基于单片机的电子秤设计

合集下载

基于STM32F1单片机的电子秤设计

基于STM32F1单片机的电子秤设计

基于STM32F1单片机的电子秤的设计1.本文概述随着技术的进步和电子技术的普及,电子秤已成为日常生活和工业生产中不可或缺的工具。

与传统的机械秤相比,电子秤具有更高的测量精度、更强的功能性和更广泛的应用范围。

本文旨在设计一种基于STM32F1单片机的电子秤。

该设计不仅专注于电子秤的称重和单位转换等基本功能,而且通过使用STM32F1微控制器,赋予电子秤更智能的功能,如数据存储、传输和用户界面交互。

文章首先介绍了STM32F1单片机的特点和适用性,然后详细阐述了电子秤的设计原理、硬件选择和软件实现。

本文还包括对系统的测试结果和分析,以验证设计的有效性和可靠性。

通过本文的研究和设计,有望为电子秤领域提供一种创新实用的解决方案。

2.系统设计原则在这种电子秤的设计中,STM32F1微控制器作为核心控制器,其重要性体现在以下几个方面:处理能力:STM32F1系列微控制器基于ARM CortexM3内核,具有强大的处理能力和高效的能耗比。

其最大工作频率可达72MHz,足以处理电子秤所需的复杂计算和数据传输任务。

集成:该系列微控制器集成了丰富的外围接口,如ADC(模数转换器)、UART(通用异步收发器)、I2C(集成电路总线)等。

这些接口对电子秤的设计至关重要。

稳定性和可靠性:STM32F1微控制器具有优异的抗干扰能力和稳定性,适用于工业应用,确保了电子秤在复杂环境中的准确性和可靠性。

电子秤的核心部件是传感器,用于将物体的重量转换为电信号。

在该设计中,选择了压力传感器作为主要测量元件。

传感器的工作原理是基于弹性变形。

当物体受到压力时,传感器内部的电阻应变计变形,从而改变电阻值并通过惠斯通电桥将其转换为电压信号。

信号放大和滤波:传感器输出的模拟信号通常较弱,需要通过信号放大器进行放大。

为了提高信号质量,设计了滤波电路来去除噪声,保证信号的准确性。

模数转换:通过STM32F1微控制器内置的ADC将放大后的模拟信号转换为数字信号,使微控制器易于处理和计算。

基于单片机的实用电子秤设计

基于单片机的实用电子秤设计

基于单片机的实用电子秤设计一、硬件设计1、传感器选择电子秤的核心部件之一是称重传感器。

常见的称重传感器有电阻应变式、电容式等。

在本设计中,我们选用电阻应变式传感器,其原理是当物体的重量作用在传感器上时,传感器内部的电阻应变片会发生形变,从而导致电阻值的变化。

通过测量电阻值的变化,就可以计算出物体的重量。

2、信号放大与调理传感器输出的信号通常比较微弱,需要经过放大和调理才能被单片机处理。

我们使用高精度的仪表放大器对传感器输出的信号进行放大,并通过滤波电路去除噪声干扰,以提高测量的准确性。

3、单片机选型单片机是整个电子秤系统的控制核心。

考虑到性能、成本和开发难度等因素,我们选用 STM32 系列单片机。

STM32 系列单片机具有丰富的外设资源、较高的运算速度和良好的稳定性,能够满足电子秤的设计需求。

4、显示模块为了直观地显示测量结果,我们选用液晶显示屏(LCD)作为显示模块。

LCD 显示屏具有功耗低、显示清晰、视角广等优点。

通过单片机的控制,可以在 LCD 显示屏上实时显示物体的重量、单位等信息。

5、按键模块为了实现电子秤的功能设置,如单位切换、去皮、清零等,我们设计了按键模块。

按键模块通过与单片机的连接,将用户的操作指令传递给单片机进行处理。

6、电源模块电源模块为整个电子秤系统提供稳定的电源。

我们使用线性稳压器将输入的电源电压转换为适合各个模块工作的电压,以确保系统的正常运行。

二、软件算法1、重量计算算法根据传感器的特性和放大调理电路的参数,我们可以建立重量与传感器输出信号之间的数学模型。

通过对传感器输出信号的采集和处理,利用数学模型计算出物体的实际重量。

2、滤波算法为了消除测量过程中的噪声干扰,提高测量的稳定性和准确性,我们采用数字滤波算法对采集到的信号进行处理。

常见的数字滤波算法有中值滤波、均值滤波等。

在本设计中,我们选用中值滤波算法,其原理是对连续采集的若干个数据进行排序,取中间值作为滤波后的结果。

基于单片机的电子秤的方案设计

基于单片机的电子秤的方案设计
基于单片机的电子秤的方案设 计
目录
01 一、引言
03 三、硬件设计
02 二、总体设计 04 四、软件设计
目录
05 五、调试与优化
07 参考内容
06 六、应用前景
一、引言
随着科技的不断发展,智能化和数字化逐渐成为测量与控制领域的主流趋势。 其中,电子秤作为一种高精度的测量设备,在贸易结算、工业生产等领域具有广 泛的应用。基于单片机的电子秤因其具有体积小、成本低、易于集成等优点,越 来越受到人们的。本次演示将介绍一种基于单片机的电子秤设计方案,以期为相 关领域的工程技术人员提供参考。
4、数据显示:将重量数据显示 在显示模块上。
5、报警提示:如遇超重或欠重 情况,系统会进行报警提示。
6、数据存储:可预留数据存储接口,方便用户对重量数据进行存储或传输。
五、总结
本次演示介绍了基于51单片机的电子秤设计,通过利用电阻应变式传感器进 行重量检测,经过51单片机处理后将重量数据显示出来。这种设计具有精度高、 稳定性好、使用方便等优点,可广泛应用于各种场合的重量检测。随着技术的不 断发展,我们有理由相信,以51单片机为核心的电子秤设计将会有更广阔的应用 前景。
3、采用软件滤波算法,减少外界干扰对测量精度的影响;
4、对程序进行优化,提高数据 处理速度和准确性。
经过调试与优化后,电子秤的性能得到了显著提升,测量精度得到了提高。
六、应用前景
基于单片机的电子秤具有广泛的应用前景。在实际应用中,该电子秤可应用 于贸易结算、工业生产、食品药品等行业。同时,由于其体积小、成本低等优点, 可以方便地集成到各种称重系统中。
Байду номын сангаас
二、电子秤的工作原理
电子秤是利用传感器测量物体的重量,并将重量转换为电信号,再通过信号 处理电路进行处理,最终以数字形式显示出来。51单片机作为一种通用的微控制 器,可以方便地对电子秤进行控制和数据处理。

基于单片机的电子秤设计

基于单片机的电子秤设计

简易电子计量秤摘要本设计给出了以MSP430混合信号单片机为核心的低功耗电子秤的设计方案.整个系统包括电阻应变片电桥模块,差模信号放大模块,A/D转换模块,段式LCD显示模块.应变片电桥将所称物体的重量转换为电压量,仪表运放和高精度运放分别完成电桥电压的双端到单端转换和后级放大,A/D转换器将放大后的电压信号转换为数字量传送给MSP430单片机,经软件控制计算后送LCD 显示。

关键词:电子秤应变片仪表运放 MSP430 低功耗.一、系统设计1.1任务要求根据下面框图设计一简易的电子计量秤通过单片机的最小系统和软件控制,并通过显示器显示出来。

基本要求:1、称重范围:最小称量:10g 最大称量:5Kg感量(单位):Kg 解析量:10g2、测量相对误差:≤±1%3、使用750mA(3.6V)的锂电池供电,持续工作时间大于一年;且具有自动待机功能;4、4位数码显示不能使用集成一体化压力传感器;5、成本控制在100元人民币以下;发挥部分:1尽量延长工作时间(大于一年);2、提高测量精度(≤±5%);3、采用交直流两种设计, 交流优先。

1.2 方案论证与设计方案设计1.2.1称重传感器方案方案一:采用分立式电阻应变片重物使电阻应变片产生弹性形变从而改变其阻值,通过阻值的变化即可得到重量的变化.分立式应变片的优点是价格较低廉,选择范围灵活.但是现有条件下难以得到能和应变片阻抗相匹配的桥臂电阻,并且温度系数也无法匹配,而且安装十分复杂.方案二:采用集成称重传感器称重传感器实际上也是用分立应变片制成,但是厂商已经将其配成平衡电桥,作为使用者就免去了粘贴,安装,和电桥平衡的调整等极其复杂的过程.对于以上两种方案,考虑到方案一在现有条件下可实现性很低,故采用第二种方案,即集成称重传感器.1.2.2 电阻变换方案方案一:采用恒流源应变片的电阻变化并不能直接测量,必须转化为电压等可测量的量,此方案采用恒流源驱动应变片,由于电流恒定,因此电阻的变化将直接导致电阻上的压降的变化.缺点是恒流源的显著的温度漂移,成本高.方案二:采用不平衡电桥由图可知,电桥简单的将电阻的变化转化为电压的变化.并且通过匹配桥臂电阻,可以使温度漂移相互抵销.综合考虑两种方案,第二种方案更加简洁精确,容易制作成本低廉,故采用电桥变换方案.1.2.3 信号放大方案方案一:由高精度低漂移运算放大器构成差动放大器差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器。

基于单片机的电子秤设计报告

基于单片机的电子秤设计报告

五邑大学信息工程学院课程设计报告课程名称:电子系统设计技术专业:______ 通信工程_______ 班级:AP10057班学号:_________ 11 _________ 姓名:___________ 李绍杰指导教师:周开利设计时间:2013年1月2日评定成绩: _____________________设计课题题目:电子秤一、设计任务与要求1. 本次的课程设计任务是设计一个电子秤,首先我们来了解一下电子秤的基本的背景和设计意义。

电子秤在很早以前就开始被被人们广泛运用。

它是一个现代化的称重仪器,结合了计算机技术,信息处理,数字技术等等的很多的高科技技术。

电子秤,属于衡器的一种,是利用胡克定律或力的杠杆平衡原理测定物体质量的工具。

电子秤主要由承重系统(如秤盘、秤体)、传力转换系统(如杠杆传力系统、传感器)和示值系统(如刻度盘、电子显示仪表)3部分组成。

按结构原理可分为机械秤、电子秤、机电结合秤三大类。

[电子秤拥有许多过去的简单的机械化的称重技术所没有的优点。

例如,第一方面:电子秤的重量轻,体积小,容易携带,并且容易维修;第二方面:因为电子秤是运用了以单片机为中心控制单元,通过称重传感器进行模数转换单元,再通过配合键盘、显示电路及强大软件来组成,所以电子秤的准确率高,并且很快速,能够让人们很直观地看到称重的结果,这样更加深受人们的喜欢。

第三方面:电子秤不仅仅只是客观的物体,它通过了压力传感器采集到被测物体的重量并将其转换成电压信号。

然后通过前端信号处理电路进行准确的线性放大最后把放大后的模拟电压信号经A/D转换电路转换成数字量被送入到主控电路的单片机中,再经过单片机控制译码显示器,从而显示出被测物体的重量。

这是一个很高端,很人性化的发展,能够实现人机的信息转换。

第四方面:电子秤不再像过去的机械称重器那样功能局限,如今的电子秤更是能够广泛应用在商业,工农业,科技,交通等等很多方面。

并且对人们日常生活的影响越来越大。

单片机课程设计报告 基于单片机的电子秤设计

单片机课程设计报告  基于单片机的电子秤设计

基于单片机的电子秤设计一、【设计题目】基于单片机的电子秤设计二、【设计要求】设计要求如下:(1)设计一款电子秤,用LCD液晶显示器显示被称物体的质量(2)可以设定该秤所称的上限(3)当物体超重时,能自动报警。

三、【设计过程】1.【方案设计】微控制器技术、传感器技术的发展和计算机技术的广泛应用,电子产品的更新速度达到了日新月异的地步。

本系统在设计过程中,除了能实现系统的基本功能外,还增加了打印和通讯功能,可以实现和其他机器或设备(包括上位PC机和数据存储设备)交换数据.除此之外,系统的微控制器部分选择了兼容性比较好的AT89系列单片机,在系统更新换代的时候,只需要增加很少的硬件电路,甚至仅仅删改系统控制程序就能够实现。

另外由于实际应用当中,称可以有一定量的过载,但不能超出要求的范围,为此本设计提供了过载提示和声光报警功能。

综上所述,本课题的主要设计方案是:利用压力传感器采集因压力变化产生的电压信号,经过电压放大电路放大,然后再经过模数转换器转换为数字信号,最后把数字信号送入单片机。

单片机经过相应的处理后,得出当前所称物品的重量及总额,然后再显示出来。

此外,还可通过键盘设定所称物品的价格。

主要技术指标为:称量范围0~5kg;分度值0.01kg;精度等级Ⅲ级;电源DC1.5V(一节5号电池供电)。

其设计框图如图3.1所示。

这种高精度智能电子秤体积小、计量准确、携带方便,集质量称量功能与价格计算功能于一体,能够满足商业贸易和居民家庭的使用需求。

图3.1 系统设计框图2.【器件选择】2.1单片机选择本设计由于要求必须使用单片机作为系统的主控制器,而且以单片机为主控制器的设计,可以容易地将计算机技术和测量控制技术结合在一起,组成新型的只需要改变软件程序就可以更新换代的“智能化测量控制系统”。

考虑到本设计中程序部分比较大,根据总体方案设计的分析,设计这样一个简单的的系统,可以选用带EPROM 的单片机,由于应用程序不大,应用程序直接存储在片内,不用在外部扩展存储器,这样电路也可简化。

基于单片机的智能电子秤控制系统的设计

基于单片机的智能电子秤控制系统的设计

基于单片机的智能电子秤控制系统的设计智能电子秤控制系统是一种集成数字电子技术、传感技术、自动控制技术于一体的高精度、高可靠性的电子秤系统。

本文将介绍基于单片机的智能电子秤控制系统的设计原理及实现方法。

一、系统设计原理基于单片机的智能电子秤控制系统主要由称重传感器、AD转换模块、单片机、LCD显示模块和通信接口模块等组成。

其工作原理如下:1. 称重传感器智能电子秤的核心部件是称重传感器,用于将物体的重量转换为电信号。

常用的称重传感器有应变式、电阻式、电容式等。

它们能够根据物体的质量变化而改变输出电信号,作为下一步处理的输入信号。

2. AD转换模块AD转换模块用于将模拟信号转换为数字信号,通过单片机进行处理。

通过AD转换模块,可以将称重传感器输出的模拟信号转换为单片机可以理解的数据,为后续的数据处理提供基础。

3. 单片机单片机是整个智能控制系统的核心,负责接收AD转换模块的信号,并进行数据处理,并通过LCD显示模块将结果实时显示出来。

同时,单片机还可以通过通信模块与其他设备进行数据交互。

4. LCD显示模块LCD显示模块用于将称重结果以数字形式显示出来,提供直观的测量结果给用户。

5. 通信接口模块通信接口模块允许智能电子秤与其他设备进行数据交互,如与计算机进行连接,实现数据的上传和下载。

二、系统设计方法基于单片机的智能电子秤控制系统的设计可以按照以下步骤进行:1. 硬件设计根据系统的功能需求,选择适当的称重传感器和AD转换模块,并通过电路设计将其与单片机和LCD显示模块进行连接。

此外,根据实际需求选择合适的通信接口模块。

2. 软件设计编写单片机的控制程序,包括AD转换的初始化和读取、数据处理、LCD显示等功能。

根据实际需求,可以添加一些额外的功能,如单位选择、重量校准等。

3. 系统测试将硬件和软件进行组装后,进行系统测试。

通过放置不同重量的物体进行秤量,检查显示结果的准确性和稳定性。

同时,测试通信功能是否正常工作。

基于单片机的智能数字电子秤设计

基于单片机的智能数字电子秤设计
报警模块:选用蜂鸣器和LED 灯作为报警装置
4
软件设计
软件设计
本设计的软件部分采用C语言编写,主要实现以下功能
通过A/D转换器读取称重传感 器的模拟信号:并进行数据 处理
根据预设的算法计算被测物 的重量
将重量值通过显示模块显示 出来
通过按键模块进行参数设定 和功能选择
当称重超过预设值时:通过 报警模块发出警报
检查电路板是否焊接正确: 各元件是否连接良好
给系统供电:检查电源是否 稳定
-
感谢大家观看
THANK YOU FOR WATCHING !
汇报人:XXXXX
日期:XXXX
2023
软件流程图如下
软件设计
启动系统:进行初始化操作 进入主循环:不断读取称重传感器的模 拟信号并进行数据处理 根据处理结果更新重量值并显示在液晶 显示屏上 检查是否有按键按下:如果有则进行相 应的处理 如果称重超过预设值:则发出警报 继续循环执行上述操作
5
调试与测试
调试与测试
在完成硬件和软件的设计后,需 要进行调试和测试。具体步骤如 下
将单片机计算出的重量值 显示出来
按键模块
用于设定单价、重量单位 等信息
报警模块
当称重超过预设值时,发 出警报
7
系统设计
7
8
系统的核心部分是单片机, 它控制着整个系统的运作
通过A/D转换器获取称重传 感器的模拟信号,然后进 行数据处理,计算出被测
物的重量
9
最后,将重量值通过显示 模块显示出来
3
硬件设计
电子秤所取代
本设计是基于单片机技术的智 能数字电子秤,具有操作简便、
读数准确、智能化等特点
2

单片机电子秤毕业设计

单片机电子秤毕业设计

单片机电子秤毕业设计毕业设计题目:基于单片机的电子秤设计与实现一、设计要求:1.设计并实现一款能够准确测量物体质量的电子秤,使用单片机进行控制与数据处理。

2.电子秤应具备高精度、高稳定性和可靠性等特点。

3.电子秤的测量范围应足够大,能够适用于不同质量的物体。

4.电子秤的设计应尽可能简洁、实用、易于操控和维护。

二、设计方案:1.传感器选择:使用称重传感器作为负载传感器,可选用应变片式传感器或压阻式传感器。

2.信号放大与转换:将传感器测得的微小变化信号通过专用放大电路进行放大,并转换为0-5V或0-3.3V的直流电压信号。

3.单片机控制与显示:使用适当的单片机进行控制与数据处理,可选用常见的51单片机或STM32系列单片机,并通过数码管、液晶显示屏或LED显示屏等显示当前测量的质量值。

4.按键与操作:通过按键实现归零、单位选择、累计等基本操作实现。

5.通信接口:可选用串口或IIC总线等通信模式,将测量结果实时传输到上位机或其他设备。

6.电源系统:使用稳压电源保证整个系统的稳定工作。

三、设计流程:1.硬件设计:a.选择合适的电子元件,包括称重传感器、单片机、显示器、按键、通信模块等。

b.设计传感器接口电路,包括信号放大与转换电路。

c.设计按键与控制电路,将按键输入与单片机相连接,实现操作控制功能。

d.设计显示电路,将单片机输出与显示设备相连接,实现结果显示功能。

e.设计电源电路,保证整个系统的稳定工作。

2.软件设计:a.编写初始化程序,对单片机进行初始化设置。

b.编写按键扫描程序,实现按键输入的检测和处理。

c.编写称重传感器读取程序,实时读取称重传感器输出的模拟电压信号。

d.编写质量计算程序,根据传感器输出的模拟电压信号进行质量计算,并实现单位选择功能。

e.编写显示程序,将计算得到的质量值进行显示。

f.编写通信程序,如果需要与上位机或其他设备进行通信,则需要编写相应的通信协议和数据传输程序。

四、测试与调试:1.对硬件进行连接并进行通电测试,确保电子秤的各个部分能够正常工作。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计随着人们对健康、饮食和运动的重视越来越深,计算体重的电子秤已成为现代家庭必备的健康产品之一。

电子秤的设计早已从早期的机械式缓慢演变为现代的数字化电子秤,随着科学技术的不断进步,电子秤的功能也得到了比较大的提升。

本文将介绍一种基于单片机的智能电子秤设计,使得电子秤具有更加智能化的功能。

一、设计原理单片机是一种高度集成、可编程的微型计算机,它具有多种接口和控制功能,非常适合用于小型计算机系统的控制和通讯处理。

本文采用ATmega8单片机,最大工作频率为16MHz,它是一种低功耗、高性能的单片机。

智能电子秤的基本原理是在称重传感器所测得的重量数据的基础上,使用单片机将其数据收集、处理,并输出显示。

本文的电子秤设计基于16 位高精度AD采集芯片HX711,采用负压力式力传感器作为测量重量的传感器,能够精确测量物体的重量。

由于电子秤测量出的重量数据单位是数字,因此只有通过单片机实现数据的处理,才能使得电子秤具有更加智能化的功能。

二、设计方法(一)硬件设计1、称重传感器负压力式力传感器是一种灵敏度更高、稳定性更好的传感器,比其它传感器更适合于电子秤的设计。

我们使用HX711芯片进行AD采集,能够提供24位的数据输出,可以极大地提高精度和稳定性。

2、按键开关电子秤需要设置一个方便顾客使用的开关,按下即可开启或关闭电子秤。

我们采用截止开关电阻,即编写程序时在输入中识别此开关,实现开启关闭功能。

3、数码管数码管用于显示测得的重量数据,包括整数部分和小数部分。

本文采用共阴极的 4 位7 段数码管,尺寸为0.56英寸,它需要多路并联才能通过ATmega8单片机输出控制信号。

4、外设根据需要,我们可以为电子秤添加一些外设,比如LCD显示屏,蜂鸣器等。

(二)软件设计基于单片机的智能电子秤设计必须编写针对ATmega8单片机的程序。

我们采用keil C语言编写程序。

编写程序时需要注意以下几个方面:1、定义AD采样量和检测量我们需要正确设置AD采样量和检测量的量程参数,以确保重量数据的可靠性和准确性。

基于单片机的电子秤设计

基于单片机的电子秤设计

基于单片机的电子秤设计随着科技的不断发展,电子秤在日常生活和工业生产中发挥着越来越重要的作用。

传统的电子秤往往采用复杂的电路和机械结构,使得其体积大、成本高、可靠性差。

为了解决这些问题,本文将介绍一种基于单片机的电子秤设计方案。

一、系统设计方案基于单片机的电子秤主要由传感器、信号处理电路、单片机和显示模块组成。

其中,传感器负责采集物体的重量信息,信号处理电路则对传感器输出的信号进行放大和滤波,单片机对处理后的信号进行读取和计算,并将结果传输给显示模块。

二、硬件设计1、传感器电子秤的传感器部分通常采用应变片式或电容式传感器。

其中,应变片式传感器具有精度高、稳定性好的优点,但其输出信号较小,需要经过放大处理;电容式传感器则具有响应速度快、过载能力强的优点,但其精度和稳定性相对较差。

因此,在选择传感器时需要根据实际需求进行权衡。

2、信号处理电路信号处理电路主要包括放大器和滤波器两部分。

放大器用于将传感器输出的微弱信号进行放大,以便于后续处理;滤波器则用于去除信号中的噪声和干扰。

此外,还需要设计适当的电源电路,为整个系统提供稳定的电源。

3、单片机单片机是整个系统的核心,负责对传感器输出的信号进行读取和计算。

本设计采用AT89C51单片机,该单片机具有价格低、性能稳定、易于编程等优点。

4、显示模块显示模块用于将单片机的计算结果直观地展示给用户。

本设计采用LED数码管作为显示器件,具有简单易用、成本低等优点。

三、软件设计软件部分主要包括数据采集、数据处理和数据显示三个模块。

数据采集模块负责读取传感器的输出信号;数据处理模块则对采集到的数据进行滤波、放大和计算;数据显示模块则将处理后的结果通过LED数码管展示给用户。

此外,还需要设计适当的延时和去抖动算法,以提高系统的稳定性和精度。

四、测试与结论为了验证本设计的有效性,我们对基于单片机的电子秤进行了测试。

测试结果表明,该电子秤的测量精度和稳定性均得到了较好的实现,同时具有体积小、成本低、可靠性高等优点。

基于单片机的电子称设计

基于单片机的电子称设计

基于单片机的电子称设计基于单片机的电子称设计随着现代科技的不断发展,电子称已渐渐成为我们生活中不可或缺的一部分,广泛应用于各种工业生产、实验室、餐馆和家庭中。

传统的机械式电子称已经逐渐被电子式电子称所取代,因为电子式电子称精度更高、操作更便捷、使用寿命更长。

在这一趋势下,基于单片机的电子称设计应运而生,其典型特点是功能强大、精度高、易操作和可扩展性强。

一、基本原理基于单片机的电子称是由传感器、模数转换器、单片机、人机界面板等多个模块组成的,通过模块间的协同工作实现称重过程。

其原理相对简单:物体加在传感器上后,压力作用在传感器上,传感器会产生一定的电信号,然后信号传给模数转换器,转换器将电信号转换成数字信号,并传给单片机进行计算和显示,最终显示重量值在人机界面上。

二、设计过程1.选用传感器传感器是电子称的核心部件之一,传感器的选用直接关系到称量的精度和稳定性。

一般采用弹性体弯曲方式或压电晶体振动方式。

2.选用模数转换器模数转换器是将传感器信号转换成单片机可以读取的数字信号的重要部件。

根据实际需要,一般选择12或16位的AD转换器。

3.单片机选择单片机是控制电子称称量精度和人机界面的重要部件,其型号的选择应根据要求的精度和复杂度设计,一般选择8051、Arduino等。

4.人机界面板设计人机界面板是电子称直接提供信息的部件,应根据样式、布局和使用背景等需求和设计,选择合适的LED/LCD等显示方案。

5.数据处理和算法设计对于电子称,往往需要用到模拟滤波、数字滤波、基准校正和传感器温度补偿等算法才能满足精度和稳定性等要求。

因此,针对实际需求和对应传感器选定合适的算法进行设计也是非常重要的一环。

三、技术指标基于单片机的电子称设计技术指标主要包括:计算和显示精度、可靠性、使用寿命、显示方式、扩展性等。

根据使用场景和功能需求等不同,设计的技术指标也有所不同,总体而言,越高的计算和显示精度、越长的使用寿命和更好的扩展性是我们设计的目标。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计在现代社会,电子秤作为一种重要的测量工具,广泛应用于商业、工业、农业以及日常生活等各个领域。

随着科技的不断发展,人们对电子秤的功能和性能提出了更高的要求,智能电子秤应运而生。

智能电子秤不仅能够准确测量物体的重量,还具备了数据处理、存储、传输以及智能化控制等功能,为人们的生产和生活带来了极大的便利。

本文将介绍一种基于单片机的智能电子秤设计方案。

一、系统总体设计本智能电子秤系统主要由称重传感器、信号调理电路、单片机、显示模块、键盘模块以及通信模块等部分组成。

称重传感器负责将物体的重量转换为电信号,信号调理电路对传感器输出的微弱信号进行放大、滤波等处理,以提高信号的质量。

单片机作为系统的核心,负责对处理后的信号进行采集、计算和处理,并控制其他模块的工作。

显示模块用于实时显示物体的重量和相关信息,键盘模块用于输入操作指令,通信模块则用于将测量数据传输到上位机或其他设备。

二、硬件设计1、称重传感器称重传感器是电子秤的关键部件,其性能直接影响测量精度。

本设计选用电阻应变式称重传感器,该传感器具有精度高、稳定性好、结构简单等优点。

电阻应变式称重传感器的工作原理是基于电阻应变效应,当传感器受到外力作用时,其弹性体发生变形,从而导致粘贴在弹性体上的电阻应变片的电阻值发生变化。

通过测量电阻应变片电阻值的变化,即可得到外力的大小。

2、信号调理电路由于称重传感器输出的信号非常微弱,通常只有几毫伏到几十毫伏,且含有大量的噪声和干扰,因此需要经过信号调理电路进行放大、滤波等处理。

信号调理电路主要由放大器、滤波器和基准电源等组成。

放大器采用高精度仪表放大器,能够将传感器输出的微弱信号放大到适合单片机处理的范围。

滤波器采用低通滤波器,用于滤除信号中的高频噪声和干扰。

基准电源为整个电路提供稳定的参考电压,以保证测量精度。

3、单片机单片机是整个系统的控制核心,本设计选用 STM32F103 系列单片机。

STM32F103 系列单片机具有高性能、低功耗、丰富的外设资源等优点,能够满足智能电子秤的设计要求。

基于51单片机的电子秤设计毕业论文

基于51单片机的电子秤设计毕业论文

基于51单片机的电子秤设计毕业论文基于51单片机的电子秤设计毕业论文目录1绪论 (1)1.1选题的背景与意义 (1)1.1.1选题的背景 (1)1.1.2选题的意义 (2)1.2电子秤的研究现状及发展趋势 (2)1.2.1电子秤的研究现状 (2)1.2.2电子秤的发展趋势 (3)1.3本文的结构 (4)2系统总体方案设计 (6)2.1电子秤的基本知识介绍 (6)2.1.1电子秤的基本结构 (6)2.1.2电子秤的工作原理 (7)2.1.3电子秤的计量参数 (7)2.2总体方案设计 (8)2.3系统各部分设计方案论证 (9)2.3.1电子秤分度数的设定 (9)2.3.2称重传感器的选定 (10)2.3.3A/D转换器的选定 (16)2.3.4单片机型号的选定 (18)3硬件设计 (20)3.1系统硬件结构图 (20)3.2单片机主控单元的设计 (20)3.2.1单片机引脚说明 (20)3.2.2AT89S51最小系统设计 (22)3.3数据采集模块设计 (24)3.3.1传感器单元设计 (24)3.3.2A/D转换单元设计 (25)3.4键盘和显示电路单元设计 (27)3.4.1键盘电路设计 (27)3.4.2显示电路设计 (27)3.5系统总体原理图 (28)3.6硬件抗干扰设计 (28)4系统软件设计 (31)4.1主程序设计 (31)4.2LM4229液晶显示驱动程序 (32)4.3ADC0832采样程序 (33)4.4键盘程序 (33)5系统仿真 (35)5.1欢迎界面的仿真 (35)5.2无重物情况仿真 (36)5.3称量物体仿真 (37)5.4最大量程仿真 (38)5.5仿真总结与问题补充 (39)5.5.1仿真总结 (39)5.5.2问题补充 (39)6总结与展望 (41)附录程序 (42)参考文献 (52)1绪论1.1选题的背景与意义1.1.1选题的背景(1)电子技术渗入衡器制造业随着第二次世界大战后的经济繁荣,为了把称重技术引入生产工艺过程中去,对称重技术提出了新的要求,希望称重过程自动化,为此电子技术不断渗入衡器制造业。

基于单片机的电子称设计方案

基于单片机的电子称设计方案

电子称设计方案智能电子称是将检测与转换技术、计算机技术、信息处理、数字技术等技术综合一体的现代新型称重仪器。

它与我们日常生活紧密结合,成为一种方便、快捷、称量精确的工具,广泛应用于商业、工厂生厂、集贸市场、超市、大型商场、及零售业等公共场所的信息显示和重量计算。

智能电子称主要以单片机作为中心控制单元,通过称重传感器进行模数转换单元,再配以键盘、显示电路及强大软件来组成。

该电子称不但计量准确、快速方便,更重要的除自动称重、计价功能外,还可实现去皮、自动计算、数字显示等功能,受到广大用户欢迎。

智能电子称由于携带方便,使用简单,对人们生活的影响越来越大。

电子称性能及技术要求(1) 能用简易键盘设置单价,加重后能同时显示重量、金额和单价;(2)输入:压力传感器量程:0-10Kg;按键:在电子计价秤中,带有16个按键矩阵组设置,其中0—9数字键用于输入单价及商品代码,DEL用于单价清空,累计键用于费用累计,去皮键用于重量去皮,还设置了开关键。

(3) 输出:LED显示器(显示质量单价总金额)重量显示:单位为公斤,最大称重为10公斤,本设计采用ADC0809八位AD转换器,其精度为10Kg/256=39g重量误差不大于±0.04公斤;单价金额及总价金额显示:单价金额和总价金额的单位为元;(4) 具有清零功能去皮功能和总额累加计算功能方案一1.信号采集电路(1)要达到设计的性能要求,传感器的精度起着决定性作用。

本设计选用应用于称重系统90%以上的高精度电阻应变式传感器。

电阻应变传感器是将被测量的力通过它所产生的金属弹性变形转换成电阻变化的敏感元件。

题目要求称重范围 10Kg ,重量误差不大于±0.04Kg ,考虑到秤台自重、振动和冲击分量,还要避免超重损坏传感器,所以传感器量程必须大于额定称重即10KG。

本设计的测量电路采用最常见的桥式测量电路,用到的是电阻应变传感器半桥式测量电路。

它的两只应变片和两只电阻贴在弹性梁上,测量电阻随重力变化导致弹性梁应变而产生的变化。

基于51单片机的电子秤的设计

基于51单片机的电子秤的设计

基于51单片机的电子秤的设计一、设计要求和总体方案(一)设计要求设计一款基于 51 单片机的电子秤,能够实现以下功能:1、测量范围:0 5kg。

2、测量精度:01g。

3、具备数码管显示功能,能够实时显示测量的重量值。

4、具有去皮功能,方便测量容器的重量。

(二)总体方案本电子秤主要由传感器、信号调理电路、A/D 转换电路、51 单片机、数码管显示电路和按键电路等组成。

传感器将物体的重量转换为电信号,经过信号调理电路进行放大和滤波处理后,送入 A/D 转换电路转换为数字信号。

51 单片机对数字信号进行处理和计算,得到物体的重量值,并通过数码管显示电路进行显示。

按键电路用于实现去皮等功能。

二、硬件设计(一)传感器选择选用电阻应变式传感器,它具有精度高、稳定性好、测量范围广等优点。

当物体放在传感器上时,传感器的电阻值会发生变化,通过测量电阻值的变化可以得到物体的重量。

(二)信号调理电路由于传感器输出的信号比较微弱,需要经过信号调理电路进行放大和滤波处理。

放大电路采用仪表放大器,它具有高共模抑制比、低噪声等优点。

滤波电路采用无源 RC 滤波器,去除信号中的高频噪声。

(三)A/D 转换电路选用 ADC0809 作为 A/D 转换芯片,它是 8 位逐次逼近型 A/D 转换器,具有转换速度快、精度高等优点。

(四)51 单片机选择AT89C51 单片机作为控制核心,它具有性能稳定、价格低廉、编程简单等优点。

(五)数码管显示电路采用共阳数码管进行显示,通过 74HC573 锁存器驱动数码管。

(六)按键电路使用独立按键实现去皮、清零等功能。

三、软件设计(一)主程序流程主程序首先进行系统初始化,包括初始化单片机的 I/O 口、A/D 转换芯片等。

然后进入循环,不断读取 A/D 转换的结果,并进行数据处理和计算,得到物体的重量值,最后将重量值发送到数码管显示。

(二)数据处理算法采用线性拟合的方法对 A/D 转换的结果进行处理,得到与重量值对应的数字量。

基于单片机的电子秤设计

基于单片机的电子秤设计

基于单片机的电子秤设计一、引言二、设计要求与整体方案(一)设计要求1、测量范围:能够满足常见物品的质量测量,通常为 0 10kg 或更大。

2、精度要求:达到一定的测量精度,如 01g 或更高。

3、显示功能:清晰显示测量结果,包括质量数值和单位。

4、稳定性:在不同环境条件下保持测量结果的稳定性和可靠性。

(二)整体方案本设计采用单片机作为核心控制单元,结合称重传感器、信号调理电路、A/D 转换电路、显示模块和电源模块等组成电子秤系统。

称重传感器将物体的质量转换为电信号,经过信号调理电路进行放大、滤波等处理后,由 A/D 转换电路将模拟信号转换为数字信号,单片机对数字信号进行处理和计算,最终将测量结果通过显示模块显示出来。

三、硬件设计(一)称重传感器选择合适的称重传感器是电子秤设计的关键。

常见的称重传感器有电阻应变式、电容式等。

电阻应变式传感器具有精度高、稳定性好等优点,被广泛应用于电子秤中。

其工作原理是当物体加载在传感器上时,弹性体发生形变,粘贴在弹性体上的电阻应变片也随之产生电阻变化,通过测量电阻变化即可得到物体的质量。

(二)信号调理电路由于称重传感器输出的信号较弱且存在干扰,需要经过信号调理电路进行处理。

信号调理电路通常包括放大器、滤波器等。

放大器用于将传感器输出的微弱信号放大到适合 A/D 转换的范围;滤波器用于去除信号中的噪声和干扰,提高信号的质量。

(三)A/D 转换电路A/D 转换电路将模拟信号转换为数字信号,以便单片机进行处理。

选择 A/D 转换器时需要考虑其分辨率、转换速度、精度等参数。

常见的 A/D 转换器有 ADC0809、ADS1115 等。

(四)单片机单片机作为电子秤的控制核心,负责处理和计算测量数据,并控制整个系统的工作。

选择单片机时需要考虑其性能、资源、成本等因素。

常见的单片机有 STM32、51 单片机等。

(五)显示模块显示模块用于显示测量结果,常见的有液晶显示屏(LCD)和数码管。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计一、引言在现代社会,电子秤作为一种重要的测量工具,广泛应用于商业、工业、医疗、家庭等各个领域。

传统的电子秤功能较为单一,只能进行简单的称重操作。

随着科技的不断发展,人们对电子秤的要求越来越高,希望它能够具备更多的功能,如数据存储、数据分析、远程传输等。

基于单片机的智能电子秤应运而生,它不仅能够实现高精度的称重,还能够满足人们对智能化、多功能的需求。

二、智能电子秤的系统组成基于单片机的智能电子秤主要由以下几个部分组成:1、称重传感器称重传感器是电子秤的核心部件,它能够将物体的重量转换为电信号。

常见的称重传感器有电阻应变式、电容式、电感式等。

电阻应变式称重传感器具有精度高、稳定性好、价格低廉等优点,因此在电子秤中得到了广泛的应用。

2、信号调理电路称重传感器输出的电信号通常比较微弱,且存在噪声和干扰,需要经过信号调理电路进行放大、滤波、A/D 转换等处理,以得到可供单片机处理的数字信号。

3、单片机单片机是智能电子秤的控制核心,它负责接收和处理来自信号调理电路的数字信号,并进行数据计算、存储、显示等操作。

常见的单片机有 51 系列、STM32 系列等。

4、显示模块显示模块用于显示称重结果和其他相关信息,常见的显示模块有液晶显示屏(LCD)和发光二极管显示屏(LED)。

LCD 显示屏具有显示清晰、功耗低等优点,而 LED 显示屏则具有亮度高、可视距离远等优点。

5、按键模块按键模块用于设置电子秤的参数,如单位转换、去皮、清零等。

6、存储模块存储模块用于存储称重数据,以便后续查询和分析。

常见的存储模块有 EEPROM、FLASH 等。

7、通信模块通信模块用于实现电子秤与上位机或其他设备之间的数据传输,常见的通信模块有蓝牙、WiFi、RS232 等。

三、智能电子秤的工作原理当物体放置在电子秤的秤盘上时,称重传感器受到压力作用,产生相应的电阻变化。

信号调理电路将称重传感器输出的电阻变化转换为电压变化,并进行放大、滤波等处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXXX大学毕业设计说明书学生姓名:学号:学院:专业:题目:基于单片机的电子秤设计指导教师:职称:职称:20**年12月5日摘要本系统采用单片机 AT89S52 为控制核心,实现电子秤的基本控制功能。

系统的硬件部分包括最小系统板,数据采集、人机交互界面三大部分。

最小系统部分主要是扩展了外部数据存储器,数据采集部分由压力传感器、信号的前级处理和 A/D 转换部分组成。

人机界面部分为键盘输入, 128 64 点阵式液晶显示,可以直观的显示中文,使用方便。

软件部分应用单片机 C 语言实现了本设计的全部控制功能,包括基本的称重功能,和发挥部分的显示购物清单的功能,可以设置日期和重新设定 10 种商品的单价,具有超重报警功能,由于系统资源丰富,还可以方便的扩展其应用。

关键词:压力传感器单片机 A/D转换器 LED显示器目录第一章绪论 (1)1 电子秤的工作原理 (1)2 设计任务书 (1)第二章系统方案论证与选型 (2)2.1 控制器部分 (3)2.2 数据采集部分 (4)2.2.1 传感器的选择 (4)2.2.2放大电路选择 (5)2.2.3 A/D转换器的选择 (6)2.2.4 键盘处理部分方案论证 (7)2.3显示电路部分的选择 (8)2.4超量程报警部分选择 (9)第三章硬件电路设计 (9)3.1 AT89S52的最小系统电路 (9)3.1.1单片机芯片AT89S52介绍 (9)3.1.2.单片机管脚说明 (10)3.1.3 AT89S52的最小系统电路构成 (11)3.2 电源电路设计 (11)3.3 数据采集部分电路设计 (13)3.3.1 传感器以及放大电路设计 (13)3.3.2 A/D转换器设计 (14)3.3.3 测量算法 (16)3.4显示电路与AT89S52单片机接口电路设计 (17)3.5键盘电路与AT89S52单片机接口电路设计 (17)3.6报警电路的设计 (18)第四章系统软件设计 (20)4.1主程序设计 (20)4.2 子程序设计 (21)4.2.1 A/D转换启动及数据读取程序设计 (21)4.2.2数制转换子程序设计 (22)4.2.3显示子程序设计 (23)4.2.4 键盘扫描子程序的设计 (24)4.2.7报警子程序的设计 (28)参考文献 (29)附录1 系统总图 (30)第一章绪论1 电子秤的工作原理当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力-电效应,将物体的重量转换成与被称物体重量成一定函数关系(一般成正比关系)的电信号(电压或电流等)。

此信号由放大电路进行放大、经滤波后再由模/数(A/D)器进行转换,数字信号再送到微处器的CPU处理,CPU不断扫描键盘和各种功能开关,根据键盘输入内容和各种功能开关的状态进行必要的判断、分析、由仪表的软件来控制各种运算。

运算结果送到内存贮器,需要显示时,CPU发出指令,从内存贮器中读出送到显示器显示,或送打印机打印。

一般地信号的放大、滤波、A/D 转换以及信号各种运算处理都在仪表中完成。

2 设计任务书1、使用单片机为控制核心。

2、使用键盘输入数据,操作简单,方便。

3、液晶显示所称量的物品重量,同时还可显示物品的数量,单价,金额。

4、具有去皮功能和金额累加计算功能。

5、当物品重量超过电子秤量程,即过载情况或者是物品重量小于A/D转换器所能转换的最小精度,即欠量程的时候,具有超重报警功能。

6、主要技术指标为:称量范围0~2kg; 放大电路设计(灵敏度1mV/V,输出信号为0~10mV,A/D转换输入为0-4.999V)。

由4节7号电池供电。

第二章 系统方案论证与选型按照本设计功能的要求,系统由6个部分组成:控制器部分、测量部分、报警部分、数据显示部分、键盘部分、和电路电源部分,系统设计总体方案框图如图2.1所示。

图2-1设计思路框图测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送A/D 转换器,将模拟量转化为数字量输出。

控制器部分接受来自A/D 转换器输出的数字信号,经过复杂的运算,将数字信号转换为物体的实际重量信号,并将其存储到存储单元中。

控制器还可以通过对扩展I/O 的控制,对键盘进行扫描,而后通过键盘散转程序,对整个系统进行控制。

数据显示部分根据需要实现显示功能。

压力传感A/D 转换器 放大电路 AT89S52单片机 键盘LCD 显示报警2.1 控制器部分本设计由于要求必须使用单片机作为系统的主控制器,而且以单片机为主控制器的设计,可以容易地将计算机技术和测量控制技术结合在一起,组成新型的只需要改变软件程序就可以更新换代的“智能化测量控制系统”。

这种新型的智能仪表在测量过程自动化、测量结果的数据处理以及功能的多样化方面,都取得了巨大的进展。

再则由于系统没有其它高标准的要求,又考虑到本设计中程序部分比较大,根据总体方案设计的分析,设计这样一个简单的的系统,可以选用带EPROM的单片机,由于应用程序不大,应用程序直接存储在片内,不用在外部扩展存储器,这样电路也可简化。

INTEL公司的8051和8751都可使用,在这里选用ATMENL生产的AT89SXX系列单片机。

AT89SXX系列与MCS-51相比有两大优势:第一,片内存储器采用闪速存储器,使程序写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路体积更小。

此外价格低廉、性能比较稳定的MCPU,具有8K×8ROM、256×8RAM、2个16位定时计数器、4个8位I/O接口。

这些配置能够很好地实现本仪器的测量和控制要求最后我们最终选择了AT89S52这个比较常用的单片机来实现系统的功能要求。

AT89S52内部带有8KB的程序存储器,基本上已经能够满足我们的需要。

2.2 数据采集部分电子秤的数据采集部分主要包括称重传感器、处理电路、A/D转换电路和键盘处理,因此对于这部分的论证主要分四方面。

2.2.1 传感器的选择在设计中,传感器是一个十分重要的元件,因此对传感器的选择也显的特别的重要,不仅要注意其量程和参数,还有考虑到与其相配置的各种电路的设计的难以程度和设计性价比等等.平行梁微型秤称重传感器尺寸:长80mm 宽1.27mm 高1.27mm规格:1kg 2kg 5kg额定负荷 0.6,1,2,3,5,6(kg)额定输出 1.0 ±0.15mV/V输入阻抗 1115±10% Ω输出阻抗 1000±10% Ω推荐工作电压 5~12 VDC最大工作电压 15 VDC材质铝合金满量程电压=激励电压x灵敏度1.0mv/v根据设计要求满量程电压为0-10mv,由上式得激励电压为10V安装方式:悬臂梁安装方式带线段固定其它的悬空另一边上面称量设计要求平行梁微型秤称重传感器称量范围0~2kg 2KG 符合灵敏度1mV/V 1.0 ±0.15mV/V 符合输出信号0~10mV 满量程电压=激励电压10Vx灵敏度1.0mv/v=10mV 符合电源带负载能力输入阻抗 1115±10% Ω符合根据设计要求,灵敏度符合要求,规格选用2KG,激励电压10V2.2.2放大电路选择采用专用仪表放大器,如:INA128,INA121等。

此类芯片内部采用差动输入,共模抑制比高,差模输入阻抗大,增益高,精度也非常好,且外部接口简单。

INA128P,接口如下图3-2-1所示:图3-2-1放大器增益501KGRgΩ=+,通过改变Rg的大小来改变放大器的增益。

基于以上分析,我们决定采用制作方便而且精度很好的专用仪表放大器INA128。

INA128是低功耗、高精度的通用仪表放大器。

它们通用的 3 运放(3-op amp)设计和体积小巧使其应用范围广泛。

反馈电流(Current-feedback)输入电路即使在高增益条件下(G = 100时,200kHz)也可提供较宽的带宽。

单个外部电阻可实现从1至10000的任一增益选择。

INA128提供工业标准的增益等式(gain equation)INA129 的增益等式与 AD620 兼容。

INA128用激光进行修正微调,具有非常低的偏置电压(50mV)、温度漂移(0.5/V cμ)和高共模抑制(在 G=100 时,120dB)。

其电源电压低至±2.25且静态电流只有 700uA,是电池供电系统的理想选择。

内部输入保护能经受±40V电压而无损坏。

设计要求INA128运算放大器输出电压0-4.999v 5v 符合2.2.3 A/D 转换器的选择 A/D 转换器的选择对传感器量程和精度的分析可知: A/D 转换器误差应在 0.03%以下 8位A/D 精度:2Kg/256=7.81克 12 位 A/D 精度: 2Kg/4096=0.49g 14 位 A/D 精度: 2Kg/16384=0.12g考虑到其他部分所带来的干扰 ,8位 A/D 无法满足系统精度要求。

作为一般小商品称重需求,我们只需要选择12位的A/D 转换器就可以了。

考虑到本系统中对物体重量的测量和使用的场合,精度要求不是很苛刻,转换速率要求也不高,而双积分型A/D 转换器精度高,具有精确的差分输入,重要的是输入阻抗高(大于 M 310),可自动调零,有超量程信号输出,全部输出于TTL 电平兼容。

且双积分型A/D 转换器具有很强的抗干扰能力。

对正负对称的工频干扰信号积分为零,所以对50Hz 的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。

只要干扰电压的平均值为零,对输出就不产生影响。

尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。

根据系统的精度要求以及综合的分析其优点和缺点,本设计采用了12位A/D 转换器AD574。

分辨率:12 位非线性误差:小于±1/2LBS 或±1LBS 转换速率:25us模拟电压输入范围:0—10V 和0—20V ,0—±5V 和0—±10V 两档四种 电源电压:±15V 和5V 数据输出格式:12 位/8 位要求AD574 模拟电压输入0-4.9990—5V符合转换器误差小于0.03% 1/4096=0.024% 符合单片机接口与AT89S52吻合 符合取0—5V 数据输出格式:12 位 电源电压: 5V2.2.4 键盘处理部分方案论证由于电子秤需要设置单价(十个数字键),还具有确认、删除等功能,总共需设置17个键(包括一个复位键)。

键盘的扩展有使用以下方案:采用矩阵式键盘:矩阵式键盘的特点是把检测线分成两组,一组为行线,一组列线,按键放在行线和列线的交叉点上。

相关文档
最新文档