘油、纸板等可能会受到电气压力、过热等因素的影响而损坏。
绝缘损坏会导致绕组间短路、击穿和漏电等故障。
4.过压和欠压:过压和欠压都有可能导致配电变压器烧坏。
过压会增加绕组和绝缘系统的电压应力,导致绝缘击穿;欠压会导致变压器过热,损坏绕组绝缘。
针对以上原因,我们可以采取一些预防措施来减少变压器烧坏的风险:1.合理设计和选择变压器容量:在选取变压器时,需要根据实际负荷情况合理选择变压器容量,避免过载运行。
此外,还需要考虑潜在的负荷增加和冗余容量,以应对突发负荷增加的情况。
2.安装和维护保养:正确安装变压器是预防烧坏的关键。
安装时需要确保变压器与周围环境保持一定的距离,以保证散热良好;定期对绝缘材料、绝缘油等进行检测和维护保养,确保绝缘性能良好。
3.使用保护装置:安装合适的保护装置是保护变压器免受过载和短路等故障的关键。
过载保护装置可通过监测变压器的负荷并及时切断电源来防止过载;短路保护装置可及时检测电流异常并切断电源,避免短路引发的变压器烧坏。
4.监测和检测:定期对变压器进行监测和检测有助于及时发现潜在的故障。
通过监测温度、湿度、绝缘电阻等参数,可以判断变压器运行状况是否正常,及时采取措施进行维修或更换。
综上所述,变压器烧坏可能是由于过载、短路、绝缘损坏、过压和欠压等原因造成的。
为了预防变压器烧坏,我们可以通过合理设计和选择容量、安装和维护保养、使用保护装置以及监测和检测等措施来降低故障风险,确保变压器的安全运行。
关于变压器运行中短路损坏的原因分析
关于变压器运行中短路损坏的原因分析摘要:变压器一旦发生短路故障,轻则会损害变压器的线路和设备,严重的甚至会损害整个电力系统,因此分析其故障原因及并提高其抗短路能力显得尤为重要,关系着电力系统和变压器的稳定运行。
本文就电力变压器外部短路而造成损坏事故的情况作分类分析,进而提出目前有关电磁线选用存在的问题和减少这一类事故的措施。
关键词:变压器;运行;短路;损坏;原因一、变压器短路事故情况1.外部多次短路冲击,线圈变形逐渐严重,绝缘击穿损坏居多;2.外部短时内频繁受短路冲击而损坏;3.长时间短路冲击而损坏;4.一次短路冲击就损坏。
二、变压器短路损坏的主要形式1.轴向失稳(1)线饼上下弯曲变形这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
(2)绕组或线饼倒塌这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。
如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。
(3)绕组升起将压板撑开这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。
2.辐向失稳(1)外绕组导线伸长导致绝缘破损辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。
这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。
(2)绕组端部翻转变形端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。
(3)内绕组导线弯曲或曲翘辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。
如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。
然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。
干式变压器绕组匝间短路的原因
干式变压器绕组匝间短路的原因
干式变压器绕组匝间短路的原因可能有以下几种:
1.绕组制造缺陷:制造过程中可能存在的绝缘损坏、绕组匝数错误、绕组连
接不良等问题,都可能导致匝间短路。
此外,绕组制造过程中的绝缘处理不当,如绝缘层受损、打结等,也可能引发匝间短路。
2.过载或过热:长期过载或过热可能导致绕组绝缘老化、损坏,从而引发匝
间短路。
特别是在高温环境中,空气中的水分含量增加,容易引起绝缘层劣化或老化,进而导致匝间短路故障。
3.电压过高:过高的电压可能导致绕组绝缘击穿,从而引起匝间短路。
在运
行过程中,干式变压器的电压过高或浪涌电压过大,也会造成匝间短路故障。
4.绕组受潮或污染:绕组受潮、污染或受到化学物质侵蚀可能导致绝缘性能
下降,增加匝间短路的风险。
5.外界因素的影响:干式变压器通常安装在比较恶劣的环境下,例如工厂、
矿井等。
在这些环境中,如果绕组受到机械碰撞、灰尘、湿气等外界因素的影响,就有可能导致匝间短路。
为了避免匝间短路的发生,可以采取以下措施:
1.提高绕组制造质量,确保绝缘层完整无损,绕组匝数正确,连接良好。
2.对干式变压器进行过载保护,避免长期过载运行。
3.定期检查干式变压器的绝缘性能,及时发现并处理绝缘老化、损坏等问题。
4.在安装和运行干式变压器时,应注意防潮、防尘、防腐蚀等措施,避免绕
组受潮或污染。
5.在恶劣环境下运行的干式变压器,应采取相应的防护措施,如增加机械保
护、改善运行环境等。
变压器短路产生的原因及短路措施
变压器短路产生的原因及短路措施摘要:电网的运行要求安全性和稳定性,作为变电过程中的重要设备变压器,其安全性尤为重要。
由于变压器成本很高,变压器短路事故不仅会造成资金和资源的浪费,同时也不利于电力系统的供电安全可靠性。
本文对变压器短路产生的原因及防治措施进行了详细研究,提出的建议对于变压器以及电网的安全稳定运行具有重要的工程实际意义。
关键词:变压器;换位导线;机械应力1 变压器短路1.1 变压器短路产生原因变压器短路产生的原因很多,主要分为以下两类:一是结构短路因素;二是运行短路因素。
下面就分别阐述:1.1.1 结构短路。
(1)温度、绕线方式等是造成变压器短路的重要因素。
温度对导线的弯度和强度都有很大的影响,随着导线温度的升高,其弯度、强度均有不同程度的下降,同时,导线的延伸率也会随着下降。
而变压器中导线的设计通常是在常温下进行的,没有考虑到实际运行工况,实际额定运行变压器的绕组温度大大高于常温,能够达到100℃以上。
而随着绕组温度的升高,其抗弯强度和抗拉强度均会明显下降。
绕线松散、导线与线匝间固化措施较差使得导线在运行中易发生变形,造成变压器短路。
(2)采用导线类型不同对变压器短路产生的效果也不尽相同。
普通的换位导线由于其机械强度较差,在外力作用下出现变形、露铜的情况时有发生。
在额定电流下,扭矩较大的两个部位包括换位导线爬坡处以及绕组两端的线饼,扭矩大的直接结果就是导致导线扭曲甚至变形,从而大大增加了变压器内部短路的风险。
软导线是早期造成变压器短路的最主要的原因。
由于认识不足以及成本问题,厂家在生产时采用软导线而不是硬导线,使得由于导线类型造成的变压器短路成为较为主要的原因。
1.1.2 运行短路。
长时间的短路电流是造成运行短路的主要原因。
一般情况下,当在电流速断保护范围内发生短路故障时,继电保护装置能够保证在无延时情况下迅速切除故障,考虑到机械作用固有延时等情况,短路电流持续的时间一般不会超过250ms,但是实际情况却与此有所不同:首先,由于继电保护的选择性,配电侧的保护一般不采用电流速断保护,而是采用定时限过电流保护,配电侧也正是短路多发部分;其次,继电保护虽然要求速动性、选择性、灵敏性和可靠性,可是也不免发生继电保护装置拒动的情况,而当保护拒动时,故障存在时间会较长,有时会到好几分钟甚至几小时,这时变压器导线承受大的短路电流的时间大大增加,超过其热稳定性就会造成短路故障;最后,电力系统的安全稳定可靠运行要求继电保护需配备重合闸装置,如果故障为永久性故障,那么重合闸的过程就会对变压器产生二次冲击,短路刚发生时产生的过电流已经使变压器导线温度急剧升高,导线的扛弯性已经很差,二次冲击电流则很可能导致变压器发生短路事故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器运行中短路损坏的原因
近年来,变压器油浸式电力变压器10KV级S11-M 事故时有发生,而且有增长的趋势。
从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。
本文就上海市电力公司近十多年来因电力变压器外部短路而造成损坏事故的情况作一分类分析,进而提出目前有关电磁线选用存在的问题和减少这一类事故的措施,以促进制造厂对产品的改进和完善,同时促使运行单位进一步提高运行管理水平。
变压器短路事故情况从1993年1月至2002年12月,上海电网变压器累计发生短路损坏事故17台次,占整个损坏事故的77.3%,为主要损坏原因,总容2750MVA。
其中500kV级2台次、220kV级13台次、110kV级2台,低压线圈调压器线圈严重变形不得不更换线圈的220kV 级1台,110kV级1台,在变压器改造中发现220kV级低压绕组有变形现象4台,运行中发现500kV绕组有变形迹象有2台。
特别自1995年以来,变压器损坏事故呈上升趋势,而且事故影响范围不断在扩大,其事故主要表现形式为)外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏居多;)外部短时内频繁受短路冲击而损坏;)长时间短路冲击而损坏;)一次短路冲击就损坏。
变压器短路损坏的主要形式根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其损坏主要有以下几种特征及产生的原因。
轴向失稳这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形,该类事故占整个损坏事故的52.9%。
线饼上下弯曲变形这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
绕组或线饼倒塌这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。
如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。
端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。
绕组升起将压板撑开这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。
辐向失稳这种损坏主要是在轴向漏磁产生的辐向电磁力作用下,导致变压器绕组辐向变形,占整个损坏事故的41.2%。
外绕组导线伸长导致绝缘破损辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。
这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。
绕组端部翻转变形端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。
内绕组导线弯曲或曲翘辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。
如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。
然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。
引线固定失稳这种损坏主要由于引线间的电磁力作用下,造成引线振动,导致引线间短路,这种事故较少见。
变压器短路损坏的常见部位根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其绕组损坏部位主要有以下几种。
对应铁轭下的部位该部位发生变形原因有:
(1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大;
(2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变形;
(3)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。
调压分接区域及对应其他绕组的部位该区域由于:
(1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。
轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象;
(2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块致使力的传递延时,因而对线饼撞击也较大;
(3)绕组套装后不能确保中心电抗高度对齐,致使安匝进一步加剧衡;
(4)运行一段时间后,较厚的垫块自然收缩量较大,一方面加剧安匝不平衡现象,另一方面受短路力时跳动加剧;
(5)在设计时间为力求安匝平衡,分接区的电磁线选用了较窄或较小截面的线规,抗短力能力低。
换位部位这部位的变形常见于换位导线的换位和单螺旋的标准换位处。
换位导线的换位,由于其换位的爬坡较普通导线的换位为陡,使线匝半径不同的换位处产生相反的切向力,这对大小相等方向相反的切向力,致使内绕组的换位向直径变小,方向变形,外绕组的换位力求线匝半径相同,使换位拉直,内换位向中心变形,外换位向外变形,而且换位导线厚度越厚,爬坡越陡,变形越严重。
另外,换位处还存在轴向短路电流分量,所产生的附加力,致使线饼变形加剧。
单螺旋的标准换位,在空间上要占一匝的位置,造成该部位安匝不平衡,同时又具有换位导线换位变形特征,因此该部位的线饼更容易变形。
绕组的引出线常见于斜口螺旋结构的绕组,该结构的绕组,由于二个螺旋口安匝不平衡,轴向力大,同时又有轴向电流存在,使引出线拐角部位产生一个横向力而发生扭曲变形现象。
另外螺旋绕组在绕制过程中,有剩余应力存在,会使绕组力求恢复原状现象,故螺旋结构的绕组,受短路电流冲击下更容易扭曲变形。
引线间常见于低压引线间,低压引线由于电压低流过电流大,相位120度,使引线相互吸引,如果引线固定不当的话,会发生相间短路。
变压器短路故障原因分析因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。
从近几年解剖变压器,对其事故进行分析来看,与电磁线有关的大致有以下几个原因。
基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。
目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。
抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。
按常温下设计的抗短路
能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降10%以上,延伸率则下降40%以上。
而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。
一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。
采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。
采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。
如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。
另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。
采用软导线,也是造成变压器抗短路能力差的主要原因之一。
由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。
绕组绕制较松,换位或纠位爬坡处处理不当,过于单薄,造成电磁线悬空。
从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。
绕组线匝或导线之间未固化处理,抗短路能力差。
早期经浸漆处理的绕组无一损坏。
绕组的预紧力控制不当造成普通换位导线的导线相互错位。
套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。
作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电磁线上的弯应力过大而发生变形。
外部短路事故频繁,多次短路电流冲击后电动力的积累效应引起电磁线软化或内部相对位移,最终导致绝缘击穿。