本科“统计学”时间序列分析
统计学原理(5章)时间序列分析
二、增长速度
1、增长速度=发展速度 - 1 环比增长速度=环比发展速度 – 1 定基增长速度=定基发展速度 – 1 (总增长速度)
2、环比增长速度的连乘积并不等于相应时期的定 基增长速度
3、定基增长速度与环比增长速度之间的推算,必须
通过定基发展速度和环比发展速度才能进行。
4、年距增长速度=年距发展速度-1
a1
a2
职工人数(人) 102
105
16日—30 日 a3 108
则:1号至30号平均每天的职工人数为:
a af f
102 8 105 7 10815 10(6 人) 30
②由间断时点数列计算序时平均数
计算方法:假定相邻两时点间现象的数量变动 是均匀的,则该时间段的代表值为相邻两时点 数值相加除2,又分别以f1、f2、…fn-1,代表 相邻时点间的时间间隔长度,则整个时间段的 序时平均数可用下式表示:
析
方
长期趋势的测定
法 构成分析法
季节变动的测定
第二节 时间序列的水平分析
发展水平、平均发展水平、增长量、平均增长量。
一、发展水平 1、每一项指标数值就是发展水平
2、常用a0、a1、…、an表示 3、通常把a0称为最初水平,
把an称为最末水平
二、平均发展水平
★它是不同时期的发展水平的平均数, 又称动态平均数或序时平均数。
日期
1日 2日 3日 4日 5日 6日
a1
a2 a3 a4 a5 a6
职工人数(人) 98 100 99 101 108 106
则:1—6号平均每天的职工人数为:
a a n
98 100 99 101 108 106 10(2 人) 6
例5-2-3:有某企业职工人数资料:
统计学时间序列分析
统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。
通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。
统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。
一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。
在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。
时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。
2. 季节性:时间序列数据在一年内固定时间段内的重复模式。
3. 循环性:时间序列数据中存在的多重周期性波动。
4. 随机性:时间序列数据中的不规则、无法预测的波动。
二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。
2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。
3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。
4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。
5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。
它综合考虑了自回归、移动平均和差分的影响因素。
三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。
2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。
3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。
4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。
统计实验报告时间序列
一、实验背景时间序列分析是统计学中的一个重要分支,它主要研究如何对时间序列数据进行建模、预测和分析。
本实验旨在通过实际数据的时间序列分析,了解时间序列的基本特性,掌握时间序列建模的方法,并尝试进行未来趋势的预测。
二、实验目的1. 理解时间序列的基本概念和特征。
2. 掌握时间序列数据的可视化方法。
3. 学习并应用时间序列建模的基本方法,如自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。
4. 尝试进行时间序列数据的预测。
三、实验数据本实验选用某城市过去一年的月度降雨量数据作为分析对象。
数据包括12个月的降雨量,单位为毫米。
四、实验步骤1. 数据预处理- 读取数据:使用Python的pandas库读取降雨量数据。
- 数据检查:检查数据是否存在缺失值或异常值。
- 数据清洗:如果存在缺失值或异常值,进行相应的处理。
2. 数据可视化- 使用matplotlib库绘制降雨量时间序列图,观察数据的趋势和季节性特征。
3. 时间序列建模- 自回归模型(AR):根据自回归模型的理论,建立AR模型,并通过AIC(赤池信息量准则)和SC(贝叶斯信息量准则)进行模型选择。
- 移动平均模型(MA):建立MA模型,并使用同样的准则进行模型选择。
- 自回归移动平均模型(ARMA):结合AR和MA模型,建立ARMA模型,并选择最佳模型。
4. 模型验证与预测- 使用历史数据进行模型验证,比较不同模型的预测精度。
- 对未来几个月的降雨量进行预测。
五、实验结果与分析1. 数据可视化通过时间序列图可以看出,降雨量存在明显的季节性特征,每年的夏季降雨量较多。
2. 时间序列建模- AR模型:通过AIC和SC准则,选择AR(2)模型作为最佳模型。
- MA模型:同样通过AIC和SC准则,选择MA(3)模型作为最佳模型。
- ARMA模型:结合AR和MA模型,选择ARMA(2,3)模型作为最佳模型。
3. 模型验证与预测- 模型验证:通过比较实际值和预测值,可以看出ARMA(2,3)模型的预测精度较高。
《时间序列分析》课程总结
《时间序列分析》课程总结(2009~2010学年第二学期)会计学院统计系石岩涛本学期开设的时间序列分析是统计学专业本科生的一门专业必修课,它是概率统计学中的一门比较新的分支,在经济社会中的应用越来越广泛。
本课程通过讲授一元时间序列的模型识别、参数估计、假设检验和预报等知识,使学生掌握时间序列分析的基本方法,并用以分析、探索社会经济现象,进而对未来现象进行预报。
本课程主要讲述:一是平稳时间序列、线性差分方程及最小方差估计;二是ARMA模型,包括ARMA模型的定义、性质及其判别条件、自协方差函数与偏相关函数的特征;三是ARMA模型的参数估计,包括矩估计和极大似然估计;四是模型的定阶、改进、建模、定阶的FPE方法、AIC、BIC统计量等、模型检验的方法;五是时间序列的预报,包括线性最小方差预报、信息预报等。
基本要求是要求学生掌握各类平稳ARMA过程的基本概念及基本特征,理解间序列的时域分析和频域分析的基本理论和基本方法,运用时域分析和频域分析的基本理论和方法,对获得的一组动态数据能进行分析研究,选择合适的模型,并对该模型进行参数估计,最终建立模型,达到预报目的。
由于时间序列分析是我校统计系统计专业开设的一门新课,对于我而言也是一门全新的课程,因此,备课及课堂教学都带来了前所未有的挑战、压力。
但是,为了把这样艰巨的任务保质保量的完成,我克服了重重困难,多方请教、查找资料,同时,与学生沟通,了解他们学习本课程的困难。
有时为了解决一个小的困难点,要与学生共同努力,集思广益想办法,一起查找相关资料,直到问题彻底解决。
为了调动学生学习本课程的兴趣,将学生分成五个学习小组,以小组的表现和个人表现相结合给每个学生的平时表现打分,这样既培养了学生的团队意思,又突出了个人表现,使大部分学生的学习有了明显的进步。
另外,为了使得学生的掌握知识更牢固以及期末复习的比较系统些,我将各个章节的复习内容的总结任务分配到各个小组,然后,由课代表和老师进行汇总、取舍和补充,形成学生期末复习资料,期末考试结果比较理想。
统计学专业优秀毕业论文范本经济数据的时间序列分析与
统计学专业优秀毕业论文范本经济数据的时间序列分析与预测在统计学专业的毕业论文中,经济数据的时间序列分析与预测是一个重要的研究方向。
本文将为大家提供一个优秀的论文范本,以展示在统计学专业中,如何进行经济数据的时间序列分析与预测。
一、引言经济数据是经济学研究的基础,而时间序列分析和预测是处理经济数据的重要方法之一。
时间序列分析旨在通过对历史数据的观察和分析,揭示数据内在的规律和趋势,为未来经济变化提供预测依据。
因此,时间序列分析在经济学中具有重要的研究价值和实际应用意义。
二、数据收集与整理经济数据的时间序列分析首先需要收集和整理相关的数据集。
收集数据的来源可以包括政府部门、研究机构、行业协会等。
在数据整理过程中,需要对数据进行清洗、处理异常值和缺失值,并将数据进行合适的时间区间划分。
三、时间序列模型的选择与建立时间序列模型是进行时间序列分析和预测的数学工具。
在选择时间序列模型时,需要根据数据的性质和特点进行合理的选择。
常用的时间序列模型包括ARMA模型、ARCH模型、GARCH模型等。
根据数据的特征,可以通过模型的拟合度、残差检验等指标进行模型的选择与建立。
四、模型参数估计与检验在时间序列模型建立完成后,需要对模型的参数进行估计和检验。
常用的参数估计方法包括极大似然估计、最小二乘估计等。
而模型的检验则可以通过残差分析、模型拟合度检验、序列平稳性检验等指标进行。
五、时间序列预测与评估时间序列预测是时间序列分析的重要任务之一。
通过对历史数据的观察和模型的建立,可以利用已有的信息对未来的经济发展进行预测。
常用的时间序列预测方法包括平滑法、回归法、ARIMA模型等。
在进行时间序列预测时,需要对预测结果进行评估,包括均方误差、平均绝对误差等指标。
六、实证分析与结果讨论在论文中,应该选取合适的经济数据进行实证分析,并对实证分析的结果进行详细的讨论和解释。
可以对模型的拟合度、稳定性、预测准确度等进行分析,并结合实际情况进行解释和推论。
统计学 时间序列分析
三 11.0
四 12.6
五 14.6
六 16.3
七 18.0
月末全员人数(人) a 2000 2000 2200 2200 2300
b
要求计算:①该企业第二季度各月的劳动生产率 ; ②该企业第二季度的月平均劳动生产率; ③该企业第二季度的劳动生产率。
6.2 时间序列分析的水平指标
6.2.1 发展水平与平均发展水平 --相对数(平均数)时间序列
时间 1月1日 5月31日 8月31日 12月31日
社会劳动者 人数
362
390
416
420
解:则该地区该年的月平均人数为:
362390539041634164204
y 2
2
2
534
39.765万人
6.2 时间序列分析的水平指标
6.2.1 发展水平与平均发展水平 --相对数(平均数)时间序列
月份 工业增加值(万元)
6.1 时间序列概述
6.1.2 时间序列的种类
绝对数序列
时期序列
时
派生
时点序列
间
序 列
相对数序列
平均数序列
6.1 时间序列概述
6.1.2 时间序列的种类
年 份 1992 1993 1994 1995 1996 1997
职工工资总额 3939.2 4916.2 6656.4 8100.0时90期80数.0数94列05.3 (亿元)
解:①第二季度各月的劳动生产率:
四月份: y12 10 .6 2 0 1 20 0 00 0 2 0 0 603元 0人 0
五月份: y22 10 .6 4 0 1 20 0 20 0 2 0 0 60 9.4 5 元 2 人
统计学中时间序列分析的基础知识
MAE是预测误差绝对值的平均数 均方误差
均方误差是计算预测误差平方的平均数 MSE是预测误差平方和的平均数
平均绝对百分数误差 平均绝对百分数误差计算每一个预测的百分数误差 MAPE是百分数预测误差的绝对值的平均数
统计学中时间序列分析的基础知识
时间序列
时间序列分析的目的是在历史资料或时间序列中发现规律性的模式,然后将这个模 式外推未来 预测方法
定量方法 被预测变量过去的信息可以使用 使用的信息可以量化 过去的模式将会持续到未来的假定合理
定性方法 定性方法通常利用专家判断,当被预测变量的历史数据不适合或者难以获得 时,可以使用定性方法
非线性趋势回归 二次趋势方程 T=b0+b1*t+b2*t² 指数趋势方程 T=b0*(bt)^t
时间序列分解法
用时间序列分解法可以将一个时间序列分隔或分解出季节、趋势和不规则成分 加分法模型:趋势成分+季节成分+不规则或误差成分 乘法分解模型:趋势值*季节值*t期的不规则值
计算季节指数 先计算移动平均数,从数据中剔除组合在一起的季节和不规则影响,留给我们的 时间序列只包含趋势和移动平均没有剔除的随机波动
季节模式是指在超过一年的周期内,由于季节的影响,时间序列呈现重复模 式 趋势与季节模式 时间序列同时包含趋势模式和季节模式 循环模式 如果时间序列图显示出持续时间超过一年的在趋势线上下交替的点序列,则 存在循环模式 时间序列的循环成分归因于多年的经济周期
预测精度
预测误差=实际值-预测值 平均预测误差
统计学中的时间序列分析方法
统计学中的时间序列分析方法时间序列分析作为统计学里的一种重要方法,在经济学、金融学、生态学、气象学、医学等领域都有广泛的应用。
时间序列分析是指对一系列连续的观测数据进行研究和预测的方法,其主要目的是寻找时间序列中存在的统计规律性,并预测未来值,因此被广泛地应用在许多领域的预测与分析中。
1.时间序列分析的基本概念时间序列是指在一定时间段内,对同一现象所收集到的一系列相关数据的结果。
时间序列分析是研究随时间变化的一系列变化现象,这些变化不仅具有趋势性和周期性,还有不确定性,而时间序列的分析方法也需针对这些特性进行分析。
时间序列分析一般通过三个方面来描述序列变化:①趋势性:表示序列随时间变化的整体趋势,分为上升、下降或水平。
②周期性:表示序列具有一定的重复性,如季节性、周周期性或月周期性等。
③随机性:表示序列中包含的不确定性,往往基于模型的估计和预测。
2.时间序列分析的方法与模型时间序列分析的方法包含时间序列图、样本自相关系数、周期图等多种分析方法。
其中,时间序列图是一种基本的可视化方法,通过检查序列图的整体趋势,趋势是否呈现上升、下降或平稳;随机性是否存在;周期性是否表现为明显的规律性等,对序列特性有一个概括性的把握。
样本自相关系数图则是判断序列是否具有自相关性的一个有效工具,它反映了序列中不同时刻之间的相关性水平。
在时间序列分析中,我们还需要重点处理周期性因素,通常常见的周期性包括周、季、年等,周期图正是用于描述序列周期性的重要工具。
时间序列预测则是在建立统计模型的基础上对序列未来值的预测,建立模型常运用 ARIMA 模型,即自回归(AF) - 差分(I) - 移动平均(MA)模型。
自回归(AR)模型,对应于序列自身相关,使用前一个时期的观测值来提交当期的值;使用差分(D)时,其可以减少序列中的趋势、季节和周期性;移动平均(MA)模型,对应于序列之间的相关性,使用先前的误差和过去误差的加权平均值来提交当期值的模型。
统计学中的时间序列分析及其应用研究
统计学中的时间序列分析及其应用研究一、时间序列分析的基本概念及内容时间序列分析是统计学中的一门重要学科,其研究对象是有时间顺序上的相关性的数据序列。
时间序列分析的主要任务是在对时间序列的内在规律进行揭示和预测的基础上,实现对历史数据的回顾、对未来发展趋势的预测以及对变量的推测等目的。
时间序列分析的研究对象主要包含以下几个方面:1.时间序列的分解时间序列的趋势、周期和随机成分可以从原序列中分离出来,从而可以更加清晰地认识时间序列的内在特征。
2.时间序列的描述通过时间序列的均值、方差、自相关系数等统计量,对时间序列的整体状态进行描述,为时间序列建立合适的模型提供基础。
3.时间序列建模基于分解和描述,在统计学的框架下,对时间序列进行建模,从而更好地预测时间序列未来的趋势。
4.时间序列的预测基于时间序列的建模结果,结合时间序列的发展趋势和规律,对未来的时间序列进行预测,这是时间序列分析的核心任务。
二、时间序列分析的方法时间序列分析的方法主要包含以下几个方面:1. 平稳性检验原始数据中存在趋势、季节性、循环性等因素,这些因素影响了时间序列的建模和预测。
因此,需要对时间序列进行平稳性检验,从而消除这些因素的影响。
平稳性检验是时间序列分析的前提和基础。
2. 自相关系数自相关系数衡量了时间序列中的各项数据之间的相关性,其大小可以反映时间序列中的趋势、季节性、循环性等特征。
自相关系数是描述时间序列的基本工具。
3. 移动平均法和指数平滑法移动平均和指数平滑是时间序列平稳化和平滑化的方法。
它们通过对时间序列的数据进行平均或加权平均,实现对时间序列的平滑处理。
这两种方法常用于预测时间较短的时间序列。
4. ARIMA模型ARIMA模型是一种经典的时间序列模型,它可以对时间序列进行建模和预测。
ARIMA模型包含自回归、差分和移动平均三个部分,可以较好地描述时间序列的特征和规律。
5. 非线性时间序列模型传统的ARIMA模型是线性模型,但是现实中的时间序列往往具有非线性和异方差性。
本科“统计学”——第九章 时间序列分析
1989
58.35
1998
163.00
2 - 20 6
移动平均法 (趋势图)
200
汽 150 车 产 100 量 (万辆)50
产量
五项移动平均趋势值 三项移动平均趋势值
0 1981
1985
图11-1
2 - 21 6
1993 1997 (年份) 汽车产量移动平均趋势图
1989
移动平均法 (应注意的问题)
2 - 26 6
3-3 指数平滑法
因此,F4是前三个时间序列数值的加权平均数。 Y1,Y2和Y3的系数或权数之和等于1。 由此可以得到一个结论,即任何预测值Ft+1是以 前所有时间序列数值的加权平均数。
2 - 27 6
3-4 指数平滑法
指数平滑法提供的预测值是以前所 有预测值的加权平均数,但所有过 去资料未必都需要保留,以用来计 算下一个时期的预测值。
1.
测定长期趋势的一种较简单的常用方法
通过扩大原时间序列的时间间隔,并按一定的间 隔长度逐期移动,计算出一系列移动平均数 由移动平均数形成的新的时间序列对原时间序列 的波动起到修匀作用,从而呈现出现象发展的变 动趋势
2.
移动步长为K(1<K<n)的移动平均序列为
Yi Yi 1 Yi K 1 Yi 1 K
一、利用平滑法进行预测
本节我们讨论三种预测方法:移动平均法、加权移动平 均法和指数平滑法。因为每一种方法的都是要“消除” 由时间序列的不规则成分所引起的随机波动,所以它们
被称为平滑方法。 三 种 平 滑 方 法
2 - 18 6
移动平均法 加权移动平均法 指数平滑法
1、移动平均法 (Moving Average Method)
统计学中的时间序列分析与趋势分析的比较
统计学中的时间序列分析与趋势分析的比较统计学是一门研究收集、整理、分析和解释数据的学科,被广泛应用于各个领域。
在统计学中,时间序列分析和趋势分析是两种常见的数据分析方法。
本文将比较这两种方法的特点、应用范围以及优缺点,以帮助读者更好地理解它们。
一、时间序列分析时间序列分析是通过观察一系列已知时间点上的数据,来研究数据随时间变化的规律。
时间序列分析主要关注数据的趋势、季节性和周期性等特征,旨在预测未来的发展趋势。
时间序列分析可以分为以下几个步骤:1. 数据收集:收集一系列按时间顺序排列的数据,确保数据具有连续性和一定的时间间隔。
2. 数据平稳化:通过去除趋势和季节性等影响因素,使数据满足平稳性的要求。
3. 模型拟合:选择适当的时间序列模型,如ARIMA、ARCH、GARCH等,对数据进行拟合。
4. 模型诊断:对拟合后的模型进行诊断检验,检查残差是否符合模型假设。
5. 预测与分析:利用拟合好的模型,对未来的数据进行预测,分析趋势及其他特征。
时间序列分析有以下特点:1. 强调时间因素:通过观察和分析数据在时间维度上的变化,以揭示数据背后的规律和趋势。
2. 依赖历史数据:时间序列分析基于已有的历史数据,通过对过去的观察和分析来进行未来的预测。
3. 适用范围广:时间序列分析可以应用于各个领域,如经济学、气象学、金融学等。
二、趋势分析趋势分析是通过观察数据在时间序列上的趋势变化,来揭示数据的持续发展方向。
它不同于时间序列分析关注数据的各种特征,而是着重分析数据的总体趋势。
趋势分析可以分为以下几个步骤:1. 数据收集:收集具有时间序列的数据,确保时间的连续性。
2. 趋势线拟合:通过回归分析等方法,拟合出表征数据整体趋势的线性或非线性方程。
3. 趋势性评估:根据趋势线拟合结果,评估数据的趋势性,并对趋势性进行检验和验证。
4. 预测与分析:基于趋势线方程,对未来的趋势进行预测和分析。
趋势分析有以下特点:1. 着重分析发展方向:趋势分析关注数据的总体趋势,通过拟合趋势线来预测和分析未来的趋势。
统计学中的时间序列分析方法
统计学中的时间序列分析方法时间序列分析是统计学中一种重要的分析方法,它用于研究随时间变化的数据。
在各个领域,如经济学、金融学、气象学等,时间序列分析都被广泛应用。
本文将介绍几种常见的时间序列分析方法。
一、平稳性检验在进行时间序列分析之前,我们首先需要检验数据是否平稳。
平稳性是指时间序列的均值、方差和自协方差不随时间变化而改变。
平稳性检验可以通过观察数据的图形、计算自相关系数和单位根检验等方法进行。
二、自相关和偏自相关自相关和偏自相关是时间序列分析中常用的两个统计量。
自相关是指时间序列与其自身在不同时间点的相关性,而偏自相关是指在控制了其他时间点的影响后,某一时间点与当前时间点的相关性。
自相关和偏自相关的计算可以帮助我们了解时间序列之间的关联程度,从而选择合适的模型进行分析。
三、移动平均法移动平均法是一种常见的时间序列预测方法。
它通过计算一段时间内的观测值的平均数来预测未来的观测值。
移动平均法的优点在于能够平滑数据并降低随机波动的影响,但它也有一定的滞后性,无法捕捉到突发事件的影响。
四、指数平滑法指数平滑法是另一种常见的时间序列预测方法。
它通过对历史数据进行加权平均,赋予最近观测值更高的权重,从而预测未来的观测值。
指数平滑法的优点在于能够适应数据的变化,并且对异常值的影响较小。
然而,它也有一定的滞后性,无法捕捉到突发事件的影响。
五、ARIMA模型ARIMA模型是一种广泛应用于时间序列分析的模型。
ARIMA模型结合了自回归(AR)、差分(I)和移动平均(MA)三个部分。
ARIMA模型可以根据时间序列的特征进行拟合,并用于预测未来的观测值。
ARIMA模型的优点在于能够较好地拟合不同类型的时间序列数据,并且可以通过调整模型的参数进行优化。
六、季节性调整许多时间序列数据都存在季节性变化,这会对分析和预测产生一定的影响。
为了消除季节性的影响,我们可以使用季节性调整方法。
常见的季节性调整方法包括移动平均法、指数平滑法和季节性差分法等。
统计学中的时间序列分析方法
统计学中的时间序列分析方法时间序列分析是一种重要的统计学方法,它研究同一现象在不同时间点上的观测值,并试图揭示其中的规律和趋势。
利用时间序列分析方法,我们可以对未来的趋势进行预测,辅助决策和规划。
本文将探讨几种常用的时间序列分析方法。
1. 移动平均法移动平均法是最简单也是最常用的时间序列分析方法之一。
它基于一个假设,即时间序列中的观测值受到随机误差的影响,但整体趋势是平稳的。
移动平均法通过计算一定时间窗口内的平均值,去除随机误差,揭示出时间序列的趋势。
2. 指数平滑法指数平滑法是另一种常用的时间序列分析方法。
它通过对时间序列的历史数据赋予不同的权重,预测未来的值。
指数平滑法的关键在于确定权重因子,通常使用最小二乘法或最大似然法进行估计。
该方法适用于数据波动频繁的情况,可以较好地揭示出趋势变化。
3. 自回归移动平均模型(ARMA)自回归移动平均模型是一种复杂且精确的时间序列分析方法。
它结合了自回归模型(AR)和移动平均模型(MA)的特点。
AR模型基于过去的观测值预测未来的值,而MA模型则基于过去的误差项预测未来的值。
ARMA模型可以较好地拟合包含趋势和周期性的时间序列数据。
4. 季节性差分法季节性差分法适用于存在明显季节性变化的时间序列数据。
它通过计算相邻时间点的差值,去除季节性因素,揭示出趋势和周期性变化。
该方法可以用于预测季节性销售数据、气候变化等。
5. 非参数方法除了上述方法,还有一些非参数方法可以用于时间序列分析。
这些方法不对数据的分布做出假设,更加灵活。
例如,核密度估计和小波分析等方法可以用于检测时间序列的异常值和突变。
总结起来,时间序列分析方法有很多种,每种方法都有其适用的领域和限制。
在实际应用中,我们需要根据具体情况选择合适的方法,并结合统计学原理和实践经验进行分析。
时间序列分析的结果可以帮助我们更好地理解数据的变化规律,为预测和决策提供科学依据。
因此,熟练掌握时间序列分析方法是每个统计学家和数据分析师的必备技能。
《统计学》第10章 时间序列分析
14
10.2.2 数字描述
3.增长率分析中应注意的问题
在应用增长率分析实际问题时应注意以下几点:
① 第一,当时间序列中的观察值出现0或负数时,不宜计算增
长率。
② 在某些情况下,不能单纯就增长率论增长率,要注意将增
长率与绝对水平结合起来分析。
第十章 时间序列分析与预测
《统计学》
15
10.3 时间序列的预测
序列前后数值相加都无意的。将时间序列按指标形式区分,是因为不同形式的
指标在计算某些动态分析指标时要采用不同的方法。
第十章 时间序列分析与预测
《统计学》
6
10.1 时间序列的种类和编制方法
2.纯随机型时间序列和确定型时间序列
按观察数据的性质与形态不同,时间序列可分为纯随机型时间序列和确定型时
间序列。纯随机型时间序列的各期数值的差异纯粹是由许多偶然的不可控的随
(seasonal component) 形态和循环波动 (cyclic component) 形态等。
第十章 时间序列分析与预测
《统计学》
7
10.1 时间序列的种类和编制方法
10.1.2 时间序列的编制方法
时间数列由两个基本要素组成,即时间和与各时间点对应的指标数值。编制时
间序列,需要根据研究任务来具体确定数据的时间单位,并注意前后各期指标
:定基发展速度
0
《统计学》
13
10.2.2 数字描述
2.平均增长率
平均增长率也称平均增长速度,它是时间序列中逐期环比增长率的
几何平均数减1后的结果,计算公式为:
ҧ =
1
0
2
…
−1=
1
−1
统计学中的时间序列分析和模型
统计学中的时间序列分析和模型时间序列分析是指对一组按时间排序的数据进行分析,以了解数据的趋势、季节性和周期性等特征,并进一步预测未来的发展趋势。
时间序列分析在统计学中扮演着重要的角色,广泛应用于经济学、金融学、气象学等领域。
本文将介绍时间序列分析的基本概念、常用方法和模型。
一、时间序列分析的基本概念时间序列是指按时间顺序排列的数据集合。
在进行时间序列分析时,我们通常关注以下几个方面的特征:1. 趋势(Trend):指数据在长期内的稳定增长或减少的趋势。
趋势可以是线性的、非线性的,也有可能是周期性的。
2. 季节性(Seasonality):指数据在周期性时间内的反复变化。
例如,零售业的销售额会在每年的圣诞节季节性地增长。
3. 周期性(Cyclical):指数据在相对较长的周期内的起伏波动。
周期性通常持续数年,而季节性则在一年内重复发生。
4. 随机性(Random):指时间序列数据中不规则的波动或噪声。
随机性往往难以预测和解释,但可以通过模型进行剔除。
二、时间序列分析的常用方法时间序列分析涉及到多种方法和技术,其中最常见的包括以下几种:1. 描述统计分析:通过计算统计量(如均值、标准差、相关系数等)来描述时间序列的基本特征。
2. 绘制图表:如折线图、散点图等,可以直观地展示时间序列的趋势、季节性等特征。
3. 移动平均法:通过计算一段时间内的平均值,平滑数据中的随机波动,以揭示趋势。
4. 自回归模型:常用于分析具有自相关性(即当前值受过去值的影响)的时间序列。
其中最著名的模型为ARIMA模型。
5. 季节性调整:将数据进行季节性调整,以剔除季节性的影响,突出数据的趋势和周期性。
三、常用的时间序列模型时间序列模型是用来描述时间序列数据之间关系的数学模型。
在时间序列分析中,常用的模型包括:1. ARIMA模型(差分自回归移动平均模型):是一种广泛应用于时间序列预测和分析的模型。
ARIMA模型考虑了时间序列的自相关性和季节性。
统计学中的时间序列分析方法
统计学中的时间序列分析方法时间序列分析是统计学中一种重要的方法,用于研究时间序列数据的模式、趋势和周期性。
它在经济学、金融学、气象学等领域有着广泛的应用。
本文将介绍一些常见的时间序列分析方法,包括平稳性检验、自相关和偏自相关分析、移动平均和指数平滑法以及ARIMA模型。
平稳性检验是时间序列分析的第一步。
平稳性是指时间序列的均值和方差在时间上保持不变的性质。
通过平稳性检验,我们可以确定时间序列是否具有稳定性。
常用的平稳性检验方法有ADF检验和KPSS检验。
ADF检验是一种基于单位根理论的检验方法,它通过检验序列是否具有单位根来判断序列的平稳性。
KPSS检验则是一种检验序列是否具有趋势的方法,它通过检验序列的单位根是否存在来判断序列的平稳性。
自相关和偏自相关分析是时间序列分析的另一个重要步骤。
自相关是指时间序列与其自身在不同时间点的相关性。
偏自相关则是在控制其他时间点的影响下,某个时间点与另一个时间点的相关性。
自相关和偏自相关分析可以帮助我们确定时间序列的滞后阶数,即在建立模型时需要考虑的时间点数目。
常用的自相关和偏自相关分析方法有自相关图和偏自相关图。
移动平均和指数平滑法是常见的时间序列预测方法。
移动平均法是一种平滑时间序列的方法,它通过计算一段时间内的观测值的平均值来减少随机波动。
指数平滑法则是一种加权平均的方法,它通过对不同时间点的观测值赋予不同的权重来减少随机波动。
移动平均和指数平滑法都可以用于预测未来的时间序列值。
ARIMA模型是一种常用的时间序列分析方法,它包括自回归(AR)、差分(I)和移动平均(MA)三个部分。
ARIMA模型可以用来描述时间序列数据的长期趋势、季节性和随机波动。
ARIMA模型的建立需要根据自相关和偏自相关分析确定AR、差分和MA的阶数。
通过拟合ARIMA模型,我们可以对时间序列进行预测和分析。
总之,时间序列分析是统计学中一种重要的方法,用于研究时间序列数据的模式、趋势和周期性。
统计学时间序列分析
统计学时间序列分析时间序列数据是研究一种现象或变量在不同时间点上的观察值所构成的一组数据。
在许多领域中,时间序列数据都扮演着重要的角色,比如经济学中的股票价格、货币汇率、国内生产总量等,气象学中的气温、降雨量等,医学领域中的疾病发生率等等。
时间序列分析的目的主要有三个方面:1.描述性分析:通过对时间序列数据的图形展示、描述统计量计算等方法,了解数据的总体特征,如趋势、季节性和周期性等。
2.预测性分析:基于已有的时间序列数据,构建合适的模型,并通过该模型对未来的数据进行预测。
3.因果关系分析:通过时间序列分析来研究变量之间的因果关系,确定其中一变量对其他变量的影响。
常用的时间序列分析方法包括:1.移动平均法:通过计算数据序列的平均值,来展示数据的整体趋势。
2.加权移动平均法:对不同时期的数据赋予不同的权重,突出近期数据的影响。
3.时序分解法:将时间序列数据拆分为趋势项、季节项和随机项,以便更好地理解数据的特征。
4.自回归移动平均模型(ARMA):将时间序列数据看作是随机过程,通过建立ARMA模型来描述数据的自相关性和移动平均性。
5.自回归积分滑动平均模型(ARIMA):在ARMA模型的基础上引入差分操作,用于处理非平稳时间序列数据。
6.季节性ARIMA模型(SARIMA):对季节性时间序列数据应用ARIMA 模型。
时间序列分析的应用非常广泛,包括经济学、金融学、市场营销、气象学、社会学、医学等领域。
在经济学中,时间序列分析可以用于预测未来的股票价格、利率变动、经济增长等;在气象学中,可以用于预测未来的天气变化、洪水频率等。
此外,时间序列分析还可以辅助决策的制定,帮助企业合理安排生产计划、调整销售策略等。
总之,统计学时间序列分析是一种有效的工具,能够揭示数据背后的规律和趋势,帮助我们更好地理解时间序列数据、预测未来的变化,并为决策提供可靠的依据。
在今天飞速发展的信息时代,时间序列分析在各个领域都具有重要的应用价值。
统计学中的时间序列分析方法
统计学中的时间序列分析方法时间序列分析是一种广泛应用于统计学领域的分析方法,用于研究时间序列数据。
时间序列数据是按照时间顺序排列的一系列观测值。
通过对时间序列数据进行分析,可以揭示出时间序列中存在的模式、趋势和周期性变化等信息。
本文将介绍一些常见的时间序列分析方法。
一、平稳性检验在进行时间序列分析之前,首先需要对时间序列数据的平稳性进行检验。
平稳性是指时间序列数据的均值、方差和自协方差不随时间的变化而发生显著变化。
常用的平稳性检验方法包括ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
二、自回归移动平均模型(ARMA)ARMA模型是一种常用的时间序列分析方法,它是自回归模型(AR)和移动平均模型(MA)的结合。
AR模型是利用过去若干时间点的数据来预测当前观测值,而MA模型则是利用过去若干时间点的误差项来预测当前观测值。
ARMA模型的参数估计通常使用最大似然法或最小二乘法。
三、季节性模型对于具有明显季节性的时间序列数据,可以使用季节性模型来进行分析。
常见的季节性模型包括季节性自回归移动平均模型(SARMA)、季节性指数平滑模型等。
季节性模型通常需要考虑季节因素的影响,并对季节性因素进行建模和预测。
四、指数平滑法指数平滑法是一种用于时间序列数据预测的方法。
它基于加权平均的思想,通过对观测值进行加权平均来预测未来的值。
常见的指数平滑方法包括简单指数平滑法、双指数平滑法和三指数平滑法。
指数平滑法适用于没有明显趋势和季节性的时间序列数据。
五、ARCH/GARCH模型ARCH模型(Autoregressive Conditional Heteroskedasticity)和GARCH模型(Generalized Autoregressive Conditional Heteroskedasticity)是用于分析具有异方差性(条件异方差性)的时间序列数据的统计模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此可以得到一个结论,即任何预测值Ft+1是以
前所有时间序列数值的加权平均数。
26 - 27
3-4 指数平滑法
指数 平滑法 特点
26 - 28
指数平滑法提供的预测值是以前所 有预测值的加权平均数,但所有过 去资料未必都需要保留,以用来计 算下一个时期的预测值。
26 - 33
a Y
解得:
b
tY t2
线性模型法
(实例及计算过程)
表11- 8 汽车产量直线趋势计算表
【 例 11.10】 利 用 年份
时间标号 t
产量(万辆) Yi
t×Yt
t2
表11-6中的数据, 1981
1
17.56
17.56
1
根据最小二乘法
1982
2
确定汽车产量的
1983 1984
3 4
一旦选定平滑常数α,只需要二
项的信息就可计算预测值。
对给定的α,我们只要知道t期
时间序列的实际值和预测值,即
Yt和Ft,就可计算t+1期的预测
值。
平滑法进行预测的适用条件
缺点
平滑方法对稳定的时间序 列——即没有明显的趋势、 循环和季节影响的时间序 列——是合适的,这时平 滑方法很适应时间序列的 水平变化。 但当有明显的趋势、循环 和季节变差时,平滑方法 将不能很好地起作用
时间序列的成分
一个时间序列中往往由几种成分组成,通常假定是四种独立 的成分——趋势、循环、季节和不规则。下面我们仔细研究 其中的每一种成分。
时间序列的 四种独立成
分
趋势
26 - 4
季节
循环
不规则
线性趋势
我国1993—2004年GDP折线图
Y
GDP(亿元)
150000 130000 110000 90000 70000 50000 30000
2、加权移动平均法
对每期数据值选择不同的权数,然后计算 最近n个时期数值的加权平均数作为预测值
通常,最近时期的观测值应取得最大的 权数,而比较远的时期权数应依次递减
计算移动平均数时每个 观测值权数相同
3、指数平滑法
属于
指数平滑法
26 - 24
加权移动平均法
只选择一个权数(最近时期观 测值的权数),其他时期数据值 的权数可以自动推算出来。 当观测值离预测时期越久远时, 权数变得越小
3期预测值:
F 3 Y 2 ( 1 ) F 2 Y 2 ( 1 ) Y 1
最后,将F3的表达式代入F4的表达式中,有
F 4Y 3 ( 1 )F 3Y 3 ( 1 )Y 2 ( 1 )Y 1 Y 3( 1 )Y 2 ( 1 )2 Y 1
26 - 26
3-3 指数平滑法
1、移动平均法 (Moving Average Method)
1. 测定长期趋势的一种较简单的常用方法
通过扩大原时间序列的时间间隔,并按一定的间 隔长度逐期移动,计算出一系列移动平均数
由移动平均数形成的新的时间序列对原时间序列 的波动起到修匀作用,从而呈现出现象发展的变 动趋势
2. 移动步长为K(1<K<n)的移动平均序列为
长期 影响因素
26 - 8
时间序列的 长期动向
趋势成分
二、 季节成分
许多时间序列往往显示出在一年内有规则的运动, 这通常由季节因素引起,因此称为季节成分。
季节因素引起的一年内 有规则的运动
季节成分
例如,一个游泳池制造商在秋季和冬季各月有较低的 销售活动,而在春季和夏季各月有较高的销售量。 铲雪设备和防寒衣物的制造商的销售却正好相反。
观察值的平均变动数量
线性模型法
(a 和 b 的最小二乘估计)
1. 趋势方程中的两个未知常数 a 和 b 按最小二乘法 (Least-square Method)求得 根据回归分析中的最小二乘法原理 使各实际观察值与趋势值的离差平方和为最小 最小二乘法既可以配合趋势直线,也可用于配 合趋势曲线
直 线 趋 势 方 程 , 1985
5
19.63 23.98 31.64 43.72
39.26
4Leabharlann 71.949126.56
16
218.60
25
计 算 出 1981 ~ 1986
6
36.98
221.88
36
1998 年 各 年 汽 车 1987
7
产量的趋势值,
1988 1989
8 9
并 预 测 2000 年 的 1990
2. 移动间隔的长度应长短适中
如果现象的发展具有一定的周期性,应以周 期长度作为移动间隔的长度
若时间序列是季度资料,应采用4项移动平均 若为月份资料,应采用12项移动平均
3. 移动平均会使原序列失去部分信息,平均项数越 大,失去的信息越多。
26 - 22
加权 移动 平均
法
移 动 平 均 法
26 - 23
26 - 19
Yi1YiYi1K YiK1
移动平均法
(实例)
【例】已知1981~ 1998年我汽车产量 数 据 如 表 11-6 。 分 别计算三年和五年 移动平均趋势值, 以及三项和五项移 动平均,并作图与 原序列比较
26 - 20
表 1981~1998年我国汽车产量数据
年份
产量(万辆)
年份
产量(万辆)
趋势预测法
线性模型法
26 - 17
一、利用平滑法进行预测
本节我们讨论三种预测方法:移动平均法、加权移动平 均法和指数平滑法。因为每一种方法的都是要“消除” 由时间序列的不规则成分所引起的随机波动,所以它们 被称为平滑方法。
三 种 平 滑 方 法
26 - 18
移动平均法 加权移动平均法
指数平滑法
0
26 - 5
X Variable 1 Line Fit Plot
非线性趋势
160000
1978—2004年我国GDP(亿元)折线图
140000
120000
100000
80000
60000
2
4
X 6Variable8 1
10
12
14
40000
20000
0 1 3 5 7 9 11 13 15 17 19 21 23 25 27
1981 1982 1983 1984 1985 1986 1987 1988 1989
17.56 19.63 23.98 31.64 43.72 36.98 47.18 64.47 58.35
1990 1991 1992 1993 1994 1995 1996 1997 1998
51.40 71.42 106.67 129.85 136.69 145.27 147.52 158.25 163.00
26 - 9
季节成分的扩展
季节成分也可用来描述任何持续时间小于一年的、 有规则的、重复的运动。
例如,每天的交通流量资料显示在一天内的 “季节”情况,在上、下班拥挤时刻出现高峰, 在一天的休息时刻和傍晚出现中等流量,在午 夜到清晨出现小流量。
26 - 10
三、循环成分
时间序列常常呈现环绕趋势线上、下的波动。
2. 时间序列是把反映单个现象(同一空间的同类指标)在时间上发展、 变化的一系列统计数据按时间先后顺序排列起来所形成的序列。
3. 基本形式(基本要素) 时 间: t1,t2,……,tn 指标值: a1,a2,……,an
时间数列分析法侧重单个体或可以直接加总现象的 26发- 3展变化情况。有时也称动态数列。
优点
平滑方法很容易使用,而
且对近距离的预测,如下
平
一个时期的预测,可提供 较高的精度水平。
滑
方
法
预测方法之一的指数平滑法对资 料有最低的要求
26 - 29
二、利用趋势推测法进行预测
对拥有长期线性趋势的时间序列进行预测,即是以时 间t为解释变量的回归方法对原时间序列进行曲线拟 合,从而揭示出序列长期趋势的方法。
移动平均法 (趋势图)
200
汽 150
车
产 100
量
(万辆)50
产量 五项移动平均趋势值 三项移动平均趋势值
26 - 21
0
1981
1985
1989
1993 1997 (年份)
图11-1 汽车产量移动平均趋势图
移动平均法 (应注意的问题)
1. 移动平均后的趋势值应放在各移动项的中间位置
对于偶数项移动平均需要进行“中心化”
10
47.18 64.47 58.35 51.40
330.26
49
515.76
64
525.15
81
514.00
长期 线性 趋势 数列
不稳定,随时间 呈现持续增加 或减少的形态
趋势推测法可行 平滑法不合适
26 - 30
1、线性模型法
(概念要点与基本形式)
1. 现象的发展按线性趋势变化时,可用线性模型 表示
2. 线性模型的形式为
26 - 31
Yˆt abt
▪ Yˆt — 时间序列的趋势值
▪ t —时间标号 ▪ a—趋势线在Y 轴上的截距 ▪ b—趋势线的斜率,表示时间 t 变动一个单位时
3-1 指数平滑法
指数平滑法模型:
F t 1 Y t ( 1 ) F t
式中Ft+1——t+1期时间序列的预测值; Yt——t期时间序列的实际值; Ft——t期时间序列的预测值; α——平滑常数(0≤α≤1)。
( 1 1 - 2 )