概率论与数理统计第四章测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 随机变量的数字特征

一、选择题

1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是

(A) 8 (B) 16 (C) 28 (D) 44

2.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( ) (A) X 与Y 相互独立 (B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY

3.设随机变量X 和Y 相互独立,且()()22

1122,,,X

N Y

N μσμσ,则

2Z X Y =+( )

(A) ()221212,2N μμσσ++ (B) ()221212,N μμσσ++ (C) ()2212122,4N μμσσ++ (D) ()2212122,4N μμσσ--

4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为

(A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2

(C) E(X 2)= E(Y 2) (D) E(X 2)+(EX)2= E(Y 2)+ (EY)2

5.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则

()max ,Z X Y =的数学

期望()E Z =( )

6.设X 、Y 是相互独立且在()0,θ上服从于均匀分布的随机变量,则

()min ,E X Y =⎡⎤⎣⎦( )

(A) 2θ

(B) θ (C) 3θ (D)

4

θ 7.设随机变量X 和Y 的方差存在且不等于0,则D(X+Y)=DX+DY 是X 和Y ( )

(A) 不相关的充分条件,但不是必要条件 (B) 独立的充分条件,但不是必要条件

(C) 不相关的充分必要条件 (D) 独立的充分必要条件 8.若离散型随机变量X 的分布列为(){

}

()1

121,2,2n

n n

P X n =-⋅=

=,则

()E X =( )

(A) 2 (B) 0 (C) ln2 (D) 不存在 9.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于

(A )-1 (B )0 (C )2

1 (D )1

10.设随机变量X 和Y 独立同分布,具有方差2σ>0,则随机变量U=X+Y 和V=X-Y

(A )独立 (B) 不独立 (C ) 相关 (D) 不相关 11.随机变量X 的方差存在,且E(X)=,则对于任意常数C ,必

有 。

(A )E(X-C)2=E(X 2)-C 2 (B )E(X-C)2=E(X-)2 (C )E(X-C)2< E(X-)2 (D )E(X-C)2 E(X-)2

12.设X~U(a,b), E(X)=3, D(X)=3

1

, 则P(1

1 (C )3

1 (D )2

1 二、填空题

1.设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为,则()2E X =

2.设一次试验成功的概率为p ,进行了100次独立重复试验,当

p = 时,成功的次数的标准差的值最大,其最大值为

3.设随机变量X 在区间[-1,2]上服从均匀分布,随机变量

100010X Y X X >⎧⎪

= =⎨⎪- <⎩

,则Y 的方差DY=

4.()4D X =,()9D Y =,0.5XY ρ=,则()D X Y -= ,

()D X Y +=

5.设随机变量X 服从于参数为λ的泊松分布,且已知

()()121E X X --=⎡⎤⎣⎦,则λ=

6.设(X,Y)的概率分布为:

Y X

-1 0 1

1

则),cov(22Y X = 。 7.已知)3,2,1(,)(===k k

a

k X P , 则E(X)= 。

8.X~N ( ,

2

),Y~N (,

2

),X 与Y 相互独立, 则Cov(X+Y, X-Y)

=________。

9.随机变量X 1,X 2,X 3相互独立,且都服从均匀分布U(0,2), 令X=3X 1-X 2+2X 3 ,则

E(X)=___________,D(X)= 。

10.设ρXY =,Z=,则Y 与Z 的相关系数为 。 11.设随机变量X ij 独立同分布,EX ij =2,则行列式

nn

n n n

n

X X X X X X X X X Y

21

2222111211

=

的数学期望EY= 。 三、简答题

1.从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5。设X 为同种遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望。

2.已知随机变量(),X Y 服从二维正态分布,且X 与Y 分别服从正态分布2(1,3)N 与2(0,4)N ,它们的相关系数12

XY ρ=-,令32

X Y

Z =+,⑴求Z 的数学期望EZ 与方差DZ

(2) 求X 与Z 的相关系数XZ ρ。

3.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求

相关文档
最新文档