实验-4气固流化床反应器的流化特性测定
实验-4 气固流化床反应器的流化特性测定
![实验-4 气固流化床反应器的流化特性测定](https://img.taocdn.com/s3/m/bdc58c442b160b4e767fcfa6.png)
实验四 气固流化床反应器的流化特性测定一、 实验目的1. 观察了解气固流化床反应器中不同气速下固体粒子的流化状况,建立起对流态化过程的感性认识。
2. 了解和掌握临界流化速度U mf 和起始鼓泡速度U mb 的测量原理、方法和步骤,明确细粒子流化床的基本特性。
3. 通过对U mf 和U mb 的测定,进一步理解两相理论以及临界流化速度与起始鼓泡速度的区别。
二、实验原理1.在气固流化床反应器中,气体通过床层的压力降△P 与空床速度U 0之间的关系能够很好地描述床层的流化过程。
如图1所示:气体自下向上流过床层。
当气速很小时,气体通过床层的压力降△P 与空床速度U 0在对数坐标图上呈直线关系(图1中的AB 段);当气速逐渐增大到△P 大致等于单位面积的重量时,△P 达到一极值(图1中P 点);流速继续增大时,△P 略有降低;此后床层压力降△P 基本不随流速而变。
此时将流速慢慢降低,开始时与前一样△P 基本不变,直到D 点以后,△P 则随流速的降低而降低,不再出现△P 的极大值,最后,固体粒子又互相接触,而成静止的固定床。
2.在一正常速度下,处于正常流化的流化床,如果突然关闭气源,则由于床层中有气泡存在,以气泡形式存在的气体首先迅速逸出床层,床层高度迅速下降;而后是浓相中的气体逸出,床层等速下降;最后是粒子的重量将粒子间的部分气体挤出,床层高度变化很小。
由此可得其床层高度随时间变化的崩溃曲线(如图2所示)。
因此,可以设想,如果床层中图1 △P ~ U 关系log Ul o g △P12 3465t (sec)260270 280 290 300 H T H D H D图2 H T ~ t 关系没有气泡,则床层一开始就随时间等速下降,所以,将上述崩溃曲线中的等速部分外推到t=0处时的床层高度,即为浓相床层的高度H D 。
这样,只要重复上述过程,多做几条崩溃曲线,总可以找到一条曲线,这条曲线正好无气泡逸出段,开始就是等速下降的起点。
流化床反应器的特性测定
![流化床反应器的特性测定](https://img.taocdn.com/s3/m/31aed60cba1aa8114431d979.png)
(2) 临界流化速度 u mf 临界流化速度可以通过 ∆P 与 u 关系进行测定 也可以用公式计算 常用的经验计算式
有
u mf = o.695
通过经验式计算常有一定偏差 临界流化速度 3 最大流化速度 u t
dp
1.82
(ρ
s
− ρg )
0..94
µ 0.88 ρ g 0.06
常常通过实验直接测定颗粒的
在条件满足的情下
最大流化速度 u t 亦称颗粒带出速度 下式计算
理论上应等于颗粒的沉降速度
按不同情况可用
ut =
2 (ρ s − ρ g )g dp
18µ
Re p < 0.4
4 (ρ s − ρ g )2 g ut = ρgµ 225
1 3
dp
0.4 < Re p < 500
3.1d p (ρ s − ρ g )g ut = ρg
其中
1 2
Re p > 500
Re p =
d p ut ρ g
µ
C 预习与思考 1 2 3 气体通过颗粒床层有哪几种操作状态 流化床中有哪些不正常流化现象 如何划分
各与什么因素有关 为什么
流化床反应器对固体颗粒有什么要求
流化床反应器的特性测定
A 实验目的 流化床反应器的重要特征是细颗粒催化剂在上升气流作用下作悬浮运动 固体颗粒剧
烈地上下翻动 这种运动形式使床层内流体与颗粒充分搅动混和 避免了固定床反应器中的 热点 现象 床层温度分布均匀 然而 床层流化状态与气泡现象对反应影响很大 尽管 有气泡模型与两相模型的建立 但设计中仍以经验方法为主 本实验旨在观察和分析流化床 的操作状态 目的如下
化工基础实验 固定床和流化床实验
![化工基础实验 固定床和流化床实验](https://img.taocdn.com/s3/m/7b6a2e0469dc5022abea0041.png)
流化床压力与气速的关系
log
固定床
流化床
带出开始
C
B
A
D
A 起始流化速度
带出速度
logu
图 3-28 流化床压力降与气速关系
三、实验装置图
图2 气固系统流程图 1.鼓风机 2.孔板流量计 3.孔板压差计 4. 压差计 5.床身 6.接收管 7.旋风分离器 8.按钮开关
图2 液固系统流程图 1. 旋液分离器 2. 接收器 3.床身 4. 压差计 5. 孔板压差计 6.水槽 7.水泵 8. 孔板流量计 9. 按钮开关
ቤተ መጻሕፍቲ ባይዱ
B、 聚式流化
对于密度差较大的系统,则趋向于另一种流化 形式——聚式流化。例如,在密度差较大的 气—固系统的流化床中,超过流化所需最小气 量的那部分气体以气泡形式通过颗粒层,上升 至床层上界面时即行破裂。在这些气泡内可能 夹带有少量固体颗粒。这时床层内分为两相, 一相是空隙小而固体浓度大的气固均匀混合物 构成的连续相,称为乳化相;另一相则是夹带 有少量固体颗粒而以气泡形式通过床层的不连 续相,称为气泡相。由于气泡在上界面处破裂, 所以上界面是以某种频率上下波动的不稳定界 面,床层压强降也随之作相应的波动。
实验装置
四、注意事项
在全部的操作中,流量调节是关键,要求流量调节要缓 慢,由其是在临界流化点附近要更加缓慢,做出流化曲 线的全部过程,至少要做15—20个点左右,点并均匀分 布。
由于实验完毕后,床层颗粒的孔隙率增大,为了使下一 次实验数据准确性好些,用手轻轻拍一下床体,使固体 的孔隙率减小,床层高度为实验前原有的高度。
本实验室装置为二维床。便于观察现象。但固体颗粒回 收到床内,并不十分方便。所以操作中注意流量调节不 要过猛,防止颗粒带出。
第七章 气固相催化反应流化床反应器
![第七章 气固相催化反应流化床反应器](https://img.taocdn.com/s3/m/34ed1a03cc1755270722081d.png)
Re 20
(7-3)式
• 高雷诺数时,动能损失占主导,忽略前 一项:
1.75 d p g umf 3 s mf
3 d p g s g 2 2
• 解得:
u
2 mf
s d p s g 3 mf 1.75 g
• 低雷诺数时,粘滞力损失占主导,忽略 后一项:
150 1 mf dp gumf 2 3 s mf
3 d p g s g 2
21
• 解得:
3 s2 dp2 s g mf umf= 150 1 mf
27
ⅱ>.下列情况宜选择较高u0: a.在给定工艺条件下属快反应的反应类型; b.反应热效应大,必须在床内快速传热; c.反应对热很敏感,床内要求保持等温条 件; d.床内设置了内部构件。
28
(5).床径的确定 流化床外形示意如右图 D2:扩大段床径 D1:主体床径 h2:稀相段高度 h1:浓相段高度 h3:锥底高度
6
7.1.2.流化床特点
(1).流化床具有类似液体的性状 • 轻的物体浮起; • 表面保持水平; • 固体颗粒从孔中喷出; • 床面拉平; • 床层重量除以截面积等于压强
7
8
(2).流化床的优点 • 颗粒流动类似液体,易于处理,控制; • 固体颗粒迅速混合,整个床层等温; • 颗粒可以在两个流化床之间流动、循环, 使大量热、质有可能在床层之间传递; • 宜于大规模操作; • 气体和固体之间的热质传递较其它方式高; • 流化床与床内构件的给热系数大。
D2 h2
D1 h1
h3
29
• ①反应器内径的计算
任务流化床反应器操作指导
![任务流化床反应器操作指导](https://img.taocdn.com/s3/m/23147860a32d7375a4178089.png)
(三)温度的测量与控制
任务2-4 流化床反应器操作指导
目标:床内温度分布均匀,符合工艺要求的温度范围,化学反应的最 优反应温度。
测量手段:标准的热敏元件,如适应各种范围温度测量的热电偶。 床层轴向和径向的分布数据
任务2-4 流化床反应器操作指导
作用:改善流化操作质量 (1)减少气体返混; (2)使气泡破碎,增强气固相间接触; (3)降低流化床层的高度,减少颗粒的带出。
工业上气速较低时,可选用金属丝挡网。一般用挡板。
内旋挡板
任务2-4 流化床反应器操作指导
外旋挡板
任务2-4 流化床反应器操作指导
多旋挡板
ut
实际生产中,通常采用的操作气速在0.15~0.5m/s。对热
效应不大、反应速率慢、催化剂粒度小、筛分宽、床内无
内部构件和要求催化剂带出量少的情况,宜选用较低气速。
反之,则宜用较高的气速。
流态化的形成过程
任务2-4 流化床反应器操作指导
任务2-4 流化床反应器操作指导
流化数
k u0 umf
了解流化床各部位是否正常工作较直观 的方法
对于实验室规模的装置,常用U型管压 力计,通常压力计的插口需配置过滤器, 以防止粉尘进入U型管。工业装置上采 用带吹扫气的金属管作测压管。测压管 直径一般为12-25. 4 mm ,为了确保 管线不漏气,所有丝接的部位最后都是 焊接的,同时也要确保阀门不漏气。
任务2-4 流化床反应器操作指导
五、流化床反应器的操作指导
(一)颗粒粒度和组成的控制 (二)压力的测量与控制 (三)温度的测量与控制 (四)流量控制 (五)开停车及防止事故的发生
气固流化床流动特性的实验研究与数值模拟的开题报告
![气固流化床流动特性的实验研究与数值模拟的开题报告](https://img.taocdn.com/s3/m/96178eea77eeaeaad1f34693daef5ef7bb0d1272.png)
气固流化床流动特性的实验研究与数值模拟的开题报告一、选题背景和意义气固流化床是一种重要的化工反应设备,具有大处理能力、高效、节能等优点,在化工、冶金、制药、食品等领域得到广泛应用。
气固流化床在反应器内部形成气固两相的流动,流体的运动方式、相互作用和流场的形态会影响反应速率和反应产物的选择性。
因此,研究气固流化床的流动特性对于提高反应器的性能和效率非常重要。
目前研究气固流化床的流动特性的方法主要有实验和数值模拟两种。
实验可以获得较为准确的流场和物理参数,但是费时费力成本高,且很难在反应现场进行。
数值模拟可以通过计算机计算快速得到流场的数值解,可以模拟不同的流动条件和反应器结构,预测气固流化床的运行情况,优化反应器的设计。
因此,开展气固流化床的实验研究和数值模拟研究具有十分重要的意义。
二、研究内容和方法本课题主要研究气固流化床的流动特性,通过实验和数值模拟相结合的方法,研究以下几个方面:1. 研究气固流化床的流态转换规律。
利用小型气固流化床实验装置,观察不同流态下气固两相的运动状态,并对流态转换的规律进行分析。
2. 研究气固流化床的流动特性。
通过实验测量不同床层高度、气体流速、颗粒直径等参数对流态的影响,研究气固流化床的动态特性、颗粒分布和床层压降等指标。
3. 基于数值计算,利用计算流体力学软件ANSYS Fluent建立气固流化床的数值模拟模型,分析流场结构和物理特性。
4. 通过比较实验和数值模拟结果,验证数值模拟的可靠性和准确性。
三、预期成果和意义通过本研究,可以深入了解气固流化床的流动特性和流态转换规律,对气固反应器的设计和优化提供可靠的理论和实验依据。
同时,本研究通过实验和数值模拟相结合的方式,验证数值模拟的可靠性和准确性,为气固流化床的研究提供了一种新的方法和途径。
四、研究计划和进度第一年:完成文献调研和理论研究,设计实验方案,搭建小型气固流化床实验装置,完成气固流态转换的实验研究;第二年:完成气固流化床的流动特性实验研究,开展数值模拟计算,建立气固流化床的数值模型,分析流场结构和物理特性,并进行计算机模拟;第三年:比较实验和数值模拟结果,验证数值模拟的可靠性和准确性;完成研究报告的撰写和论文的发表。
固体流态化的流动特性实验
![固体流态化的流动特性实验](https://img.taocdn.com/s3/m/1c9dbb76bcd126fff7050b63.png)
固体流态化的流动特性实验一、实验目的1.通过实验观察固定床向流化床转变的过程,及聚式流化床和散式流化床流动特性的差异。
2.测定流化曲线和临界流化速度。
3.验证固定床压降和流化床临界流化速度的计算公式。
4.初步掌握流化床流动特性的实验研究方法,加深对流体经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类,近年来,流化床设备得到越来越广泛的应用。
固体流态化过程按其特性可分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统密相流化床属于散式流化床。
当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
一种较为常用的公式可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即:22u d H p p m m ρλ⋅⋅=∆(4-1)式中H m ——固定床层的高度,m ;d p ——固体颗粒的直径,m ; u 0——流体的空管速度,m /s ; ρ——流体的密度,kg/m 3; λm ——固定床的摩擦系数。
由固定床向流化床转变时的临界速度u mf ,也可由实验直接测定。
实验测定不同流速下的床层压降,再将实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图4-1所示。
为计算临界流化速度,我们可采用下面这种半理论半经验的公式mms pmf d u εεμρρ-⨯-⨯=1)(15032(4-2) 式中μ——流体的黏度,Pa /s ;d p 一一平均粒径,m ; ρs ——填料密度,kg/m 3; εm ——空隙率。
实验4 流化床基本特性的测定
![实验4 流化床基本特性的测定](https://img.taocdn.com/s3/m/70fa042531126edb6e1a100c.png)
实验四流化床基本特性的测定流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并使固体颗粒具有某些流体特征的一种床型,它是流态化现象的具体应用,已在化工、能源、冶金、轻工、环保、核工业等部门得到广泛应用。
化工领域中,加氢、烯烃氧化、丙烯氨氧化、费-托合成及石油的催化裂化等均采用了该技术。
因此,它是极为重要的一种操作过程。
流化床反应器的重要特征是细颗粒催化剂在上升气流作用下作悬浮运动,固体颗粒剧烈地上下翻动。
这种运动形式使床层内流体与颗粒充分搅动混和、物料连续、结构紧凑、传质速度快、传热效率高、床层温度分布均匀,避免了固定床反应器中的热点现象,但操作中会造成固体磨损、床层粒子返混严重、反应中转化率不高等现象。
一、实验目的1.通过冷模观察聚式和散式流态化的实验现象,建立起对流态化过程的感性认识。
2.了解流化床的压降分布原理,通过冷模测定流化床的特定曲线。
3.通过冷模观察得到临界流化速度和带出速度,并计算出费劳德数Fr、膨胀比和流化数。
4.掌握流化床液体停留时间分布的测定方法及实验结果分析。
二、实验原理1.流化现象流体从床层下方流入,通过图1中虚线所示的分布板而进入颗粒物料层时,随着流体流速u0的不同,会出现不同的流化现象(图1)。
(a)(b)(c)(d)(e)固定床临界流态化散式流态化聚式流态化稀相流态化图1 流化现象(1)固定床阶段流体流速较低时,固体颗粒静止不动,即未发生流化,床层属于固定床阶段(图1(a)),阻力随流体流速增大而增大。
(2)临界流化阶段流体流速继续增大,颗粒在流体中的浮力接近或等于颗粒所受重力及其在床层中的摩擦力时,颗粒开始松动悬浮,床层体积开始膨胀,当流速继续增大,几乎所有的粒子都会悬浮在床层空间,床层属于初始流化或临界流化阶段(图1(b))。
此时的流速称为临界流化速度或最小流化速度u mf。
(3)流化阶段对于液固流化床,当液速u f>u mf时,由于液体与固体粒子的密度相差不大,此种床层从开始膨胀直到气力输送,床内颗粒的扰动程度是平缓的加大的,床层的上界面较为清晰,即床层膨胀均匀且波动较小,床层属于散式流化阶段(图1(c))。
流化床反应器的特性测定
![流化床反应器的特性测定](https://img.taocdn.com/s3/m/b766e12b16fc700abb68fc83.png)
流化床反应器的特性测定前言流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。
在用于气固系统时,又称沸腾床反应器。
流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。
目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。
一、实验目的流化床反应器的重要特征是细颗粒催化剂在上升气流作用下作悬浮运动,固体颗粒剧烈地上下翻动。
这种运动形式使床层内流体与颗粒充分搅动混和,避免了固定床反应器中的热点现象,床层温度分布均匀。
然而,床层流化状态与气泡现象对反应影响很大,尽管有气泡模型与两相模型的建立,但设计中仍以经验方法为主。
本实验旨在观察和分析流化床的操作状态,目的如下:(1) 观察流化床反应器中的流态化过程(2) 掌握流化床压降的测定并绘制压降与气速的关系图(3) 计算临界流化速度及最大流化速度,并与实验结果作比较二、实验原理与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好,关系图的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的图 1-1 气体流化床的实际ΔP -u 典型例子。
流化床存在的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失。
实验4 流化床基本特性的测定
![实验4 流化床基本特性的测定](https://img.taocdn.com/s3/m/d29729a8dd88d0d233d46abd.png)
下降,流体速度继续增加,床层压降保持不变,床层高度逐渐增加,固体颗粒悬浮在流体中,并随
气流上下流动,此为流化床阶段,在B点的流速就是临界流化速度umf。 (2)最大流化速度
当流体速度大于固体粒子在流体中的沉降速度时,粒子将被流体带出床层,这个速度称为最大
流化速度或粒子的带出速度ut,它是流化床流速的上限。此时如不连续补充固体颗粒,床层迅速消 失,所以在压力降图上曲线急剧下降(图2中的GH段)。颗粒在流体中沉降,受到重力、浮力和流
ut
3.1(
s
f
f
)gd p
1/ 2
(12) 式中:Re——雷诺数,Re= dP f ut/;
dp——颗粒当量直径,m; ρf—流体密度,kg/m3; ρS—颗粒密度,kg/m3; µ—流体粘度,kg ⋅m−1⋅s−1; ut—最大流化速度,m/s; umf—临界流化速度,m/s。 最大流化速度除了可用经验式计算外,也可通过实验直接测定。由图2可知,如果再加大流速
2
——方差或散度。
2
2
ˆt 2
2 Pe
2 1 2 Pe
1 e Pe
(19)
通过实验测得
c(τ)与
τ
的关系数据,然后由式(17)求得
tˆ
,由式(18)求得
2
,通过式
(19)求出模型参数 Pe 的值。
三、实验装置与流程
实验四 流化床基本特性的测定
流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并使 固体颗粒具有某些流体特征的一种床型,它是流态化现象的具体应用,已在化工、能源、冶金、轻 工、环保、核工业等部门得到广泛应用。化工领域中,加氢、烯烃氧化、丙烯氨氧化、费-托合成 及石油的催化裂化等均采用了该技术。因此,它是极为重要的一种操作过程。
固体流态化的流动特性实验.doc
![固体流态化的流动特性实验.doc](https://img.taocdn.com/s3/m/7d1b3dd9a58da0116c174932.png)
固体流态化的流动特性实验(示范实验)1、实验目的在环境工程专业,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。
近年来,流化床设备得到愈来愈广泛的应用。
固体流态化过程又按其特性分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。
①通过本实验,认识与了解流化床反应器运行。
掌握解流化床反应器启动中物料的连续流化方法及其测定的主要内容,掌握流化床与固定床的区别,掌握鼓泡流化床与循环流化床在本质上的差异。
②测定流化床床层压降与气速的关系曲线本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和流化速度,并试验验证固定床压降和流化床临界流化速度的计算公式。
通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。
2、实验装置与实验原理介绍流化床反应器是一种易于大型化生产的重要化学反应器。
通常是指反应物料悬浮于从下而上的气流或者液流之中,气体或者液体中的成分在与反应物料的接触中发生反应。
流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉)。
目前,流化床反应器已在电力、化工、石油、冶金、核工业等行业得到广泛应用。
与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油流化床催化裂化的迅速发展就是这一方面的典型例子。
然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体反应物料在流动过程中的剧烈撞击和摩擦,使物料加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒反应物料的带出,造成明显的反应物料流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。
固体流态化实验
![固体流态化实验](https://img.taocdn.com/s3/m/610c34af5022aaea988f0f2a.png)
4固体流态化实验4.1实验目的(1)掌握测定颗粒静态床层时的静床堆积密度ρb 和空隙率ε的方法; (2)测定流体通过颗粒床层时的压降Δp m 与空塔气速u 的曲线和临界流化速u mf ; 4.2实验原理 4.2.1固定床 1)基本概念当流体以较低的空速u 通过颗粒床层时床层仍处于静止状态,称这种固体颗粒床层为固定床。
床层的静态特性是研究床层动态特性和规律的基础,其主要的特征有静床堆积密度ρb 和空隙率ε两个,它们的定义分别如下:1.静床堆积密度:ρb =M/V,它由静止床层中的固体颗粒的质量M 除以静止床层的体积V 计算而得。
ρb 数值的大小与床层中颗粒的堆积松紧程度有关,因此ρb 在流体通过颗粒床层时不是一个定值,如颗粒床层在最紧与最松两种极限状态时,ρb 就有两种数值,它们的大小在床层最紧与最松时分别测量出相应的床层高度就可以计算得到。
2.静床空隙率ε:ε=1–(ρb /ρs ),它是由颗粒的静床堆积密度ρb 和固体颗粒密度ρs 计算而得。
2)固定床阶段压降Δp m 与空速u 的关系当流体通过固定床的空速较小时,床层的高度基本不变;当流体空速趋于某一临界速度时,颗粒开始松动,床层才略有膨胀。
因此,在此临界速度以前,单位高度的床层的压降(Δp m /L)与空速u 的关系可由欧根公式来表示,并把欧根公式改写成如下形式:m m m d uK d K uL p ψ-+ψ-=∆ρεεμεε322321)1()()1((1) 式(1)中,以实验数据的空速u 为横坐标,以(Δp m /uL )为纵坐标画图得一直线,从直线的斜率中求出欧根系数K 2,从直线的截距中计算出欧根系数K 1。
4.2.2流化床 1)基本概念当流体空速趋近某一临界速度u mf 时,颗粒开始松动,床层略有膨胀,床层高度有所增加;当空速继续加大,此时固体颗粒悬浮在流体中作上下、自转、摇摆等随机运动,好象沸腾的液体在翻腾,此时的颗粒床层称为流化床或沸腾床,临界速度u mf 称为起始流化速度。
气-液-固自然循环流化床中的流动特性和压降
![气-液-固自然循环流化床中的流动特性和压降](https://img.taocdn.com/s3/m/acd61017a7c30c22590102020740be1e650eccb3.png)
气-液-固自然循环流化床中的流动特性和压降齐国鹏;姜峰;赵燕禹;赵国华;周震;李修伦【摘要】A fluidized-bed evaporator for gas-liquid-solid natural circulation was set up to research the flow and distribution of solid particles and pressure drop of liquid-solid two-phase flow in a heating pipe bundle. With CCD image collecting and processing system,the influences of the particle kinds,particle holdup and additive air amount were studied. The experimental results show that air inlet positions have much effect on the distribution of solid particles in the heating pipe bundle. The form of moving and fluidization of solid particles in up-channel is different from that in down-channel. In up-channel,solid particles make circulating movement with the central part rising and perimeter dropping. As the density decreases,the distribution of solid particles in up-channel gradually becomes uniform. In down-channel,solid particles form two big whirls at both sides of the central axis. As additive air amount increases,the rotation rate of whirls increases. When the air is input from the up-channel,the pressure drop of liquid-solid two-phase flow in the heating pipe bundle increases with the increase of particles holdup and air amount. The pressure drop model of liquid-solid two-phase flow in the heating pipe bundle has been set up,and the calculated data agree well with the experimental results.%建立了气-液-固冷模多管自然循环流化床蒸发器,利用CCD图像采集和处理系统,研究了固体颗粒的种类、含率和通气量等操作参数对于固体颗粒的流化和运动形态、分布以及加热管束中液-固两相流压降的影响.结果表明:通气位置对于固体颗粒在加热管束中的分布影响较大.在上、下管箱中,固体颗粒的运动和流化形态不同.在上管箱中,固体颗粒形成中心上升、四周下降的循环运动,并且随着其密度的降低,固体颗粒在上管箱中的分布逐渐趋向均匀;在下管箱中,固体颗粒在中心轴的两侧形成两个大的旋涡,旋涡的旋转速度随着通气量的增加而增大.当气体从上管箱加入时,加热管束中液.固两相流的压降随着固体颗粒加入量和通气量的增加而增大.利用实验数据建立了加热管束中液.固两相流的压降模型,模型结果与实验数据吻合较好.【期刊名称】《天津大学学报》【年(卷),期】2009(042)010【总页数】7页(P901-907)【关键词】气-液-固;自然循环;循环流化床;压降【作者】齐国鹏;姜峰;赵燕禹;赵国华;周震;李修伦【作者单位】天津大学化工学院,天津,300072;天津大学化工学院,天津,300072;天津职业大学环境生物工程学院,天津,300402;天津职业大学环境生物工程学院,天津,300402;天津大学化工学院,天津,300072;天津大学化工学院,天津,300072【正文语种】中文【中图分类】TQ021.1;TQ021.3气-液-固三相流防、除垢和强化传热技术的研究已开展多年,在实验室研究[1-9]和工业化应用[10-11]方面都已经取得了一定的成果,积累了一定的经验.但是由于技术本身的复杂性和工业化过程中存在着较多的问题,使得该技术还有许多可待研究和完善之处,其中包括多管循环流化床内相的流动、分布和压降;自然循环操作时循环速度的计算和颗粒合理用量的确定;载气的加入方法和用量以及一些突发性的问题等.针对上述问题,建立了一套冷模透明多管循环流化床蒸发装置,通过较为系统的可视化研究,分析自然循环条件下,固体颗粒的种类和加入量以及通气量等因素对颗粒的流动、分布和多相流压降的影响,定性和定量地分析颗粒的流动和分布规律,为建立三相循环流化床蒸发器中压降的合理计算模型以及三相流防、除垢技术的工业化应用奠定基础.1.1 实验装置与流程实验装置为冷模透明多管循环流化床蒸发器,装置流程如图1所示.首先向装置中加入液相流体到指定液位,然后加入一定量的固体颗粒.空气由压缩机输入后,经气体分布器,进入上管箱上方的循环管内,造成装置左侧上升管和右侧下降管内多相流体的密度差,使装置内形成气-液-固三相流自然循环.气-液-固三相流到达分离器后,气相和液、固两相分开.气相由分离器顶部排出,液-固两相流经循环管进入加热室,进行装置内的循环流动.为便于可视化研究,整套装置由有机玻璃制成.加热室采用“薄片模型”,即 9根加热管呈“一”字形排列在管箱中,如图2所示.加热管长0.6,m,内径34,mm,壁厚为3,mm,管间距为管外径的 1.25倍.矩形管箱长 460,mm,宽50,mm.在上、下箱上开有测压口,与 U管压差计相连.此外,上管箱和下管箱底部的循环管上各装有气体加入口.以加入的固体颗粒体积占蒸发器中液相体积的百分数来计算,固体颗粒的加入量分别为 0.5%、1.0%、1.5%、2.0%.1.3 参数测量及数据处理方法(1)空气加入量采用转子流量计进行测量,型号为LZB-40,量程为4~40,m3/h,精度为1.5%.(2)流体循环速度采用均速管进行测量,公称压力为1.0,MPa.(3)加热管束中液-固两相流的压降采用 U管压差计来进行测量,指示液为CCl4.(4)固体颗粒的运动和分布采用 CCD图像采集和处理系统进行测量.对采集的图像数据采用相应软件进行处理后,最终得到固体颗粒的含率,数据处理步骤如图3所示.2.1 颗粒流动形态的观测与分析2.1.1 通气位置对颗粒流动和分布的影响实验结果表明,由上管箱通气时,在不同的气量、颗粒种类和用量下,加热管束中颗粒的分布均较为均匀,如图 4(a)和(b)所示;然而,由下管箱通气时,空气在管束中的分布极不均匀,绝大部分空气由管束右侧(靠近下行床的一侧)的加热管进入上管箱,如图4(c)所示.空气分布不均造成了不同加热管中颗粒含率和速度的不均.在有大量空气通过的加热管中,颗粒随高速气流迅速向上运动到达上管箱.在上管箱中,颗粒在气流的扰动下做杂乱无章的运动,大部分颗粒被携带到上管箱上方的循环管中,少量颗粒经由几乎没有空气通过的左侧加热管向下运动返回下管箱.这样,部分颗粒就在加热室内形成内循环.由此可见,通气位置对于加热管束中颗粒分布的影响很大,而这种影响主要是由下管箱中的流场造成的.因此当由下管箱通气时,应设计和安装适当的分布板,以调整流场,达到颗粒在管束中的均匀分布.2.1.2 水平管两相流中颗粒的运动形态循环流化床底部水平管中为液-固两相流,如图5所示,对于此部分,当颗粒加入量一定,且颗粒已在整个床中形成正常循环时,若通气量较小,则颗粒一部分悬浮在流体中,随流体循环;另一部分则沉积在水平管的底部,贴着壁面向前运动.随着气量增大,颗粒运动速度加快,沉积在底部的颗粒量越来越少,逐渐从壁面转移到流体中.当气量达到一定程度时,颗粒完全悬浮起来.颗粒流化形态的改变,源于循环速度的变化.气量增大,循环速度和流体的湍流程度增加,流体对颗粒的曳力和搅动增大,使颗粒逐渐脱离壁面,随流体悬浮流动.了解底部水平管中固体颗粒的流化形态随操作参数的变化,对于确定三相循环流化床蒸发装置中颗粒的合理用量非常重要.对于水平管中不同颗粒在不同条件下的完全流化速度,将进一步进行研究.图5中颗粒为聚甲醛,其加入量为1.5%.2.1.3 加热室下管箱中颗粒的流动形态当由上管箱通气时,在下管箱的液-固两相流中,颗粒的集团运动呈现出两个大的旋涡,如图 6所示.两个旋涡分别位于下管箱的左、右两侧(其中靠近下行床一侧为右),大小尺度相当,但是所含颗粒量不同,右侧旋涡所含的颗粒量要明显高于左侧旋涡.两个旋涡的旋转方向相反,其中夹带了下管箱中绝大部分的颗粒.旋涡中的颗粒在靠近管箱壁面处向下运动,在靠近管箱中心处向上运动.旋涡中向上运动的颗粒,在惯性的作用下,部分被旋涡带入到加热管束中.左侧的旋涡虽然含颗粒较少,但旋转速度快于右侧旋涡,因此,单位时间由两个旋涡带到各加热管中的颗粒量基本相当,使管束中颗粒的分布较为均匀.通气量增加时,旋涡转速加快;颗粒量增加时,旋涡的面积增大,两个旋涡逐渐向管箱中心汇聚.颗粒旋涡的形成,反映了下管箱中的流场,即中心处流速较高,颗粒向上运动,壁面处流速较低,颗粒向下运动,进而形成旋涡.由于旋涡的流速及其中颗粒含量的分布,可以满足管束中颗粒的均匀分布,因此在一定的操作条件下,无需在下管箱中设置分布板,这样有利于降低循环阻力.图 6中颗粒为聚甲醛,其加入量为1.0%,通气量为8.6,m3/h.2.1.4 加热室上管箱中颗粒的流动形态由上管箱通气时,颗粒在随流体流出加热管束后,在上管箱中形成循环流动.靠近上管箱前、后两个壁面,流体速度较低,颗粒向下运动,靠近管箱中心流速较高处的颗粒则向上运动.在颗粒加入量和通气量一定的条件下,随着颗粒密度的增大,颗粒在上管箱中分布的不均匀程度逐渐增加.即颗粒密度较低时,颗粒较为均匀地分布在整个管箱中,随着密度的增大,颗粒则大部分集中在上管箱的中部,如图 7所示.图7中颗粒分别为树脂、聚甲醛和陶瓷球1.由于上管箱中流动截面较大,流速较低,因此颗粒含率较高.若设备突然停车,则大量颗粒将回落到加热管束.若加热管中附着有一定的垢层,由于密度较大的颗粒主要集中在管箱中部,则其更容易造成管路堵塞.2.2 操作参数对加热管束压降的影响2.2.1 通气量对管束压降的影响在颗粒加入量一定的条件下,随着通气量的增加,加热管束中液-固两相流压降增大,但对于不同的颗粒,压降增加的幅度不同,如图 8所示.树脂颗粒压降增加的幅度较大,而陶瓷球和玻璃球压降增加的幅度较小.上述压降变化规律其原因如下:通气量的增加,将增加自然循环的推动力,使加热管束中流体流速增加,同时也加大了颗粒与加热管壁面的碰撞和摩擦,这些因素将导致加热管束中液-固两相流的压降增大;但另一方面,加热管束中的压降随着颗粒含量的增加而增大,而循环流速的提高,降低了颗粒的含量,这将导致管束压降降低.由于两种因素中,升高压降的因素起了主导作用,因此,管束中液-固两相流的压降随着通气量的增加而增大.气量增加时,密度较大的陶瓷球颗粒和玻璃球颗粒的流化程度进一步增加,管束中颗粒含量降低,因此压降增加幅度较小;而密度较低的树脂颗粒在较低的气量下就可以实现很好的流化,因此气量增大时,管束中的颗粒含量变化不大,所以压降增加的幅度较大.2.2.2 颗粒加入量对管束压降的影响在通气量一定的条件下,增加颗粒加入量,对于管束中液-固两相流的压降有两方面的影响.一方面,颗粒加入量增加,使加热管中颗粒含率增加,这将增大管束中液-固两相流的压降;但另一方面,颗粒加入量的增加,又会增加循环阻力,降低流体循环速度,这又将导致管束压降的降低.在这两方面因素的共同作用下,管束压降随着颗粒加入量的增加而增大,但是增加的幅度不大,如图9所示.2.2.3 颗粒种类对管束压降的影响图 10比较了在相同的颗粒加入量下,不同的颗粒对管束中液-固两相流压降的影响.不同颗粒正常流化所需的最小通气量不同,沉降速度较小的聚甲醛和树脂需要的最小通气量较小,而沉降速度较大的陶瓷球和玻璃球需要的最小通气量较大.另外,从图中还可以看到,在相同的颗粒加入量下,随着通气量的变化,不同颗粒的压降数值互相交错.这是因为,管束压降随着管束中颗粒含率和循环速度的增加而增大.通气量相同时,由于沉降速度较小的颗粒较易流化,管束中颗粒含率较低,而循环速度较高;沉降速度高的颗粒不易流化,管束中颗粒含率较高,而循环速度较低.因此,两相流压降随着颗粒种类的变化没有明确的趋势.2.3 压降模型的建立在实验研究的基础上,分析了影响加热管束压降的主要因素,包括管长 l、管路当量直径ed、管壁粗糙度ε′、液相密度ρ、液相黏度μ、液体循环速度u、颗粒当量直径pd、颗粒密度sρ和颗粒含率ε等,并采用无量纲数群的方法建立了加热管束中液-固两相流的压降模型,即模型的平均绝对回归偏差为 8.6%,适用范围为1.1× 104 < Re <3.8× 104,模型计算值与实验值比较如图11所示.(1)通气位置对固体颗粒在加热管束中的分布影响显著.空气由下管箱加入时,有必要设计和安装适宜的分布板.(2)随着通气量和流体循环速度的增加,流化床下部水平管中颗粒的流化程度增加.(3)上、下管箱中颗粒的运动和流化形态不同:在上管箱中,颗粒形成中心上升、四周下降的循环运动,并且随着其密度的降低,颗粒在上管箱中的分布逐渐趋向均匀;在下管箱中,颗粒在管箱中心轴的两侧形成两个大的旋涡,且靠近下行床的一侧的旋涡中所含颗粒较多,旋涡的旋转速度随着气体加入量的增加而增大.(4)加热管束中液-固两相流的压降随着通气量的增加而增大,且密度较小的颗粒,压降增加的幅度较大;随着颗粒加入量的增加,加热管束的压降增大,但幅度较小.(5)建立了加热管束中液-固两相流的无量纲压降模型,模型的平均绝对回归偏差为8.6%.符号说明:【相关文献】[1] Schmidthe H,Klaus G. Circulating particles in a forced-circulation evaporator:A process for avoiding fouling[J]. Chemical Ingenieur Technic,1990,62(10):840-842. [2]陈健生,李修伦,刘姝虹. 气-液-固三相流动沸腾传热计算与实验研究[J]. 化工学报,2002,53(2):139-143. Chen Jiansheng,Li Xiulun,Liu Shuhong. Study on flow boiling heat transfer correlation of vapor-liquid-solid three-phase flow[J]. Journal of Chemical Industry and Engineering,2002,53(2):139-143(in Chinese).[3]张少峰,刘燕. 换热设备防除垢技术[M]. 北京:化学工业出版社,2003. Zhang Shaofeng,Liu Yan. Preventing and Cleaning Fouling Technique for Heat Transfer Equipment [M]. Beijing:Chemical Industry Press,2003(in Chinese).[4] Wen J P,Zhou H,Li X L,et al. Performance of a new vapor-liquid-solid three-phase circulating fluidized bed evaporator[J]. Chemical Engineering and Processing,2004,43(1):49-56.[5]姜峰,贾丽云,刘明言,等. 液固两相流动系统中固体颗粒浓度和速度的 CCD测量[J]. 天津大学学报,2004,37(1):1-5. Jiang Feng,Jia Liyun,Liu Mingyan,et al. CCD measurement of the concentration and velocity of the particle in liquid-solid two-phase flow system [J]. Journal of Tianjin University,2004,37(1):1-5(in Chinese).[6] Wen J P,Jia X Q,Wang C Y,et al. Heat transfer and pressure drop of vapor-liquid-solid three-phase boiling flow of binary mixtures[J]. Chemical Engineering Communications,2005,192(7/8/9):956-971.[7] Liu M Y,Tang X P,Jiang F. Studies on the hydrodynamic and heat transfer in a vapor-liquid-solid flow boiling system with a CCD measuring technique[J]. Chemical Engineering Science,2004,59(4):889-899.[8] Liu M Y,Yang Y,Li X L,et al. Concentration of Gengnian'an extract with a vapor-liquid-solid evaporator[J]. AIChE Journal,2005,51(3):759-765.[9] Michael A I,Sefiane K,Duursma G,et al. Investigation of flow boiling incirculating three-phase fluidized bed. (Part I):Experiments and results[J]. Chemical Engineering Science,2008,63(4):881-895.[10]李修伦,林瑞泰,张利斌. 具有强化传热、防结垢性能的沸腾蒸发装置及操作方法:中国,ZL96120008. 1[P]. 2000-08-01. Li Xiulun,Lin Ruitai,Zhang Libin. Boiling Evaporation Equipment and Operation Methods with Properties of Heat Transfer Enhancing and Preventing Fouling:China,ZL96120008.1[P]. 2000-08-01(in Chinese).[11]李修伦,刘振军,林瑞泰. “九五”国家重点科技攻关项目《盐化工业中万吨级新型卤水蒸发装置及设备研究》[R]. 天津:天津大学,2000. Li Xiulun,Liu Zhenjun,Lin Ruitai. National Key Scientific and Technological Project in the 9th Five-Year Plan“Research on New Type of Brine Evaporation Equipme nt in Ten Thousand ton Class in Salinization Industry”[R]. Tianjin:Tianjin University,2000(in Chinese).。
4.气固相催化反应乙醇脱水流化床实验
![4.气固相催化反应乙醇脱水流化床实验](https://img.taocdn.com/s3/m/b6142babb0717fd5360cdcf0.png)
气固相催化反应乙醇脱水流化床实验一、实验目的1. 通过流化床进行乙醇脱水工艺条件的测定,目的在于了解流化床与固定床的床型结构与操作方法的不同。
2. 通过流化床进一步掌握类似催化裂解的实验技巧。
3.学会在不同装置上运用所学的知识去解决各类问题的本领。
4. 选学习中也要掌握全设备的仪表控制方法、流程、反应器结构、反应与操作原理。
5. 掌握各类脂肪醇脱水生成相应碳数的烯烃方法。
二、实验原理取乙醇脱水反应制乙烯是化学反应中比较简单的一种反应过程,一般要通过固定床,催化剂处于静止状态让反应物通过加热的反应床层,此时乙醇既转化为乙醚和乙烯及水。
低温下乙醚占优,高温下乙烯占优。
催化剂一般是采用φ3×3mm 的条状脱水催化剂,如;活性氧化铝、ZSM -5分子筛等催化剂都有较高转化率和选择性。
但固定床在热量传递方面是依靠外部供热,床层内部温度与壁之间有很大的温差,对转化带来不利因素。
如果将催化剂颗粒减小到1mm 以下,在反应器内由下至上通入反应物(气体或液体)。
此反应物通过床层速度增大到一定值后,上升的气体或液体将会把粒子带起,使流体中的粒子呈悬浮状态,若一直保持稳定的这一流速,则床层的粒子会不断上下跳动沸腾,这时我们将此称为沸腾流化床操作,它与固定床不同点是在流化床中粒子沸腾时,可将热量快速从壁上传至内部,而且全部床层内温度很均匀,这就是流化床的优点。
如果流化床的进料速度过大,会将粒子吹出,这时粒子便进入移动状态,在催化裂化的反应中,催化剂可从反应床移至再生床,从再生床再回到反应床,并周而复始稳定循环,以保持较高催化活性。
工业催化裂化就是这种形式的操作,但在实验室较少不采用循环法去操作,多改用在一个反应器内反应后再进行再生。
也就是催化剂上因结碳而失活,采用空气和氮气的混合气在同一个反应器内保持500℃流化状态下操作,活化一定时间,能烧掉结碳并恢复活性。
对乙醇脱水反应催化剂失活时即可按此方法进行再生。
流态化实验报告
![流态化实验报告](https://img.taocdn.com/s3/m/803bb789185f312b3169a45177232f60ddcce7d6.png)
一、实验目的1. 观察并理解固体流态化现象。
2. 测定床层的堆积密度和空隙率。
3. 研究流体通过颗粒床层时的压降与空塔气速的关系,并确定临界流化速度。
4. 了解流化床流动特性的差异,如聚式流化和散式流化。
5. 掌握流化床流动特性的实验研究方法。
二、实验原理固体流态化是指流体通过固体颗粒床层时,在一定的流速范围内,固体颗粒能够悬浮在流体中自由运动,表现出类似流体的性质。
当流速低于某一临界值时,颗粒呈静止状态,称为固定床;当流速超过临界值时,颗粒开始运动,床层呈现流态化状态。
流态化实验主要研究以下关系:1. 床层的堆积密度和空隙率:通过测定床层高度和床层体积,计算堆积密度和空隙率。
2. 压降与空塔气速的关系:通过测定流体通过床层时的压降和空塔气速,绘制流化曲线,确定临界流化速度。
3. 流化床流动特性的差异:观察聚式流化和散式流化的现象,分析其差异。
三、实验装置与材料1. 实验装置:流化床实验装置,包括气体流量计、压差计、温度计、气体分布板、石英砂床层等。
2. 实验材料:石英砂颗粒,空气或水。
四、实验步骤1. 准备实验装置,检查各部件是否正常。
2. 将石英砂颗粒倒入床层,调整床层高度,测量床层体积和首次静床高度。
3. 打开电源,启动风机,调节气体流量,从最小刻度开始,逐步增加流量,同时记录空气流量、空气温度、床层压降等上行原始数据。
4. 继续调节气体流量,从上行的最大流量开始,逐步减少流量,直至最小流量,记录相应的下行原始数据。
5. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
6. 重复以上步骤,进行多次实验,确保数据的准确性。
五、实验结果与分析1. 床层的堆积密度和空隙率:通过测量床层体积和首次静床高度,计算堆积密度和空隙率。
结果显示,床层的堆积密度约为1.5 g/cm³,空隙率约为0.45。
2. 压降与空塔气速的关系:通过绘制流化曲线,确定临界流化速度。
结果显示,临界流化速度约为0.6 m/s。
实验4 流化床基本特性的测定
![实验4 流化床基本特性的测定](https://img.taocdn.com/s3/m/70fa042531126edb6e1a100c.png)
实验四流化床基本特性的测定流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并使固体颗粒具有某些流体特征的一种床型,它是流态化现象的具体应用,已在化工、能源、冶金、轻工、环保、核工业等部门得到广泛应用。
化工领域中,加氢、烯烃氧化、丙烯氨氧化、费-托合成及石油的催化裂化等均采用了该技术。
因此,它是极为重要的一种操作过程。
流化床反应器的重要特征是细颗粒催化剂在上升气流作用下作悬浮运动,固体颗粒剧烈地上下翻动。
这种运动形式使床层内流体与颗粒充分搅动混和、物料连续、结构紧凑、传质速度快、传热效率高、床层温度分布均匀,避免了固定床反应器中的热点现象,但操作中会造成固体磨损、床层粒子返混严重、反应中转化率不高等现象。
一、实验目的1.通过冷模观察聚式和散式流态化的实验现象,建立起对流态化过程的感性认识。
2.了解流化床的压降分布原理,通过冷模测定流化床的特定曲线。
3.通过冷模观察得到临界流化速度和带出速度,并计算出费劳德数Fr、膨胀比和流化数。
4.掌握流化床液体停留时间分布的测定方法及实验结果分析。
二、实验原理1.流化现象流体从床层下方流入,通过图1中虚线所示的分布板而进入颗粒物料层时,随着流体流速u0的不同,会出现不同的流化现象(图1)。
(a)(b)(c)(d)(e)固定床临界流态化散式流态化聚式流态化稀相流态化图1 流化现象(1)固定床阶段流体流速较低时,固体颗粒静止不动,即未发生流化,床层属于固定床阶段(图1(a)),阻力随流体流速增大而增大。
(2)临界流化阶段流体流速继续增大,颗粒在流体中的浮力接近或等于颗粒所受重力及其在床层中的摩擦力时,颗粒开始松动悬浮,床层体积开始膨胀,当流速继续增大,几乎所有的粒子都会悬浮在床层空间,床层属于初始流化或临界流化阶段(图1(b))。
此时的流速称为临界流化速度或最小流化速度u mf。
(3)流化阶段对于液固流化床,当液速u f>u mf时,由于液体与固体粒子的密度相差不大,此种床层从开始膨胀直到气力输送,床内颗粒的扰动程度是平缓的加大的,床层的上界面较为清晰,即床层膨胀均匀且波动较小,床层属于散式流化阶段(图1(c))。
固定床与流化床反应器流动性能测试2014-11-21
![固定床与流化床反应器流动性能测试2014-11-21](https://img.taocdn.com/s3/m/33923de4998fcc22bcd10dbb.png)
t*E(t) 0.0000 0.0140 0.0910 0.9964 1.0410 0.6250 0.4034 0.3160 0.2818 0.2690 0.2269 0.2099 0.1630 0.1211 0.1042 0.0688 0.0515 0.0805 0.0000 0.0676 5.1311 0.35635 2.80627
2.5000
2.0000
1.5000 1.0000
0.5000
0.0000 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800
V(t)
图1. V(t)-t关系图
t
0.2000
图中曲线与横坐标的面积=55.6×0.01×0.1=0.0556
40.0000 35.0000
30.0000 25.0000
E(t)
20.0000
15.0000 10.0000 5.0000 0.0000
0.0000 0.0200 0.0400 0.0600
图2.E(t)-t关系图
0.0800
0.1000
0.1200
0.1400
0.0.3184 0.045762 0.00075 112.1403
无因次方差
釜数
方差2 0.000752 = =0.35635 平均停留时间2 0.045762
1 1 = =2.80627 无因次方差 0.35635
t
,
0.293216 0.302379 0.312375 0.321538 0.330701 0.339864 0.349860 0.359023 0.368186 0.378182 0.387345 0.396508 0.406504 0.415667 0.424830 0.434826 0.443989 0.453152 0.462315 0.472311 合计 平均停留时间 方差
气固流化床中颗粒聚团的流动特性
![气固流化床中颗粒聚团的流动特性](https://img.taocdn.com/s3/m/2897522ceefdc8d376ee32ce.png)
2016年6月 The Chinese Journal of Process Engineering June 2016收稿日期:2015−12−28,修回日期:2016−02−16基金项目:国家重点基础研究发展规划(973)基金资助项目(编号:2012CB215000)作者简介:黄亚航(1991−),男,湖北省武汉市人,硕士研究生,化工过程机械专业;刘梦溪,通讯联系人,E-mail: mengxiliu@.气固流化床中颗粒聚团的流动特性黄亚航, 刘梦溪, 胡 娟[中国石油大学(北京)重质油国家重点实验室,北京 102249]摘 要:在一套流化床冷模实验装置中研究了A 类颗粒在鼓泡床和湍流床内的微观两相流动结构,测量了床层内不同轴、径向位置的瞬时固含率脉动信号,通过MATLAB 软件进行解耦并统计分析求解出稠密相与稀疏相的平均固含率,以此为基础拟合了瞬时固含率信号的概率密度曲线,最后从信号中提取出颗粒聚团的有关信息. 结果表明,瞬时固含率为0.05∼0.72,乳化相中颗粒聚团平均固含率为0.552∼0.562. 颗粒聚团的体积分率和出现频率随表观气速增加而降低,分别为0.01∼0.5和0.02∼1.6 Hz ,持续时间小于0.12 s. 关键词:颗粒聚团;固含率;体积分率;频率;持续时间中图分类号:TQ051.11 文献标识码:A 文章编号:1009−606X(2016)03−0374−061 前 言气固流化床反应器由于传热和传质效率高、可流化的固体颗粒尺寸分布范围广、结构简单等优点被广泛应用于石油、化工等行业[1]. 流化床内气体和固体粒子的微观流动结构对流化床的性能有显著影响,但由于两相流动的多流域、非线性的复杂特性,目前还难以深入认识固体颗粒的动态行为和流动结构.目前,对于气固流化床内微观流动结构的研究大多局限于循环流化床[2,3]等表观气速较高的流化床,而对鼓泡床和湍动床的研究较少. 经典两相流模型[4]将气固流化床的复杂流动简化为由恒定固含率的乳化相和几乎不含固相颗粒的气泡的稀疏相构成. 但实验结果[5]表明,乳化相的固含率随时间波动,因此这种假设与实验并不完全相符.乳化相中固体浓度的波动可能是由悬浮颗粒、气泡空穴或尾涡、颗粒聚团引起的. Lettieri 等[6]在FCC 流化床中发现,基于单颗粒计算的终端速度与实验值相差很大,表明流化床中的部分颗粒可能以团聚物形式存在. Mostoufi 等[7]发现在相同条件下,乳化相中颗粒的平均速度低于单颗粒和孤立颗粒,示踪颗粒的运动并不像单颗粒那样为布朗运动,而是沿直线上下往复运动,表明有颗粒聚团存在[8]. Cocco 等[9]用高速摄像机拍摄到了临近气泡处的颗粒聚团. 颗粒聚团存在会导致乳化相局部固含率增加,如Sharma 等[10]发现在快速流化床中,颗粒聚团的固含率是乳化相固含率的2.4倍. 认为颗粒聚团会随其合并或在床中循环运动而变大. 乳化相中颗粒聚团的体积分率、平均固含率、频率和持续时间对流化床的性能起关键作用.本工作建立了一套气固流化床冷模实验装置,研究了流化床不同区域内的固含率信号,通过对信号进一步处理得到了颗粒聚团的体积分率、频率和持续时间的变化规律.2 实 验2.1 实验物料固体颗粒为主要用于重油催化裂化装置中的催化裂化催化剂(FCC),为A 类颗粒,平均粒径79 μm ,堆积密度958 kg/m 3,颗粒密度1598 kg/m 3,其粒度分布见表1. 气体介质为常温空气.表1 FCC 催化剂的粒度分布Table 1 Particle size distribution of FCCParticle diameter, d p (μm) <40 40∼50 50∼70 70∼90 90∼110110∼140140∼200 >200 V olume distribution (%)1.45 6.08 24.15 23.83 22.4514.837.170.042.2 实验装置及流程为保证加工精度及便于观察内部气固流动状态,实验装置筒体由有机玻璃材料(PMMA)制造,如图1所示,总高5460 mm ,床体直径300 mm ,壁厚7 mm ,高2900 mm. 底座、底锥和旋风分离器由碳钢制造.空气由鼓风机压缩后先进入气体缓冲罐,再经转子流量计定量输送到实验装置中,气体预分配由板式分布器完成. 为保证气体分配的均匀性,分布器下方设置一个气体预混腔,气体通过气体分布板进入流化床层后会携带部分颗粒到床层外. 为保证整个床层内颗粒质量和粒径分布不随时间变化,设置了两级PV 型旋风分离器回收被带出的较细FCC 颗粒. 为避免影响床内的气固流动,料腿出口设置在靠近床层表面的稀相段. 两级旋风分离器的总捕集效率大于99.99%. 旋风分离器未能捕集的剩余颗粒由布袋过滤器收集,定期返回床层中.(a) General view (b) Internal dimensions (mm)图1 实验装置示意图Fig.1 Schematic diagram of the experimental apparatus实验操作条件:流化床内表观气速为0.04∼0.55 m/s ,流化床环隙区底部设置一个板式气体分布器,开孔率为0.465%. 2.3 实验方法 2.3.1 测试方法床层轴向、径向固含率采用PV-6D 型颗粒速度测量仪(中国科学院过程工程研究所)测量,以两束平行的光导纤维为测量探头,每束光纤直径0.8 mm ,包含发射光线和接受的反射光两部分. 当颗粒通过探头时,照射在颗粒上的光线反射到接收端,经过A/D 转换器转换成电压信号传送到计算机. 颗粒顺光纤束排列方向运动时,同一颗粒(群)产生的反射信号是形状相似而时间上有一定延迟的两路信号(图2). 仪器不能直接测得床层中的固含率,只能得到与固含率对应的电压信号,故需对仪器进行标定,将电压值转换为固含率. 标定时,选择床层较稳定的一个截面,截面的平均床层浓度由上、下两个等距测压值计算得到. 床体半径R =143 mm ,沿截面径向r 取8个测量点,每个点取5个样本值. 沿截面积分求得平均电压V . 最终得到标定的瞬时固含率为0.62s 0.043e ,V ε= (1)其最大相对误差不超过5%,表明所得数据可信.光纤探头置于流化床不同轴向、径向位置,见图1(b). 光纤探针采样频率为5 kHz.图2 光纤测量示意图Fig.2 Schematic diagram of the measurementwith the optical fiber probe2.3.2 数据处理通过大量的试算,得到了能准确描述稀疏、稠密相固含率时间序列的概率密度分布函数,如图3所示. 根据实验数据拟合出稀疏相对应的概率密度函数为对数正态分布函数:2s ()).f ε⎤⎥⎦(2)图3 微观两相结构示意图Fig.3 Schematic diagram of microscale two-phase flow structure拟合的稠密相的概率密度函数为高斯分布函数:2s ().f ε⎤⎥⎥⎦(3) 反应器局部稀疏、稠密相共存,由局部质量衡算得s 1sb 1sd (1),f f εεε=+− (4)P r o b a b i l i t y d e n s i t yd i s t r i b u t i o n5101520250.00.20.40.60.8 Optical fiber signalT r a n s i t e n t s o l i d h o l d u p , εsTime,t (s)1. Air blower 2. Surge tank3. Rotary flowmeter4. Gas distributor5. Fluidized bed6. Bag filter 7, 8. Cyclone 9. Diplegssd s1sd sb ,f εεεε−=− (5)局部稀疏相的相分率为f l ,稠密相的相分率为1−f l .由式(2)∼(4)得描述局部瞬态固含率的概率密度分布函数为s 121())).f f f ε=+⎤⎥⎦(6)Bi 等[11]提出可通过固含率信号的偏斜度S (三阶中心距)和标准差σ分别求出颗粒稀相与密相的平均固含率[式(7), (8)],两种固含率的平均值εs,dm 可由式(9)求得.sb sd s ,2S σεε⎤=+⎦(7)sb sb s ,2S σεε⎤=−⎦(8)s,dm sb sd ()/2.εεε=+ (9)本研究将εs,dm 作为稀疏、稠密相的分界值. 在同一操作条件、同一空间位置,瞬时固含率<εs,dm 认为是稀疏相固含率,瞬时固含率≥εs,dm 则为稠密相固含率. 拟合不同位置的固含率概率密度曲线,相对误差在10%以内.实验中通过绘制床层压降曲线得到起始流化时的固含率为0.54. 但由图3可看出,有部分组分的固含率大于起始流化固含率,定义其为颗粒聚团.Liu 等[12]给出了密相流化床中颗粒聚团的判定标准:(1)固含率必须大于最小流化状态下的固含率;(2)颗粒聚团引起的局部固含率变化幅度必须大于乳化相固含率的随机波动幅度;(3)在一个特征长度小于预期聚团尺寸但又比单颗粒尺寸大数个数量级的采样空间内,能测量到固体分率增加.聚团相的体积分率可通过对固含率概率密度曲线积分得到:s,dm1ag s s ()d .f f εεε=∫(10)颗粒聚团频率F ag 可由下式计算:F ag =n /t T . (11)本研究使用MATLAB R2013a GUI 界面编写信号处理程序,采用Liu 等[12]提出的颗粒聚团判定标准对聚团进行识别. 2.3.3 流态化实验实验前先将PV-6D 型颗粒速度测量仪预热5 min ,校准其空床与满床时的电压. 装入FCC 催化剂至850 mm ,启动风机,根据转子流量计示数调节阀门的开度,调节进气量使床层表观气速为0.1∼0.5 m/s. 待气速稳定后,采集床内固含率信号,单次时长为26 s. 采集的数据实时传递到计算机供后续分析.3 结果与分析3.1 瞬态固含率信号的特征图4为操作气速u g =0.3 m/s 、静床高h =850 mm 时,分布器影响区、过渡区和顶部区内不同径向位置的固含率. 可看出,气固流化床不同区域各径向位置的瞬时固含率均随时间变化,波动范围为0.05∼0.72. 低固含率部分代表稀疏相,高固含率部分代表稠密相. 随径向位置越来越靠近边壁,固含率波动强度越来越弱,表明流动逐渐由稠密相主导;而在近中心处,固含率波动强度较强,表明流动由稀疏相和稠密相共同作用.图4 瞬态固含率信号Fig.4 Transient solid holdup signals3.2 固含率信号概率密度分布Cui 等[13]发现瞬态固含率信号的概率密度分布呈双峰分布. 为定量研究不同操作条件下反应器各流动区域稀疏、稠密相出现的概率及在不同轴、径向位置的比例,5101520250.00.20.40.60.00.20.40.60.00.20.40.60.8Time, t (s)T r a n s i e n t s o l i d h o l d u p , εs(a) Distributor affect region, z /h =0.14r /R =0.839r /R =0.420εs =0.365εs =0.303εs =0.330r /R =05101520250.00.20.40.60.00.20.40.60.00.20.40.60.8r /R =0.839εs =0.384(b) Transition region, z /h =0.38Time, t (s)r /R =0.420εs =0.364r /R =0εs =0.2815101520250.00.20.40.60.00.20.40.60.00.20.40.6εs =0.322εs =0.360εs =0.300r /R =0r /R =0.420r /R =0.839(c) Top region, z /h =0.85Time, t (s)对固含率的概率密度分布进行分析,如图5所示. 从图5(a), 5(b)可看出,固含率概率密度曲线在床体中心附近呈双峰分布,每个峰所占比例沿径向位置逐渐变化. 稀疏相的概率密度峰对应的面积从中心到边壁逐渐减小并于边壁处消失,呈单峰分布,如图5(c)所示;乳化相的概率密度峰对应的面积从中心到边壁逐渐增大,表明近壁区域流动结构由稠密相主导;除导流筒边壁和反应器边壁处,稀疏、乳化两相结构共同存在,只是各相所占比例沿径向位置不同. 此时,流动结构由稀疏相和稠密相共同作用.图5 概率密度分布Fig.5 Probability density distribution3.3 聚团相平均固含率颗粒聚团的平均固含率是指乳化相中固含率超过起始流化固含率部分(聚团物)的固含率,反应了聚团物的密集程度. 图6为不同气速下、不同径向位置处颗粒聚团的平均固含率. 如图所示,颗粒聚团平均固含率波动范围为0.552∼0.562,表明表观气速和径向位置对颗粒聚团固含率影响很小,这与Bai 等[14]的研究结果相同. 随表观气速增加,相同径向位置的固含率略有增加,这是由于表观气速增加导致气泡合并和破碎程度加剧,气泡内颗粒释放形成聚团. 在相同气速下,随径向向外壁扩展,聚团的固含率有逐渐降低的趋势,在边壁处由于边壁效应导致颗粒流动速度减缓,气泡数减少,聚团形成速率增加,其平均固含率略有增加.图6 颗粒聚团平均固含率沿径向的分布Fig.6 Radial distributions of average solid holdupof particle agglomerates3.4 聚团相体积分率聚团相的体积分率f ag 反映了两相结构对流动的影响,其变化范围为0.01∼0.5,如图7所示. 随气速增加,流化床床层形态由鼓泡床变为湍动床,相同位置聚团相的体积分率逐渐降低. 随径向位置越来越靠近边壁,不同气速下聚团相的体积分数均呈先降低后升高的趋势. 这是由于流化床中心气泡合并和破碎程度剧烈,气泡内或周围颗粒易形成聚团,而在边壁处由于边壁效应,气泡破碎时其周围颗粒受到气泡的张力增强,颗粒被挤压而更易形成聚团. 在分布器影响区,气泡运动以合并为主且分布均匀,颗粒聚团体积分率较低且径向分布均匀.图7 颗粒聚团体积分率的径向分布Fig.7 Radial distributions of volume fractionof particle agglomerates通过关联颗粒聚团的相分率f ag 与时均固含率s ε得0.00.10.20.30.40.50.60.7Transient solid holdup, εsP r o b a b i l i t y d e n s i t y d i s t r i bu t i o n0.00.10.20.30.40.50.60.7Transient solid holdup, εs0.00.10.20.30.40.50.60.7Transient solid holdup, εs0.00.20.40.60.8 1.00.5520.5560.560A v e r a g e s o l i d h o l d u p o f p a r t i c l ea g g l o m e r a t e s , εa gRadial position, r /R0.00.10.20.30.40.50.60.70.80.9 1.00.00.20.40.00.20.40.00.20.40.6Radial position, r /RV o l u m e f r a c t i o n o fp a r t i c l e a g g l o m e r a t e s , f a gag s 0.630.05.f ε=− (12)通过大量实验数据验证关联曲线,结果如图8所示,其相对误差小于12%.图8 颗粒聚团体积分率实验值与估计值对比Fig.8 Comparison of particle agglomerates volume fractionbetween experimental data and prediction3.5 颗粒聚团产生频率与持续时间F ag 反映了颗粒聚团的生成频率. 随操作条件和径向位置改变,颗粒聚团产生频率变化,变化范围为0.02∼1.6 Hz ,如图9所示. 流化床内颗粒聚团不断合并、破碎,操作条件变化会影响聚团合并和破碎的速率. 总体来看,随气速增加,颗粒聚团的产生频率逐渐降低,这是由于气速增加使流化床中颗粒形成环−核结构,在中心处有大量气泡破碎,颗粒受到气泡的张力易产生聚团,且颗粒聚团的产生频率趋于稳定. 在边壁处聚团产生频率急剧下降,这是由于边壁效应导致边壁处气泡较少,因此聚团数减少. 但从图7可看出边壁处颗粒聚团的体积分率增加,表明边壁处颗粒聚团尺寸变大,Liu 等[12]在环流反应器的研究中也有类似发现.图9 颗粒聚团频率沿径向的分布Fig.9 Radial distribution of frequency of particle agglomerates通过关联颗粒聚团产生频率F ag 与时均固含率s ε得2ag s s 19.67.03 1.19.F εε=−++ (13)通过大量实验数据验证关联曲线,结果如图10所示,其相对误差小于10%.图10 颗粒聚团频率实验值与估计值对比Fig.10 Comparison of particle agglomerates frequencybetween experimental data and prediction颗粒聚团持续时间τag 取决于颗粒聚团的大小和运动速度,其变化范围为0.005∼0.12 s ,如图11所示. 随表观气速增加,颗粒聚团持续时间减小,这是由于表观气速增加使气泡破碎加剧,更多气泡进入乳化相破碎聚团,使颗粒聚团数量和尺寸减少. 边壁处由于边壁效应使颗粒聚团运动速率降低,颗粒聚团的持续时间增加,进一步证实了颗粒聚团尺寸增大. 顶部区域颗粒聚团的持续时间长于底部区域,Cocco 等[9]认为是颗粒聚团在上升过程中不断合并变大所致. 在分布器影响区和过渡区,颗粒聚团持续时间随表观气速增加变化较小,且沿径向分布均匀,表明颗粒聚团在这两个区域尺寸较均匀.图11 颗粒聚团持续时间沿径向的分布Fig.11 Radial distributions of duration time of particle agglomerates4 结 论在气固流化床冷模实验装置中,采用光纤探针测量了不同气速下流化床不同轴、径向位置的固含率信号.0.250.300.350.400.100.150.20V o l u m e f r a c t i o n o f p a r t i c l e a g g l o m e r a t e s , f a gLocal time-averaged solid holdup, εs0.00.10.20.30.40.50.60.70.80.9 1.00.00.51.00120.00.51.01.5Radial position, r /RF r e q u e n c y o f p a r t i c l ea g g l o m e r a t e s , F a g (H z )0.200.250.300.350.400.45F r e q u e n c y o f p a r t i c l e a g g l o m e r a t e s , F a g (H z )Local time-averaged solid holdup, εs0.00.10.20.30.40.50.60.70.80.9 1.00.000.040.000.040.000.040.080.12Radial position, r /RD u r i n g t i m e o fp a r t i c l e a g g l o m e r a t e s , τa g(s )通过对信号进行分析,考察了流化床中聚团相的体积分率和产生频率,得到以下结论:(1)流化床内FCC固含率时间序列信号的概率密度曲线在床层中心附近呈双峰分布,其中,稀疏相固含率的概率密度分布呈对数正态分布;稠密相固含率的概率密度分布近似呈高斯分布.(2)表观气速和径向位置对颗粒聚团固含率影响很小,可视为定值.(3)颗粒聚团的体积分率随表观气速增加呈先降低后升高的趋势,变化范围为0.01∼0.5.(4)颗粒聚团的产生频率变化范围为0.02∼1.6 Hz,并随表观气速增加而降低. 持续时间变化范围为0.005∼0.12 s,边壁处颗粒聚团持续时间略增加,颗粒聚团尺寸变大.符号表:d 两根光纤探头的间距 (mm)d p 颗粒粒度(μm)f1稀疏相相分率f ag聚团相的体积分率 (%)F ag颗粒聚团频率 (Hz)h 静床高度 (mm)n颗粒聚团数r 径向位置 (mm)R 床体半径 (mm)r/R 无量纲径向位置S 固含率信号的斜度t 时间序列 (s)t1 气泡到达下探头的时刻 (s)t2 气泡到达上探头的时刻 (s)t T 采样时间 (s)u g表观气速 (m/s)V 光纤探针瞬时电压 (V)z 轴向高度 (mm)εag 颗粒聚团平均固含率εs 瞬时固含率sε平均固含率sbε稀疏相平均固含率sdε稠密相平均固含率εs,dm稀疏、稠密相的分界值sbμ稀疏相固含率的数学期望sdμ稠密相固含率的数学期望sbσ稀疏相固含率的标准偏差sdσ稠密相固含率的标准偏差τag 颗粒聚团的持续时间参考文献:[1] 郭慕孙,李洪钟. 流态化手册 [M]. 北京:化学工业出版社, 2008.897−898.[2] Wei F, Jin Y, Yu Z Q. The Visualization of Macro Structure ofGas−Solids Suspension in High Density CFB [A]. Avidan A A.Proceedings of Circulating Fluidized Bed Technology IV [C]. New York: American Institute of Chemical Engineers (AIChE), 1994.588−593.[3] Horio M, Kuroki H. Three-dimensional Flow Visualization ofDilutely Dispersed Solids in Bubbling and Circulating Fluidized Beds [J]. Chem. Eng. Sci., 1994, 49(15): 2413−2421.[4] Toomey R D, Johnstone H F. Gas Fluidization of Solid Particles [J].Chem. Eng. Process., 1952, 48(1): 220−226.[5] Cui H, Mostoufi N, Chaouki J. Gas and Solid between DynamicBubble and Emulsion in Gas-fluidized Beds [J]. Powder Technol., 2001, 120(1/2): 12−20.[6] Lettieri P, Newton D, Yates J G. Homogeneous Bed Expansion ofFCC Catalysts, Influence of Temperature on the Parameters of the Richardson−Zaki Equation [J]. Powder Technol., 2002, 123(1): 221−231.[7] Mostoufi N, Chaouki J. On the Axial Movement of Solids inGas−Solid Fluidized Beds [J]. Transactions of the Institution of Chemical Engineers, 2000, 78(6): 911−920.[8] Mostoufi N, Chaouki J. Flow Structure of the Solids in Gas−SolidFluidized Beds [J]. Chem. Eng. Sci., 2004, 59(20): 4217−4227. [9] Cocco R, Shaffer F, Hays R, et al. Particle Clusters in and aboveFluidized Bed [J]. Powder Technol., 2010, 203(1): 3−11.[10] Sharma A K, Matsen J M, Tuzla K. A Correlation for Solid Fractionin Clusters in Fast-fluidized Beds [A]. Kwauk M, Li J H, Yang W C.Proceedings of the 5th International Conference on Fluidization [C].Beijing: Tsinghua University Press, 2001. 301.[11] Bi H T, Su P C. Local Phase Holdups in Gas−Solids Fluidizationand Transport [J]. AIChE J., 2001, 47(9): 2025−2031.[12] Liu M X, Shen Z Y, Yang L J. Microscale Two-phase FlowStructure in a Modified Gas−Solid Fluidized Bed [J]. Ind. Eng.Chem. Res., 2014, 53(34): 13475−13487.[13] Cui H, Mostoufi N, Chaouki J. Characterization of DynamicGas−Solid Distribution in Fluidized Beds [J]. Chem. Eng. J., 2000, 79(2): 133−143.[14] Bai D, Issangya Y S, Grace J R. Characteristics of Gas SolidsFluidized Beds in Different Flow Regimes [J]. Ind. Eng. Chem.Res., 1999, 38(3): 803−811.Flow Characteristic of Particle Agglomerates in a Gas−Solid Fluidized BedHUANG Ya-hang, LIU Meng-xi, HU Juan[State Key Laboratory of Heavy Oil, China University of Petroleum (Beijing), Beijing 102249, China]Abstract: Transient solid hold-up signals were registered in a cold fluidized bed and statistically analyzed. Particle agglomerates in the emulsion phase were identified from signals and the agglomerate properties were investigated. The volume fraction of the transient solid holdup signals varied from 0.05 to 0.72. Mean solid holdup of particle agglomerates in the emulsion fluctuated in the range of 0.552∼0.562, barely influenced by switch of operation pattern. The volume fraction of the particle agglomerates decreased first and then increased with increasing superficial gas velocity, varying over a range of 0.01∼0.5 with flow regimes. Agglomerate frequency varied over the range of 0.02∼1.6 Hz and the duration time was less than 0.12 s in most cases.Key words: particle agglomerates; solid holdup; volume fraction; frequency; duration time。
气液固流化床性能测定实验心得
![气液固流化床性能测定实验心得](https://img.taocdn.com/s3/m/06f8342aa88271fe910ef12d2af90242a995ab64.png)
气液固流化床性能测定实验心得我进行了一系列关于气液固流化床的性能测定实验,以下是我的心得体会:首先,在实验前,我们需要对气液固流化床的原理和性能进行了解。
了解了流化床的工作原理以及液体和固体颗粒的特性之后,我对实验的设计有了更深入的理解。
在实验中,我选择了四种不同颗粒直径的固体颗粒进行了测试,并使用不同流速和液体浓度的条件进行了实验。
其次,实验中我发现了一些需要注意的问题。
首先是对实验数据的准确记录。
由于实验涉及到多种参数的测量,如颗粒床压力、颗粒床温度、颗粒床密度等,所以我在实验进行过程中注意记录每一次数据的变化,并及时校对和修正。
其次是实验过程中的安全问题。
由于气液固流化床的操作需要涉及到气体和液体的使用,所以我们需要佩戴合适的防护设备,并注意操作的安全性。
在实验中,我发现了一些有趣的现象。
首先是流化床的颗粒床高度与床压力的关系。
通过改变颗粒的直径和流速,我发现颗粒床的高度与床压力呈正相关关系。
其次是颗粒床的温度分布。
通过测量颗粒床不同位置的温度,我发现床温在上部较低,在床底部较高。
这是因为床底部有燃烧反应产生的热量,使得床底温度较高。
此外,我还观察到了液体的浓度对固体颗粒床的扩散性能的影响。
通过改变液体浓度,我发现液体浓度越高,颗粒床的扩散效果越好。
在实验过程中,我也遇到了一些问题。
首先是操作实验设备的熟练度。
由于实验设备较为复杂,需要对流体力学和热力学等知识有一定的了解,所以在操作设备时需要格外小心,避免出现意外。
其次是实验数据的处理。
由于实验数据的收集和处理过程较为繁琐,所以在处理数据时需要认真仔细,以保证结果的准确性。
最后,通过这次实验,我对气液固流化床的工作原理和性能有了更深入的了解。
我了解到流化床在化工工艺中的广泛应用,并认识到了流化床在工业生产中的重要性。
我也进一步熟悉了实验操作的流程和步骤,并学会了如何正确处理和分析实验数据。
通过这次实验,我提高了对化工实验操作和数据处理的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四气固流化床反应器的流化特性测定
实验目的
1.观察了解气固流化床反应器中不同气速下固体粒子的流化状况,建立起对流态化过
程的感性认识。
2.了解和掌握临界流化速度U mf和起始鼓泡速度U mb的测量原理、方法和步骤,明确细粒子
流化床的基本特性。
3.通过对U mf和U mb的测定,进一步理解两相理论以及临界流化速度与起始鼓泡速度的区别。
二、实验原理
1 •在气固流化床反应器中,气体通过床层的压力降△P与空床速度U0之间的关系能够
很好地描述床层的流化过程。
如图1所示:气体自下向上流过床层。
当气速很小时,气体通过床层的压力降△P与空床速度U o在对数坐标图上呈直线关系(图1中的AB段);当气速逐渐增大到△ P大致等于
单位面积的重量时,△ P达到一极值(图1中P点);流速继续增大时,△ P略有降低;此后床层压力降△ P基本不随流速而变。
此时将流速慢慢降低,开始时与前一样厶P基本不变,直到D点以后,△ P则随流速的降低而降低,不再出现△P的极大值,最后,固体粒子又互
相接触,而成静止的固定床。
2•在一正常速度下,处于正常流化的流化床,如果突然关闭气源,则由于床层中有气泡存在,以气泡形式存在的气体首先迅速逸出床层,床层高度迅速下降;而后是浓相中的气
体逸出,床层等速下降;最后是粒子的重量将粒子间的部分气体挤出,床层高度变化很小。
由此可得其床层高度随时间变化的崩溃曲线(如图2所示)。
因此,可以设想,如果床层中
log U
图1 △P〜U关系
图2 H T 〜t 关系
没有气泡,则床层一开始就随时间等速下降, 所以,将上述崩溃曲线中的等速部分外推到 t=0
处时的床层高度,即为浓相床层的高度
H D 。
这样,只要重复上述过程,多做几条崩溃曲线,
总可以找到一条曲线,这条曲线正好无气泡逸出段,开始就是等速下降的起点。
与此相应的 气速即为起始鼓泡速度 U mb 。
根据△ P 的情况,还可以了解床内的动态,如沟流和节涌等等。
三、实验装置与流程
如图3所示:本实验所用的流化床为 M00X 4mm 的有机玻璃制成的。
床体上装有扩大 管和过滤装置,以回收稀相段的微细粒子。
气体分布板为多孔筛板,开孔率为
1%。
图3
实验装置
真
热 空 —
------------------- , 导 泵
■
池
数字积分器
缓冲器
空气
1
2 3 4 5 6 t (sec)
H T
H D H D
300 290 280 270 260
四、实验步骤
1、熟悉实验流程,并检查各设备是否完好,使之处于准备运转状态。
2、先打开空气压缩机,慢慢将空气送入细粒子流化床中,逐次改变气体流量(由小到大),
记下相应流速下床层压降△ P,并记入表1中(注意观察流化床中粒子由固定床阶段> 均匀散式流化床阶段,鼓泡流化状态的变化情况)。
再逐渐减小气量,记录不同气速下
的AP,观察两者有何不同。
3、然后,先调好一个流量,待床层达到稳定流化的情况下,突然关闭气源,记录从切断气
源的瞬间开始床层高度随时间的下降关系(记录表2)。
4、再改变流量,重复上面步骤3,连续做几次,将数据记录表2中,在坐标纸上作H T〜t 图,便可
得床层高度H T随时间变化的关系曲线,再从图中曲线组得到鼓泡流化速度。
五、数据记录与处理
(1)实验数据记录:
(2)
作log△ P〜logu。
图,并从图中求出临界流化速度U mf。
△ P〜U关系
U mf=0.220 (m/sec)
六、思考与讨论
1.log△ P〜logG图中上行与下行之临界点所反映出的床层动态。
答:log △ P~logG图。
可以观察到,临界点前,通过床层的流体流量较小,颗粒受到的升力(浮力与曳力之和)小于颗粒自身重力,颗粒在床层内静止不动。
流体与颗粒之间的空隙通过。
床层不发生鼓泡,此时床层称为固定床。
由于气速小于临界流化速度U随着气度的增加,颗粒受到的曳力也随着增大。
达到临界点时,床层开始鼓泡。
若颗粒受到的升力恰好等于自身重力时,颗粒受力处于平衡状态,这种现象被称为固体的流态化。
随气速的继续增加,鼓泡变得剧烈,床层中流体的实际流速将维持不变而颗粒依然处于合力平衡状态,床层依然属于流化床。
2.起始流化速度测定中应注意哪些问题,为什么难以测得?
答:系统的起始流化速度即鼓泡速度,实际实验中,流化床存在沟流现象以及壁效应,因而测定起始流化速度时,存在一定误差。
实验所用的测量仪器也存在一定误差。
开始时,气速增加幅度可以稍微大些,至L定值时,气速增加幅度应变小,以便临界流化速度区域的数据可以尽量多点,以便更好的描述流化速度。
系统的稳定性也不好,所以测量难以进行。