《幂函数》PPT课件
合集下载
《幂函数》PPT课件
❖ ★当α为奇数时,幂函数为奇函数,
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) = x在[0,+∞]上是增函数.
证明: 任取x1, x2∈[0,+∞],且x1 x2,则
f
(
x1)-f
(
x
)
2
x1-
(
x2
x1- x2)( x1 x1 x2
x2)
= x1 x2
方法技巧:分子有理化
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx
R
R 奇函数 增函数 (1,1)
y x2 R
y ≥0 偶函数
(1,1)
y x3 R
R 奇函数 增函数 (1,1)
1
y x2 x 0 y ≥0 非奇非偶 增函数 (1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
因函数式中α的不同而各异.
❖ ★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
❖ ★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
❖ ★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
α是常量.
几点说明:
1、y x 中 x 前面的系数为 1,并且后面
没为常数项,而且底数只能是x
2、定义域没有固定,与的值有关.
幂函数与指数函数的对比
式子 指数函数: y=a x
a底数名称 Nhomakorabeax
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) = x在[0,+∞]上是增函数.
证明: 任取x1, x2∈[0,+∞],且x1 x2,则
f
(
x1)-f
(
x
)
2
x1-
(
x2
x1- x2)( x1 x1 x2
x2)
= x1 x2
方法技巧:分子有理化
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx
R
R 奇函数 增函数 (1,1)
y x2 R
y ≥0 偶函数
(1,1)
y x3 R
R 奇函数 增函数 (1,1)
1
y x2 x 0 y ≥0 非奇非偶 增函数 (1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
因函数式中α的不同而各异.
❖ ★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
❖ ★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
❖ ★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
α是常量.
几点说明:
1、y x 中 x 前面的系数为 1,并且后面
没为常数项,而且底数只能是x
2、定义域没有固定,与的值有关.
幂函数与指数函数的对比
式子 指数函数: y=a x
a底数名称 Nhomakorabeax
《幂函数》PPT课件
2 log2
1 22
1 2
练习2 :已知f ( x) m m 1 x
2
m 3
是幂函数,
求m的值。
解 : 因为f ( x)是幂函数
m m 1 1
2
解之得: m 2或m 1
m 2或m 1
加条件 :已知f ( x) m m 1 x
2
(4)y 3
x
(3)y 2x
(5)y x 1 1 (6)y x
2
练习1:已知幂函数f(x)的图像经过点 (2,2), 试求出这个函数的解析式。
证明: 设所求的幂函数为 yx 函数的图像过 (2, 2 )点
2 2 ,
α log2
f ( x)
1 x2
证明幂函数 f ( x) x 在[0,+∞)上是增函数.
用定义证明函数的单调性的步骤:
x x2 x1>0 (1). 取数:设x1, x2是某个区间上任意二值,
(2). 作差: f(x2)-f(x1), (3) 整理: (4). 分析 f(x1)-f(x2) 的符号; (5). 下结论.
yx
yx
2
1 -1 -1 O1
x
y
1 -1 O -1 1
R
x
[0,+∞) 偶函数
y
yx
yx
3
-1
1 -1
O
y 1
1
x
R
R
奇函数
1 2
1
-1 O 1 -1
x
[0,+∞) [0,+∞) (-∞,0)∪ (-∞,0)∪ (0,+∞) (0,+∞)
高中数学《3.3幂函数》课件
的图像都
过点(1,1)
❖ 函数
是奇函数,函数
是偶函数
❖ 在区间
上,函数
是增函数,函数
是减函数
❖ 在第一向限内,函数
的图像向上与y轴无限的
接近,向右与x轴无限的接近。
例. 证明幂函数 f (x) x 在[0,+∞)上是增函数.
证明:任取x1,x2∈ [0,+∞),且x1<x2,则
f (x1) f (x2 ) x1 x2
则m的值为
课堂小结
❖ 了解幂函数的概念 ❖ 会画常见幂函数的图象
❖ 结合图像了解幂函数图象的变化情况和简 单性质
❖ 会用幂函数的单调性比较两个底数不同而 指数相同的幂的大小
单 调 性(-∞,0)减
(0,+∞)增
y
y x3
函数 y x3
定义域 R
O
x 值域 R
奇偶性 奇
单调性 增
y
1
y x2
函数
1
y x2
定义域[0,+∞)
O
x 值域 [0,+∞)
奇偶性非奇非偶
单调性 增
幂函数的性质
yx
1
y x2 y x3 y x2
y x1
(1,1)
幂函数的性质
❖ 函数
-1或4
规律 ❖
的系数是1
❖ 底数是单一的x
总结 ❖ 指数是常数
幂函数的定义
幂函数的定义:一般地函数 y x 叫做幂函数
其中x是自变量,α是常数。
对于幂函数,我们先讨论α=1,2,3,1 ,1 时的情景,
2
1
即先讨论函数 y x, y x2 , y x3, y x 2 , y x1
3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
1
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
幂函数(共2课时)课件(共35张PPT)
3.3 幂函数
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27
3.3幂函数(共43张PPT)
解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.
幂函数ppt课件
x1 x2
因为x1 x2 0, x1 x2 0, 所以f ( x1 ) f ( x2 ),
即幂函数 f ( x) x 是增函数.
x1 x2
.
x1 x2
在进行无理式的变形时,
不仅可以将分母有理化,
也可以将分子有理化.
归纳小结
通过这节课的学习,你能说说我们是怎么研究幂函数的吗?
调递增
调递增
(0,+∞)
在R上单 在[0,+∞) 单调递减
调递增 单调递增
公共点为(1,1)
例1:证明幂函数 f(x)= x是增函数 .
证明:函数的定义域是[0,+∞).
x1 , x2 [0,), 且x1 x2 , 有f ( x1 ) f ( x2 ) x1 x2
( x1 x2 )( x1 x2 )
1
2
3
问题3:如何画出 y = x 和y = x 的图象?
追问:观察这两个函数的解析式,你能说出它们的一些性质吗?
1
2
y = x 的定义域为:
[0,+∞)
非奇非偶函数
y = x 3的定义域为: R
奇函数
1
2
2
-1
3
y
=
x
,
y
=
x
,
y
=
x
,
y
=
x
,
y
=
x
问题4:请同学们在同一个坐标系中画出
的图象.并结合图象和解析式观察它们有哪些性质.
直观想象
转化与化归
数形结合
思想方法
数学抽象
背景
核心素养
因为x1 x2 0, x1 x2 0, 所以f ( x1 ) f ( x2 ),
即幂函数 f ( x) x 是增函数.
x1 x2
.
x1 x2
在进行无理式的变形时,
不仅可以将分母有理化,
也可以将分子有理化.
归纳小结
通过这节课的学习,你能说说我们是怎么研究幂函数的吗?
调递增
调递增
(0,+∞)
在R上单 在[0,+∞) 单调递减
调递增 单调递增
公共点为(1,1)
例1:证明幂函数 f(x)= x是增函数 .
证明:函数的定义域是[0,+∞).
x1 , x2 [0,), 且x1 x2 , 有f ( x1 ) f ( x2 ) x1 x2
( x1 x2 )( x1 x2 )
1
2
3
问题3:如何画出 y = x 和y = x 的图象?
追问:观察这两个函数的解析式,你能说出它们的一些性质吗?
1
2
y = x 的定义域为:
[0,+∞)
非奇非偶函数
y = x 3的定义域为: R
奇函数
1
2
2
-1
3
y
=
x
,
y
=
x
,
y
=
x
,
y
=
x
,
y
=
x
问题4:请同学们在同一个坐标系中画出
的图象.并结合图象和解析式观察它们有哪些性质.
直观想象
转化与化归
数形结合
思想方法
数学抽象
背景
核心素养
幂函数-课件ppt
5.已知点 33,3 3在幂函数 f(x)的图象上,则 f(x)的定义域
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取
幂函数ppt课件
∴(-3)3>(-π)3.
探究点四
幂函数性质的综合应用
【例4】 已知幂函数f(x)=
- 2 -2+3(-2<m<2,m∈Z)满足:
①f(x)在(0,+∞)上单调递增;
②对∀x∈R,都有f(-x)-f(x)=0.
求同时满足①②的幂函数f(x)的解析式,并求出x∈[1,4]时,f(x)的值域.
(2)函数f(x)=(m2-m-5)xm-1是幂函数,且在区间(0,+∞)上单调递增,试确定m的
值.
解 根据幂函数的定义,得m2-m-5=1,
解得m=3或m=-2.
当m=3时,f(x)=x2在区间(0,+∞)上单调递增;
当m=-2时,f(x)=x-3在区间(0,+∞)上单调递减,不符合要求.故m=3.
比较大小的两个实数必须在同一个函数的同一个单调区间内,否则无法比
较大小.
变式训练3 比较下列各组数的大小:
(1)
2 0.5
3 0.5
与
;
3
4
解 ∵y=x
0.5
3
在定义域上为增函数,又
4
>
2
2 0.5
3 0.5
,∴
<
.
3
3
4
(2)(-3)3与(-π)3.
解 ∵y=x3在定义域R上为增函数,又-3>-π,
值域
奇偶性
R
奇函数
在R上单
单调性
调递增
公共点 (1,1)
[0,+∞)
偶函数
奇函数
y=
既不是奇函数,
也不是偶函数
在[0,+∞)
上单调递增, 在R上单 在[0,+∞)上单
探究点四
幂函数性质的综合应用
【例4】 已知幂函数f(x)=
- 2 -2+3(-2<m<2,m∈Z)满足:
①f(x)在(0,+∞)上单调递增;
②对∀x∈R,都有f(-x)-f(x)=0.
求同时满足①②的幂函数f(x)的解析式,并求出x∈[1,4]时,f(x)的值域.
(2)函数f(x)=(m2-m-5)xm-1是幂函数,且在区间(0,+∞)上单调递增,试确定m的
值.
解 根据幂函数的定义,得m2-m-5=1,
解得m=3或m=-2.
当m=3时,f(x)=x2在区间(0,+∞)上单调递增;
当m=-2时,f(x)=x-3在区间(0,+∞)上单调递减,不符合要求.故m=3.
比较大小的两个实数必须在同一个函数的同一个单调区间内,否则无法比
较大小.
变式训练3 比较下列各组数的大小:
(1)
2 0.5
3 0.5
与
;
3
4
解 ∵y=x
0.5
3
在定义域上为增函数,又
4
>
2
2 0.5
3 0.5
,∴
<
.
3
3
4
(2)(-3)3与(-π)3.
解 ∵y=x3在定义域R上为增函数,又-3>-π,
值域
奇偶性
R
奇函数
在R上单
单调性
调递增
公共点 (1,1)
[0,+∞)
偶函数
奇函数
y=
既不是奇函数,
也不是偶函数
在[0,+∞)
上单调递增, 在R上单 在[0,+∞)上单
幂函数ppt课件
3.第一象限内函数的单调性与指数大 小或正负性有什么关系?
4. 哪些是奇函数?哪些是偶函数?
观察: 不管指数是多少,图象都经过 哪个点?
1.过定点 图象都经过点(1,1)
α>0时,图象还都过点 (0,0)。
y
y x2 y x1
1
y x2
1
O1
y x1
x
观察: 图象分布有什么规律? (都经过或不经过哪个 象限)
22=2×2,故 C 对;D 中直线对应函数为 y=-x,曲线对应函数为 y=x3,
-1≠3.故 D 错.
三、习题讲解
幂函数 y=xm,y=xn,y=xp,y=xq 的图象如图,则将 m,n,p,q 的大小关系用“<”连接起来结果是________.
【解析】 过原点的指数 α>0,不过原点的 α<0,所以 n<0, 当 x>1 时,在直线 y=x 上方的 α>1,下方的 α<1,所以 p>1, 0<m<1,0<q<1;x>1 时,指数越大,图象越高,所以 m>q,综上所 述 n<q<m<p. 【答案】 n<q<m<p 依据 α<0,0<α<1 和 α>1 的幂函数图象的特征判断.
• [分析] 逐个分析函数图象,也可给α分别取已知数值,研究两个函数在 同一个坐标系的图象形状.
[解析] A 中直线对应函数 y=x,曲线对应函数为 y=x-1,1≠-1,
1
故 A 错;B 中直线对应函数为 y=2x,曲线对应函数为 y=x2
,2≠12,
故 B 错;C 中直线对应函数为 y=2x,曲线对应函数为 y=x2,当 x=2 时,
4. 哪些是奇函数?哪些是偶函数?
观察: 不管指数是多少,图象都经过 哪个点?
1.过定点 图象都经过点(1,1)
α>0时,图象还都过点 (0,0)。
y
y x2 y x1
1
y x2
1
O1
y x1
x
观察: 图象分布有什么规律? (都经过或不经过哪个 象限)
22=2×2,故 C 对;D 中直线对应函数为 y=-x,曲线对应函数为 y=x3,
-1≠3.故 D 错.
三、习题讲解
幂函数 y=xm,y=xn,y=xp,y=xq 的图象如图,则将 m,n,p,q 的大小关系用“<”连接起来结果是________.
【解析】 过原点的指数 α>0,不过原点的 α<0,所以 n<0, 当 x>1 时,在直线 y=x 上方的 α>1,下方的 α<1,所以 p>1, 0<m<1,0<q<1;x>1 时,指数越大,图象越高,所以 m>q,综上所 述 n<q<m<p. 【答案】 n<q<m<p 依据 α<0,0<α<1 和 α>1 的幂函数图象的特征判断.
• [分析] 逐个分析函数图象,也可给α分别取已知数值,研究两个函数在 同一个坐标系的图象形状.
[解析] A 中直线对应函数 y=x,曲线对应函数为 y=x-1,1≠-1,
1
故 A 错;B 中直线对应函数为 y=2x,曲线对应函数为 y=x2
,2≠12,
故 B 错;C 中直线对应函数为 y=2x,曲线对应函数为 y=x2,当 x=2 时,
幂函数(课件)
04
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
高一数学《幂函数》PPT课件
函数的性质不同
指数函数的底数是一个大于0且 不等于1的常数,而幂函数的底 数可以是任意实数。此外,指 数函数的值域为正实数集,而 幂函数的值域为非负实数集。
图像的形状不同
指数函数的图像是一条经过点 (0,1)的曲线,而幂函数的图像 是一条经过原点的曲线。
02
常见幂函数类型及其特点
一次幂函数
表达式
幂的乘方法则
幂的乘方
底数不变,指数相乘。公式: (a^m)^n = a^(m×n)
举例
(2^3)^4 = 2^(3×4) = 2^12; (x^2)^5 = x^(2×5) = x^10
积的乘方法则
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。公式: (ab)^n = a^n × b^n
举例
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
幂函数性质
幂函数的性质包括定义域、值域、奇偶性、单调性等。例如,当a>0时,幂函数在定义域内 单调递增;当a<0时,幂函数在定义域内单调递减。
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
易错难点剖y = x^n(n为实数)
图像
02
一条直线(n=1时)或射线(n≠1时)
性质
03
当n>0时,函数在(0, +∞)上单调递增;当n<0时,函数在(0,
幂函数ppt课件
5
(5) = 2 ;
(6) = 2 3 ;
3;
【答案】 (1),(4)
辨析2.(1) 在函数 =
1
2
、0
, = 2 2 , = 2 + , = 1 中,幂函数的个数为(
、1
、2
、3
(2) 若函数 是幂函数,且满足 4 = 3 2 ,则
【答案】
1
(1),(2)
3
)
1
2
的值等于___________.
新知探究
问题1:结合前面学习函数的经验,应该如何研究 = , =
2,
=
3,
=
−1
这五个幂函数?
提示:先求函数的定义域
画出函数图象
研究函数的 单调性、最值、值域、奇偶性、对称性等.
新知探究
名称
图象
y
=
定义域
值域
奇偶性
单调性
> 0, = 在第一象限内单调递增;
< 0, = 在第一象限内单调递减。
问题4:2.3−0.2 和2.2−0.2 可以看作哪一个函数的两个函数值?二者的大小关系如何?
= −02 在 0, + ∞ 上单调递减,所以2.3−0.2 < 2.2−0.2
练习巩固
练习3:比较下列各组数中两个数的大小.
1
1
(2)4
=
1
16
.
(2)由f(2a + 1) = f(a),可得(2a + 1)−4 = a−4 .
2 + 1 = ±
1
即 2 + 1 ≠ 0 ,解得 = −1或 = −
3
幂函数教学(共43张PPT)高一数学人教B版必修第二册
R
R
奇函数
增函数
(5)如图所示中已经作出了函数 y=x-1,y=x,y=x2 的图象,在其中作出函数 y=x3 图象.
一般地,幂函数 y=xα,随着 α 的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:(1)所有的幂函数在区间(0 , +∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1 , 1).
[0,+∞)
非奇非偶函数
增函数
[0,+∞)
根据以上信息可知,函数 的图象上的点,除了原点,其余点都在第一象限,通过描点(如左图所示),可作出其图象,如右图所示
给出研究函数 y=x3 的性质与图象的方法,并用你的方法得出这个函数的性质:(1)定义域是___________;(2)值域是___________;(3)奇偶性是___________;(4)单调性是___________;
在关系式 N=ab 中,以 a 为自变量、N 为因变量构造出来的函数 y=xb 就是本节要讨论的幂函数.
我们以前学过函数 y=x,y=x2,y=,这三个函数的解析式有什么共同的特点吗?你能根据指数运算的定义,把这三个函数的解析式改写成统一的形式吗?
幂函数
上面提到的函数 y=x,y=x2,y=都是幂函数.
第四章 指数函数、对数函数与幂函数
4.4 幂函数
人教B版(2019)
课标要点
核心素养
1.了解幂函数的概念
数学抽象
2.了解五个常见幂函数的图象
直观想象
3.了解幂函数的图象与性质
逻辑推理
我们已经知道,在关系式 N=ab 中,当底数 a 为大于 0 且不等于 1 的常数时;如果把 b 作为自变量、N 作为因变量,则 N 就是 b 的指数函数;如果把 N 作为自变量、b 作为因变量,则 b 就是 N 的对数函数(即 b=logaN ).那么,当 b 为常数时,是否可以将底数 a 作为自变量,N 作为因变量来构造函数关系呢?
R
奇函数
增函数
(5)如图所示中已经作出了函数 y=x-1,y=x,y=x2 的图象,在其中作出函数 y=x3 图象.
一般地,幂函数 y=xα,随着 α 的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:(1)所有的幂函数在区间(0 , +∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1 , 1).
[0,+∞)
非奇非偶函数
增函数
[0,+∞)
根据以上信息可知,函数 的图象上的点,除了原点,其余点都在第一象限,通过描点(如左图所示),可作出其图象,如右图所示
给出研究函数 y=x3 的性质与图象的方法,并用你的方法得出这个函数的性质:(1)定义域是___________;(2)值域是___________;(3)奇偶性是___________;(4)单调性是___________;
在关系式 N=ab 中,以 a 为自变量、N 为因变量构造出来的函数 y=xb 就是本节要讨论的幂函数.
我们以前学过函数 y=x,y=x2,y=,这三个函数的解析式有什么共同的特点吗?你能根据指数运算的定义,把这三个函数的解析式改写成统一的形式吗?
幂函数
上面提到的函数 y=x,y=x2,y=都是幂函数.
第四章 指数函数、对数函数与幂函数
4.4 幂函数
人教B版(2019)
课标要点
核心素养
1.了解幂函数的概念
数学抽象
2.了解五个常见幂函数的图象
直观想象
3.了解幂函数的图象与性质
逻辑推理
我们已经知道,在关系式 N=ab 中,当底数 a 为大于 0 且不等于 1 的常数时;如果把 b 作为自变量、N 作为因变量,则 N 就是 b 的指数函数;如果把 N 作为自变量、b 作为因变量,则 b 就是 N 的对数函数(即 b=logaN ).那么,当 b 为常数时,是否可以将底数 a 作为自变量,N 作为因变量来构造函数关系呢?
幂函数ppt课件
2
[解析] ∵是幂函数, ∴,且 =0 ∴ 或 ,n=
例1(1)幂函数 的图象过点,则 等于___.
[解析] 依题意,解得 ,则∴ .
[例3] 已知幂函数 为偶函数.
(1) 的值为____;
16
[解析] 由,得 或 .当时, 是奇函数,不满足题意,舍去;当时, 是偶函数,满足题意.∴ , .
方法总结解决幂函数的综合问题时的注意点掌握并熟悉幂函数的图象和单调性,会根据待定系数法求幂函数的解析式,并结合幂函数的定义域来判断幂函数的单调性和奇偶性.
[例3] 比较大小.
(1) ;
解:∵函数在 上单调递增,且,∴ .
(2), .
解:∵函数在 单调递减,且∴ .
(3), ;
解: , ∵幂函数在 上单调递增,又∵ ,∴ .
方法总结利用幂函数单调性比较大小的三种基本方法
角度2 幂函数性质的综合运用
例4 已知幂函数的图象过点 .
(1)求 的解析式;
(4) 在第一象限内,y=x-1的图像向上与y轴无限接近,向右与x 轴无限接近。
思考3:观察5个函数图象,哪个象限一定有幂函数的图象,哪个象限一定没有幂函数的图象.
在直线 的右侧,按“逆时针”方向,图象所对应的幂指数依次增大( 的右侧,“指大图高”)
探究点二 幂函数的图象
例2 如图,曲线是幂函数 在第一象限内的图象,已知取,四个值,则对应曲线,,,的 依次为 ( )
A
A.,,,2 B. 2,,, C.,,2, D. 2,,,
[解析] 如图,作直线 ,分别交四条曲线于A,B,C,D四点,由于取,四个值,当 时,对应的四个函数值为,,, ,因为 ,故四个点的纵坐标依次为,,, ,由四个点的位置关系,四个函数图象对应的 的值从下而上依次为,, ,2.故选A.
[解析] ∵是幂函数, ∴,且 =0 ∴ 或 ,n=
例1(1)幂函数 的图象过点,则 等于___.
[解析] 依题意,解得 ,则∴ .
[例3] 已知幂函数 为偶函数.
(1) 的值为____;
16
[解析] 由,得 或 .当时, 是奇函数,不满足题意,舍去;当时, 是偶函数,满足题意.∴ , .
方法总结解决幂函数的综合问题时的注意点掌握并熟悉幂函数的图象和单调性,会根据待定系数法求幂函数的解析式,并结合幂函数的定义域来判断幂函数的单调性和奇偶性.
[例3] 比较大小.
(1) ;
解:∵函数在 上单调递增,且,∴ .
(2), .
解:∵函数在 单调递减,且∴ .
(3), ;
解: , ∵幂函数在 上单调递增,又∵ ,∴ .
方法总结利用幂函数单调性比较大小的三种基本方法
角度2 幂函数性质的综合运用
例4 已知幂函数的图象过点 .
(1)求 的解析式;
(4) 在第一象限内,y=x-1的图像向上与y轴无限接近,向右与x 轴无限接近。
思考3:观察5个函数图象,哪个象限一定有幂函数的图象,哪个象限一定没有幂函数的图象.
在直线 的右侧,按“逆时针”方向,图象所对应的幂指数依次增大( 的右侧,“指大图高”)
探究点二 幂函数的图象
例2 如图,曲线是幂函数 在第一象限内的图象,已知取,四个值,则对应曲线,,,的 依次为 ( )
A
A.,,,2 B. 2,,, C.,,2, D. 2,,,
[解析] 如图,作直线 ,分别交四条曲线于A,B,C,D四点,由于取,四个值,当 时,对应的四个函数值为,,, ,因为 ,故四个点的纵坐标依次为,,, ,由四个点的位置关系,四个函数图象对应的 的值从下而上依次为,, ,2.故选A.
幂函数PPT课件
栏目 导引
第4章 指数函数与对数函数
2.幂函数的图象与性质 (1)五种常见幂函数的图象
栏目 导引
第4章 指数函数与对数函数
(2)五类幂函数的性质 幂函数 y=x y=x2
y=x3
定义域 _R__ ___R___ __R____
值 域 R___ [0,___+__∞_ ) __R____
1
y=x2 [0_,__+__∞_ )
栏目 导引
第4章 指数函数与对数函数
【解】 因为图象与 x,y 轴都无交点, 所以 m-2≤0,即 m≤2. 又 m∈N,所以 m=0,1,2. 因为幂函数图象关于 y 轴对称,所以 m=0,或 m=2. 当 m=0 时,函数为 y=x-2,图象如图 1; 当 m=2 时,函数为 y=x0=1(x≠0),图象如图 2.
∞,0],_减____
(-∞,0),
_减_____
公共点
都经过点_(1_,__1_)_
栏目 导引
第4章 指数函数与对数函数
1.判断(正确的打“√”,错误的打“×”) (1)函数 y=x0(x≠0)是幂函数.( ) (2)幂函数的图象必过点(0,0)和(1,1).( ) (3)幂函数的图象都不过第二、四象限.( ) 答案:(1)√ (2)× (3)×
栏目 导引
第4章 指数函数与对数函数
(1)幂函数 y=xα的图象恒过定点(1,1),且不过第四象限. (2)解决幂函数图象问题,需把握两个原则:①幂指数 α 的正 负决定函数图象在第一象限的升降;②依据图象确定幂指数 α 与 0,1 的大小关系,在第一象限内,直线 x=1 的右侧, 图象由上到下,相应的指数由大变小.
栏目 导引
第4章 指数函数与对数函数
2.下列函数中不是幂函数的是( )
第4章 指数函数与对数函数
2.幂函数的图象与性质 (1)五种常见幂函数的图象
栏目 导引
第4章 指数函数与对数函数
(2)五类幂函数的性质 幂函数 y=x y=x2
y=x3
定义域 _R__ ___R___ __R____
值 域 R___ [0,___+__∞_ ) __R____
1
y=x2 [0_,__+__∞_ )
栏目 导引
第4章 指数函数与对数函数
【解】 因为图象与 x,y 轴都无交点, 所以 m-2≤0,即 m≤2. 又 m∈N,所以 m=0,1,2. 因为幂函数图象关于 y 轴对称,所以 m=0,或 m=2. 当 m=0 时,函数为 y=x-2,图象如图 1; 当 m=2 时,函数为 y=x0=1(x≠0),图象如图 2.
∞,0],_减____
(-∞,0),
_减_____
公共点
都经过点_(1_,__1_)_
栏目 导引
第4章 指数函数与对数函数
1.判断(正确的打“√”,错误的打“×”) (1)函数 y=x0(x≠0)是幂函数.( ) (2)幂函数的图象必过点(0,0)和(1,1).( ) (3)幂函数的图象都不过第二、四象限.( ) 答案:(1)√ (2)× (3)×
栏目 导引
第4章 指数函数与对数函数
(1)幂函数 y=xα的图象恒过定点(1,1),且不过第四象限. (2)解决幂函数图象问题,需把握两个原则:①幂指数 α 的正 负决定函数图象在第一象限的升降;②依据图象确定幂指数 α 与 0,1 的大小关系,在第一象限内,直线 x=1 的右侧, 图象由上到下,相应的指数由大变小.
栏目 导引
第4章 指数函数与对数函数
2.下列函数中不是幂函数的是( )
3.3 幂函数 课件(37张)
[教材提炼]
预习教材,思考问题
函数 f(x)=x、f(x)=x2、f(x)=1x,以前叫什么函数,它们有什么共同特征?
知识梳理 (1)一般地,函数__y_=__x_α__叫做幂函数(power function),其中 x 是自变量, α 是常数. (2)幂函数解析式的结构特征 ①指数为常数; ②底数是自变量,自变量的系数为 1; ③幂 xα 的系数为 1; ④只有 1 项.
若函数 f(x)=(2m+3)xm2-3 是幂函数,则 m 的值为( )
A.-1
B.0
C.1
D.2
解析:幂函数是形如 f(x)=xα 的函数,所以 2m+3=1,∴m=-1.
答案:A
探究二 幂函ቤተ መጻሕፍቲ ባይዱ的图象
[例 2] 幂函数 y=x2,y=x-1,y= 内的图象依次是图中的曲线( ) A.C2,C1,C3,C4 B.C4,C1,C3,C2 C.C3,C2,C1,C4 D.C1,C4,C2,C3
由题意得(a+
.
∵y= 在(-∞,0),(0,+∞)上均单调递减, ∴a+1>3-2a>0 或 0>a+1>3-2a 或 a+1<0<3-2a, 解得23<a<32或 a<-1.
利用幂函数解不等式的步骤 利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与 幂函数的单调性、奇偶性等综合命题.求解步骤如下: (1)确定可以利用的幂函数; (2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系; (3)解不等式求参数范围,注意分类讨论思想的应用.
[解析] y= =3 x2≥0,故只有 D 中的图象适合. [答案] D
3.如果一个函数 f(x)在其定义域内对任意 x,y 都满足 fx+2 y≤12[f(x)+f(y)],则称这 个函数为下凸函数.下列函数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
y x2
(5)
y x1
y x2
(-2,4)
y x3
4
(2,4)
3
y=x
2
(-1,1) 1
(1,1)
1
y x2
-4
-2
2
4
6
y x 1 (-1,-1) -1
-2
-3
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
… -2 -1 0 1 2 3 4 …
… -8 -1 0 1 8 27 64 …
… / / 0 1 2 3 2…
y 8
y=x3
6
4
1
2
y=x 2
-3 -2 -1 0 1 2 3 4
x
-2
-4 -6 -8
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
作业: 利用单调性判断下列各值的大小。
(1)1.30.5与1.50.5 (2)5.12与5.092
1
1
(3) 1.794 与 1.814
27 3 ,即33 3
3
f (x) x3
f (x)的定义域为R, f (x) (x)3 x3
f (x) f (x)
f (x)是奇函数Βιβλιοθήκη 二、五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
(4)
m2 m 1 1
解之得: m 2或m 1
m 2或m 1
快速反应
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
练习1:
已知函数 f (x) m2 3m 3 xm22 是幂函数,
∵0.2<0.3∴ 0.20.3 <0.30.3 (3)y=x-2/5在(0,∞)内是减函数
∵2.5<2.7∴ 2.5-2/5>2.7-2/5
比较各组数的大小
1
1
1
(1)1.12 ,1.42 ,1.13
1
1
2
(2)2.54 ,2.64 ,0.83
练习3: 如图所示,曲线是幂函数 y = xk 在第一象
奇函数
在(-∞,0] 在R上 上是减函 单调性 是增函 数,在(0, 数 +∞)上是
增函数
公共点
在R上 是增函 数
在(0,+∞) 上是增函数
(1,1)
在( -∞,0), (0, +∞)上是 减函数
下面将5个函数的图像画在同一坐标系中
(1) y x (2) y x2 (3) y x3
(4)
并且是偶函数,求m的值。
m2 3m 3 1 解之得: m 2或m 1
又因为f (x)是偶函数
m 1不符合题意, 舍去
m 2
练习3:已知幂函数f(x)的图像经过点(3,27), 求证:f(x)是奇函数。
证明: 设所求的幂函数为y x 函数的图像过点(3,27)
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
幂函数的图象都通过点(1,1) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
-3 在第一象限内,
a >0,在(0,+∞)上为增函数; -4 a <0,在(0,+∞)上为减函数.
下列结论中正确的是
A 幂函数图像都经过点(0,0),(1,1) B幂函数图像不可能出现在第四象限 C 当n>0的时候,幂函数y=xn的值随x的增
1
y x2
(5)
y x1
函数 y x的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
函数 y x2 的图像
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数
在(,0]上是减函数
函数 y x1 的图像
定义域:{x x 0} 值 域:{y y 0}
幂函数
例1:已知f (x) m2 m 1 x2m3是幂函数,
求m的值。
例2:已知函数 f (x) m2 3m3 xm22
是幂函数,并且是偶函数, 求m的值。
例1:已知f (x) m2 m 1 x2m3是幂函数,
求m的值。
解:因为f (x)是幂函数
指数大于0小于1,在第一象
a<0
限为抛物线型(凸); 指数等于0,在第一象限为
1
x 水平的射线;
指数小于0,在第一象限为
双曲线型;
归纳:幂函数图象在第一象限的分布情况
1 0
0 1
0 1
0
1
在上 (1,) 任取一点
作 x 轴的
垂线,与
幂函数的
图象交点
越高,
的值就越 大。
小结: 幂函数的性质:
幂函数的定义域、值域、奇偶性和单调性,随 常数α取值的不同而不同.
1.所有幂函数的图象都通过点(1,1);
2.当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数.
3.如果α>0,则幂函数 在(0,+∞)上为增函数;
α>1a=1
0<α<1
如果α<0,则幂函数
α<0
在(0,+∞)上为减函数。
x
1
2的定义域是(0,
)
且在定义域上是减函数,
0 3 2m m 4
1 m 3 ,即为m的取值范围.
3
2
理论
归纳:幂函数 y=xa 在第一象限的图象特征
y
1 0
指数大于1,在第一象限为
a>1
抛物线型(凹);
a=1
指数等于1,在第一象限为
0<a<1 上升的射线;
(5) y 1 x
思考:指数函数y=ax与幂 函数y=xα有什么区别?
答案(2)(5)
二、幂函数与指数函数比较
名称
式子
常数
x
y
指数函数: y=a x
(a>0且a≠1)
幂函数: y= xα
a为底数 α为指数
指数 底数
幂值 幂值
判断一个函数是幂函数还是指数函数切入点
看未知数x是指数还是底数
指数函数
大而增大。 D 当n=0的时候,幂函数y=xn的图像是一条
直线。
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8
(2)0.20.3-2与 0.30.3-2
(3) 2.5 5 与2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,∞)内是增函数
奇偶性:在{x x 0}上是奇函数 单调性:在(0,)上是减函数
在(,0)上是减函数
1
如何画y x3和y x 2的图像呢 ?
1
函数 y x 2 的图像
定义域: [0,)
值 域: [0,)
奇偶性: 非奇非偶函数
单调性:在[0,)上是增函数
x y=x3
y=x1/2
限内的图象,已知 k分别取 1,1, 1 , 2 四个 2
值,则相应图象依次为:__C4__C_2__C_3 C1
1
一般地,幂函数的图象在直线x=1
的右侧,大指数在上,小指数在下,
在Y轴与直线x =1之间正好相反。
例3
若m
4
1 2
3
2m
1 2
,
则求m的取值范围.
解:
幂函数f
(x)
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
1
y = x y = x2 y= x3 y x 2
y x1
定义域 R 值域 R
R
R [0,+∞) ,0 (0,+)
[0,+∞) R [0,+∞) ,0 (0,+)
奇偶性 奇函数 偶函数
奇函数
非奇非偶 函数
高中数学必修 ①人教版A
§2.3幂函数
一、幂函数的定义:
一般地,我们把形如 y x 的函数叫做
幂函数,其中 x为自变量, 为常数。
y x 中 x前面的系数是1,后面没有其它项。
练习1:判断下列函数哪几个是幂函数?
(1)y 3x; (2) y x2; (3) y 2x2; (4) y x2 1;