第一章 热化学 能源1.1 反应热效应的测量
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2能量守恒定律
状态与状态函数 例如:要描述CO2气体的状态,通常可用压力P、体积V、物质的 量n和温度T 来描述。当这些物理量(即性质)都确定后,CO2气 体的状态也就被确定了;当这些量中的某个性质如压力P 发生 变化时,CO2气体的状态也就随之发生改变。可见,对气体来 说,气体的压力P、体积V、物质的量n和温度T 等都是状态函 数。 在热力学中要描述一个宏观系统,必须给出它的一系列的 性质,如温度、压力、体积、物质的量、组成等,这些物理性 质和化学性质的总和就称为该系统的状态。
反应热效应
定义: 化学反应时,系统所放出或吸 收的热量称为该反应的反应热效应, 简称热效应或反应热。以符号q 表示, 单位为焦耳(J)。 分类:热效应分为定容(或等容)热效 应与定压(或等压)热效应两类。
定容热效应
定义:在系统体积 不变,即定容条件 下的反应热效应称 为定容热效应,以 符号qV表示。
(2)定压下: ΔP=0 ΔH = qP 说明:在只作体积功的反应或过程中,反应的 焓变在数值上等于定压热效应qP 。
焓的性质
焓H 和内能U 一样,其绝对值是无法测量的。 对于一个反应或过程来说,ΔH <0,为系统放热; ΔH>0,为系统吸热;而且正逆反应或过程的热 效应数值相等,符号相反,即ΔH正=-ΔH逆。 因为U、P、V 都是状态函数,所以焓H 也是状态 函数。其变化ΔH 只与系统的始态和终态有关, 而与变化的途径无关。
Fra Baidu bibliotek
讨论热力学第一定律
定压或定容下只作体积功的反应或过程 (1)定容下: ΔV=0 ΔU = qV 说明:在只作体积功的反应中系统内能的变化在数 值上等于定容热效应qV 。 问 题 为何W= -PΔV ? 设用一热源加热气缸里 的气体,由V1 膨胀到V2 , 活塞移动距离 l ,系统反 抗恒定的外力F 而作了体 积功W。
nB / B 可见,随着反应的进行,反应进度 与物质B的物质的量的 改变量( Δ nB )及各自的化学计量数( B )有关。
B
对于反应 0 =
B
B
B
例题: 合成氨反应: N2 + 3H2 = 2NH3 (N2)= -1 (H2)= -3 (NH3)=+2 当 0 0 时 若系统中有1molN2 与3molH2反应生成2molNH3时 则其反应进度 为:( nB / B ) 对N2 而言, =Δ n(N2)/ (N2)= -1mol/-1 = 1mol; 对H2 而言, = Δ n(H2)/ (H2)= -3mol/-3 = 1mol; 对NH3 而言, = Δ n(NH3)/ (NH3)= 2mol/2 = 1mol。 可见对同一反应而言,反应进度的值与选用何种物质B无关。 但是,同一反应若方程式的书写不同,则反应进度不同。
定压热效应
定义:在系统压力 不变,即定压条件 下的反应热效应称 为定压热效应,以 符号qP 表示。
问
题
假设要测量反应: C(石墨) + O2(g) = CO2 (g) 的热效应,应选择哪一类系统测量?
热效应的测量
可用弹式量热计 测量定容热效应
问
题
不能直接用实验测量的反应,例: C(石墨) + 1/2 O2(g) = CO(g) 我们如何去知道反应的热效应呢?
当这些性质都具有确定的值时,系统就处于一定的状 态;当系统的某个性质发生变化时,系统的状态也就随之发 生改变。 这些用以确定系统状态的性质的物理量称为状态函数
状态函数的特性
状态一定,状态函数就具有确定的值。 状态发生改变时,状态函数的数值改变量仅与状态的始态和
终态有关,而与状态变化的途径无关。
第一章
热化学 能源
1.1 反应热效应的测量
两个基本概念:系统和环境
例如,研究结晶硫酸铜的 溶解过程时,可将结晶硫 酸铜和水溶液作为系统, 环境就是三角瓶及瓶外的 周围物质。
系统分为三类 根据系统和环境之间进行 的物质和能量交换的不同, 可把系统分为敞开系统、封 闭系统和孤立系统三类。
敞开系统 系统与 环境间既有 物质交换, 也有能量交 换。
标准压力P θ和标准浓度c θ 按国标 GB3102.8-92,标准压力P θ 选择为100kPa 。但由于目前所 通用的手册上的数据,绝大部分仍是在101.325kPa压力下测定的, 所以习惯上标准压力P θ 仍取101.325kPa。 标准浓度:c θ =1mol· -3。 dm
对任一反应 aA + bB = gG + dD 在298.15K时反应的标准焓变为: ΔH θ (298.15K)={gΔfH θ (G,298.15K) +dΔfH θ (D,298.15K)} -{aΔfH θ (A,298.15K) +bΔfH θ (B,298.15K)} = {ΔfH θ (298.15K)}生成物 - {ΔfH θ (298.15K)}反应物
封闭系统 系统与 环境间仅有 能量交换, 没有物质交 换。
孤立系统 (又称封闭且绝热系统)
系统与环 境间既无物 质交换,也 无能量交换。
注
意
系统与环境的划分 是人为的。因此,在不 同的研究工作中系统与 环境的范围是可以变化 的。
反应通式 以合成氨反应为例,通常将其化学反应计量方程式写 为: N2 + 3H2 = 2NH3 上式也可以改写为: 0 = 2NH3- N2 - 3H2 因此,化学反应计量方程式可表示为如下通式:
说 明 在通常情况下,体积功的绝对值(Δ νgRT)小于5 kJ· -1, mol 比起ΔH 或ΔU来说较小,所以,ΔH ≈ΔU或 qP ≈ qV 。
思 考 题 是非状态函数,为何在盖斯定律中又称它与状态变化的途径 无关呢?
q
1.2.3 标准摩尔生成焓和反应的标准摩尔焓变
标准条件
化学热力学中规定: 对气体而言,气体压力为标准压力P θ(对气体混合物,是指各 气态物质的分压均为标准压力P θ)时;上标“θ ”即表示在标准 条件下。 对溶液而言,溶质的浓度为标准浓度c θ 时,称为标准条件。 说明: “θ ”应写为“ ”
为什么反应: C(石墨) + 1/2 O2(g) = CO(g) 的反应热不能直接用实验测量?
1.2 反应热的理论计算
1.2.1 盖斯定律 例如:在101.325kPa和298.15K下,1 mol C(石 墨)与O2(g)完全燃烧生成CO2(g)有如下两条途径:
途径一 和途径二的热效应之间有什么关系呢? 1840年由瑞士籍俄国化学家盖斯在分析定压下反应 热效应的大量实验结果的基础上总结出的一条重要 定律:盖斯定律 。
(3)q V 与q P 的关系
qp= qv+Δνg RT 说明:Δνg 为反应式中气体生成物总的化学计量 数-气体反应物总的化学计量数。
思考题 已知某反应 aA(g) + bB(g) = gG(g) + dD(g) ,问 在什么情况下该反应的 qV = qP ?
例
题
在373.15K和101.325kPa下,若1mol H2O(l) 汽化变成 1mol H2O(g)的过程中 ΔH = 40.63kJ· -1,试问该汽化 mol 过程的ΔU 为多少? 解:汽化过程为: H2O(l) = H2O(g) 在定温定压和只作体积功的条件下, ΔH = ΔU + Δνg RT ΔU = ΔH - Δ νgRT =[40.63-(1-0)×8.314×373.15×10-3]kJ· -1 mol =37.53kJ· -1 mol 答:此汽化过程的ΔU 为37.53kJ· -1 mol
在火箭推进器中燃料燃烧,将化学能 转化为热能再转化为火箭运动的动能
水力发电站中将水的势能转化为电能。
能量守恒定律的数学表达式
ΔU=q + W
注 意
热力学中规定: 系统从环境吸热时,q 取正值;系统向环境放热时,q 取负值; 环境向系统作功时,W 取正值;统向环境作功时,W 取负值。
例
题
已知某系统在状态1时的内能为U1 ,如果该系统吸收热量500J 后又对环境作功200J,变到内能为U2的状态2 ,试问该系统的 内能变化了多少? 解:因为 q = 500J W = -200J 所以 ΔU = q + W =500J-200J=300J 答:该系统的内能变化ΔU 为300J。
为简便,可将上式缩写成
H θ (298.15K) ν B f H θ (B, 298.15K)
B
其中:B 泛指某一物质 νB 表示反应式中B物质的计量数 规定生成物为+,反应物为反应的标准焓变等于各生成物标准生成焓与相应化学计量数乘 积之和减去各反应物标准生成焓与相应化学计量数乘积之和。
例 子
内
能(现称为热力学能)
定义: 是系统内部各种能量的总和,包括系统中 分子、原子 或离子等微观粒子的动能、势能以及核能等等,用符 号U 表示。 性质: 内能的绝对值得不到,只能得到 相对值,用符号ΔU 。 是状态函数,具有状态函数的特性。
问题:为什么U是状态函数?
能量守恒定律
定义:在任何过程中能量不会自生自灭,只能从一种形式 转化为另一种形式,从一个物体传递给另一个物体,而在 转化和传递过程中能量的总数量是保持不变的。这一自然 规律称为能量守恒定律,也称为热力学第一定律。 实 例
C(石墨) + 1/2 O2(g) = CO(g)
qp = -110.5kJ· -1 mol
每摩尔石墨不完全燃烧时,放出的能量为110.5kJ,仅是完全 燃烧(qp = -393.5kJ)时的1/4多,而且生成的 CO是有毒的,污 染环境。因此,石墨完全燃烧不仅更经济,而且可防止环境 污染。 这是一个热化学方程式(化学反应与热效应的关系)。由于 热效应与温度、压力等状态有关,因此要把状态写上。上式 表明:在实验温度298.15K和定压101.325kPa条件下,石墨不 完全燃烧时,每摩尔[C(石墨) + 1/2 O2(g) = CO(g) ] 放出 110.5kJ的热。
问
题
1 如果反应: C(石墨) + 1/2 O2(g)= CO(g) 的系数均乘以2,则qp是否也改变?
qp的意义:是按此反应物的量的比例反应时, 放出的热量。也即每mol的含义。
2 盖斯定律有什么用?
3 反应:C(石墨) + 1/2 O2(g) = CO(g) 的热效应的得到运用了什么科学方法?
反应SO2(g)+NO2(g)=SO3(g)+NO(g)标准焓变 ΔH θ (298.15K) =[-395.72+90.25(-296.83)-33.18] kJ· -1 mol =-41.82 kJ· -1 mol 反应是放热的。 分析:若将反应各系数扩大一倍 则ΔH θ (298.15K)=-2× 41.82 kJ· -1 mol kJ· -1 的含义是指按系数的量进行一遍,是广义上的。 mol 所以ΔH θ的数值与反应方程式的书写有关。
0=
B
B
B
式中,B 是泛指反应式中物质的化学式, B 是反应式 中物质B的化学计量数,是无量纲的纯数。当B是生成 物时,其值取正值;B为反应物时,其值取负值。 如对反应 : N2 + 3H2 = 2NH3 (H2)= -3 。 其 (NH3)=+2, (N2)= -1,
反应进度(了解):用来描述任一时刻反应进展程度的量称为反 应进度,可用符号 (读音克赛)表示。 d = dnB / B 式中: nB 表示B的物质的量, B 物质B的化学计量数 化学计量数 是无量纲的纯数,因此反应进度的单位是摩尔(mol) dnB = B d 积分:从开始时 0 0 到 nB ( ) nB (0 ) B ( 0 ) 则 Δ nB =
盖斯定律
在定压或定容条件下,总反应的热效应只与反应的始态和 终态(包括温度、反应物和生成物的量及聚集状态等)有关, 而与变化的途径无关。
根据盖斯定律,这两条途径的热效应应该相等。 qp1(298.15K) = qp2(298.15K) + qp3(298.15K) qp2(298.15K) = qp1(298.15K)-qp3(298.15K) = -393.5kJ· -1-(-283.0kJ· -1) mol mol = -110.5kJ· -1。 mol