2017年上海高三数学一模中档题
2017年上海市静安区高考数学一模试卷
2017年上海市静安区高考数学一模试卷一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)“x<0”是“x<a”的充分非必要条件,则a的取值范围是.2.(5分)函数的最小正周期为.3.(5分)若复数z为纯虚数,且满足(2﹣i)z=a+i(i为虚数单位),则实数a 的值为.4.(5分)二项式展开式中x的系数为.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.(5分)已知α为锐角,且,则sinα=.7.(5分)根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过小时方可驾车.(精确到小时)8.(5分)已知奇函数f(x)是定义在R上的增函数,数列{x n}是一个公差为2的等差数列,满足f(x7)+f(x8)=0,则x2017的值为.9.(5分)直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,则的最大值为.10.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)若空间三条直线a、b、c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能12.(5分)在无穷等比数列{a n}中,,则a1的取值范围是()A .B . C.(0,1) D.13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.215.(5分)已知y=g(x)与y=h(x)都是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),若y=g(x)﹣h(x)恰有4个零点,则正实数k的取值范围是()A. B. C.D.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(11分)已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F分别是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.18.(14分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.20.(18分)由n(n≥2)个不同的数构成的数列a1,a2,…a n中,若1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),则称a i与a j构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;,…a1的逆序数.(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣12017年上海市静安区高考数学一模试卷参考答案与试题解析一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)“x<0”是“x<a”的充分非必要条件,则a的取值范围是(0,+∞).【分析】根据充分必要条件的定义求出a的范围即可.【解答】解:若“x<0”是“x<a”的充分非必要条件,则a的取值范围是(0,+∞),故答案为:(0,+∞).【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.2.(5分)函数的最小正周期为π.【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得f(x)的最小正周期.【解答】解:函数=1﹣3•=1﹣•(1+sin2x)=﹣﹣sin2x的最小正周期为=π,故答案为:π.【点评】本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.3.(5分)若复数z为纯虚数,且满足(2﹣i)z=a+i(i为虚数单位),则实数a的值为.【分析】由(2﹣i)z=a+i,得,然后利用复数代数形式的乘除运算化简复数z,由复数z为纯虚数,列出方程组,求解即可得答案.【解答】解:由(2﹣i)z=a+i,得==,∵复数z为纯虚数,∴,解得a=.则实数a的值为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.(5分)二项式展开式中x的系数为10.【分析】利用二项式展开式的通项公式即可求得答案.,【解答】解:设二项式展开式的通项为T r+1=x2(5﹣r)•x﹣r=•x10﹣3r,则T r+1令10﹣3r=1得r=3,∴二项式展开式中x的系数为=10.故答案为:10.【点评】本题考查二项式定理,着重考查二项展开式的通项公式的应用,属于中档题.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【分析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为1米的半圆的周长为=π,则制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,则2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.【点评】本题考查柱、锥、台体体积的求法,关键是明确圆锥剪展前后的量的关系,是中档题.6.(5分)已知α为锐角,且,则sinα=.【分析】由α为锐角求出α+的范围,利用同角三角函数间的基本关系求出sin (α+)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,则sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:【点评】此题考查了两角和与差的余弦函数公式,熟练掌握公式是解本题的关键.7.(5分)根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过8小时方可驾车.(精确到小时)【分析】先求出e r=,再利用89•e xr≤20,即可得出结论.【解答】解:由题意,61=89•e2r,∴e r=,∵89•e xr≤20,∴x≥8,故答案为8.【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.8.(5分)已知奇函数f(x)是定义在R上的增函数,数列{x n}是一个公差为2的等差数列,满足f(x7)+f(x8)=0,则x2017的值为4019.【分析】设设x7=x,则x8=x+2,则f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,f(x+1)=0=f(0),x7=﹣1.设数列{x n}通项x n=x7+2(n﹣7).得到通项x n=2n﹣15.由此能求出x2011的值.【解答】解:设x7=x,则x8=x+2,∵f(x7)+f(x8)=0,∴f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,∴f(x+1)=0=f(0),即x+1=0.∴x=﹣1,设数列{x n}通项x n=x7+2(n﹣7)=2n﹣15∴x2017=2×2017﹣15=4019.故答案为:4019【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意递推公式的合理运用.9.(5分)直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,则的最大值为12.【分析】建立坐标系,设M (),则=(),,【解答】解:如图建立平面直角坐标系,A(0,0),B(3,0),C(0.4),三角形ABC外接圆(x﹣)2+(y﹣2)2=,设M (),则=(),,,故答案为:12.【点评】本题考查了圆的参数方程、三角函数的单调性、数量积坐标运算,考查了推理能力与计算能力,属于中档题10.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为4.【分析】根据对任意实数x均有f(x)•g(x)≤0,求出a,b的关系,可求的最小值.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当a=,b=2时取等号.故的最小值为4.故答案为:4.【点评】本题考查了恒成立的问题的转化以及基本不等式的性质的运用,属于基础题.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)若空间三条直线a、b、c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能【分析】利用正方体的棱与棱的位置关系及异面直线所成的角的定义即可得出,若直线a、b、c满足a⊥b、b⊥c,则a∥c,或a与c相交,或a与c异面.【解答】解:如图所示:a⊥b,b⊥c,a与c可以相交,异面直线,也可能平行.从而若直线a、b、c满足a⊥b、b⊥c,则a∥c,或a与c相交,或a与c异面.故选:D.【点评】本题考查空间中直线与直线之间的位置关系,解题时要认真审题,注意全面考虑.熟练掌握正方体的棱与棱的位置关系及异面直线所成的角的定义是解题的关键.12.(5分)在无穷等比数列{a n}中,,则a1的取值范围是()A. B. C.(0,1) D.【分析】利用无穷等比数列和的极限,列出方程,推出a1的取值范围.【解答】解:在无穷等比数列{a n}中,,可知|q|<1,则=,a1=∈(0,)∪(,1).故选:D.【点评】本题考查数列的极限的求法,等比数列的应用,考查计算能力.13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【分析】根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C43•A44=192种情况;若甲乙两人都参加,有C22•C42•A44=144种情况,则不同的发言顺序种数192+144=336种,故选:A.【点评】本题考查排列、组合的实际应用,正确分类是关键.14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.2【分析】由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x≠0),将(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,即可求得抛物线方程,求得准线方程,设椭圆C1:(a>b>0),把点(﹣2,0),(,),即可求得椭圆方程,求得焦点坐标,即可求得C1的左焦点到C2的准线之间的距离.【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px (p>0),则有=2p(x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.则焦点坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,,解得:,∴C1的标准方程为+y2=1;由c==,左焦点(,0),C1的左焦点到C2的准线之间的距离﹣1,故选:B.【点评】本题考查椭圆与抛物线的标准方程及简单几何性质,考查待定系数法的应用,考查计算能力,属于中档题.15.(5分)已知y=g(x)与y=h(x)都是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),若y=g(x)﹣h(x)恰有4个零点,则正实数k的取值范围是()A. B. C.D.【分析】问题转化为g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,结合图象得到关于k的不等式组,解出即可.【解答】解:若y=g(x)﹣h(x)恰有4个零点,即g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,如图示:,结合图象得:,解得:<k<log32,故选:C.【点评】本题考查了函数的零点问题,考查数形结合思想以及二次函数、对数函数的性质,是一道中档题.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(11分)已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F分别是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.【分析】(1)连接A1C1,由E,F分别是棱AD,CD的中点,可得EF∥AC,进一步得到EF∥A1C1,可知∠A1C1B为异面直线BC1与EF所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体CA1EF的体积转化为三棱锥A1﹣EFC的体积求解.【解答】解:(1)连接A1C1,∵E,F分别是棱AD,CD的中点,∴EF∥AC,则EF∥A1C1,∴∠A1C1B为异面直线BC1与EF所成角.在△A 1C1B中,由AB=a,AA1=2a,得,,∴cos∠A1C1B=,∴异面直线BC1与EF所成角的大小为;(2).【点评】本题考查异面直线所成的角,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【分析】(1)设M(x,y),,左焦点,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出P点轨迹为椭圆,利用,|PF 1|+|PF2|=2a,结合余弦定理,以及基本不等式求解椭圆方程即可.【解答】解:(1)设M(x,y),,左焦点,=…(4分)=()对称轴,…(3分)(2)由椭圆定义得:P点轨迹为椭圆,,|PF 1|+|PF2|=2a=…(4分)由基本不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…(3分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆方程的求法,考查计算能力.18.(14分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?【分析】(1)建立直角坐标系,…(1分),则城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图建立直角坐标系,…(1分)则城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),则,此时台风的半径为60+10t,10小时后,|PA|≈184.4km,台风的半径为r=160km,∵r<|PA|,…(5分)∴10小时后,该台风还没有开始侵袭城市A.…(1分)(2)由(1)知t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,若城市A受到台风侵袭,则,∴300t2﹣10800t+86400≤0,即t2﹣36t+288≤0,…(5分)解得12≤t≤24…(1分)∴该城市受台风侵袭的持续时间为12小时.…(1分)【点评】本题考查圆的性质在生产生活中的实际应用,是中档题,解题时要认真审题,注意挖掘题意中的隐含条件,合理地建立方程.19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.【分析】(1)利用f(1)=f(0)=1,判断f(x)∉M1.(2)f(x+a)﹣f(x)>0,化简,通过判别式小于0,求出a的范围即可.(3)由f(x+a)﹣f(x)>0,推出,得到对任意x∈[1,+∞)都成立,然后分离变量,通过当﹣1<k≤0时,当0<k<1时,分别求解最小值即可.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(4分)(2)由…(2分)∴,…(3分)故a>1.…(1分)(3)由,…(1分)即:∴对任意x∈[1,+∞)都成立∴…(3分)当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…(1分)当0<k<1时,h(x)min=h(1)=log3(1+k);…(1分)当1≤k<3时,.…(1分)综上:…(1分)【点评】本题考查分段函数的应用,函数的综合应用,函数的最值的求法,考查转化思想以及计算能力.20.(18分)由n(n≥2)个不同的数构成的数列a1,a2,…a n中,若1≤i<j≤n 时,a j<a i(即后面的项a j小于前面项a i),则称a i与a j构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;,…a1的逆序数.(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1【分析】(1)由{a n}为单调递减数列,可得逆序数为99+98+ (1)>0.当n为偶数时:0>a2>a4>…>a2n.可(2)当n为奇数时,a1>a3>…>a2n﹣1得逆序数.(3)在数列a1,a2,…a n中,若a1与后面n﹣1个数构成p1个逆序对,则有(n,…a1中,逆序数为(n﹣1)﹣p1+﹣1)﹣p1不构成逆序对,可得在数列a n,a n﹣1(n﹣2)﹣p2+…+(n﹣n)﹣p n.【解答】解:(1)∵{a n}为单调递减数列,∴逆序数为.>0.(2)当n为奇数时,a1>a3>…>a2n﹣1当n为偶数时:∴0>a2>a4>…>a2n.当k为奇数时,逆序数为;当k为偶数时,逆序数为.(3)在数列a1,a2,…a n中,若a1与后面n﹣1个数构成p1个逆序对,,…a1中,则有(n﹣1)﹣p1不构成逆序对,所以在数列a n,a n﹣1逆序数为.【点评】本题考查了等差数列的通项公式与求和公式、新定义逆序数,考查了分类讨论方法、推理能力与计算能力,属于中档题.。
【详解】2017年上海市青浦区高考数学一模试卷 Word版含答案
2017年上海市青浦区高考数学一模试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.已知复数z=2+i(i为虚数单位),则.2.已知集合,则A∩B=.3.在二项式(x+)6的展开式中,常数项是.4.等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于.5.如果由矩阵=表示x,y的二元一次方程组无解,则实数a=.6.执行如图所示的程序框图,若输入n=1的,则输出S=.7.若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为.8.设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b 的取值范围为.9.将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为.(精确到0.01)10.已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=.11.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是.12.已知数列{a n}满足:对任意的n∈N*均有a n=ka n+3k﹣3,其中k为不等于0+1与1的常数,若a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知f(x)=sin x,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种14.已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④15.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.16.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.18.已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.19.如图,F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.20.如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Q n点,再从C2上的点作直线平行于y轴,交曲线C1于P n点,点P n(n=1,2,3…)的横坐标构成数列{a n}.+1(1)求曲线C1和曲线C2的交点坐标;与a n之间的关系;(2)试求a n+1(3)证明:.21.已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.2017年上海市青浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.已知复数z=2+i(i为虚数单位),则=3﹣4i.【考点】复数代数形式的乘除运算.【分析】把复数z代入z2,然后展开,再求出得答案.【解答】解:由z=2+i,得z2=(2+i)2=3+4i,则=3﹣4i.故答案为:3﹣4i.2.已知集合,则A∩B=[﹣1,3).【考点】交集及其运算.【分析】利用指数函数的性质求出集合A中不等式的解集,确定出集合A,求出集合B中函数的定义域,确定出B,找出两集合的公共部分,即可求出两集合的交集.【解答】解:集合A中的不等式变形得:2﹣1≤2x<24,解得:﹣1≤x<4,∴A=[﹣1,4);由集合B中函数得:9﹣x2>0,即x2<9,解得:﹣3<x<3,∴B=(﹣3,3),则A∩B=[﹣1,3).故答案为:[﹣1,3)3.在二项式(x+)6的展开式中,常数项是4320.【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式的常数项.=•6r•x6﹣2r,【解答】解:二项式(x+)6的展开式的通项公式为T r+1令6﹣2r=0,求得r=3,可得常数项为=4320,故答案为:4320.4.等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于4.【考点】双曲线的简单性质.【分析】抛物线y2=16x的准线为x=﹣4.与双曲线的方程联立解得.可得4=|AB|=,解出a 即可得出.【解答】解:抛物线y2=16x的准线为x=﹣4.联立,解得.∴4=|AB|=,解得a2=4.∴a=2.∴双曲线C的实轴长等于4.故答案为:4.5.如果由矩阵=表示x,y的二元一次方程组无解,则实数a=﹣2.【考点】几种特殊的矩阵变换.【分析】由矩阵=表示x,y的二元一次方程组无解,得到,即可求出a.【解答】解:∵由矩阵=表示x,y的二元一次方程组无解,∴,∴a=﹣2.故答案为﹣2.6.执行如图所示的程序框图,若输入n=1的,则输出S=log319.【考点】程序框图.【分析】模拟程序的运行,当n=19时满足条件n >3,退出循环,可得:S=log 319,即可得解.【解答】解:模拟程序的运行,可得 n=1不满足条件n >3,执行循环体,n=3, 不满足条件n >3,执行循环体,n=19, 满足条件n >3,退出循环,可得:S=log 319. 故答案为:log 319.7.若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为 16π .【考点】旋转体(圆柱、圆锥、圆台).【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可. 【解答】解:∵设圆锥的母线长是l ,底面半径为r ,母线与底面所成的角为,可得①∵侧面积是20π, ∴πrl=20π,②由①②解得:r=4,l=5,故圆锥的高h===3则该圆锥的体积为:×πr2×3=16π故答案为:16π.8.设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b 的取值范围为(﹣3,+∞).【考点】数列的函数特性.>a n,化简整理,再利用【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,>a n,∴∀n∈N*,a n+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).9.将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为 3.62.(精确到0.01)【考点】斜二测法画直观图.【分析】由题意,正三角形ABC的高为5,利用余弦定理求出△A′B′C′中最短边的边长.【解答】解:由题意,正三角形ABC的高为5,∴△A′B′C′中最短边的边长为≈3.62.故答案为3.62.10.已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=4.【考点】向量在几何中的应用.【分析】由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,即可求•=||||cos45°.【解答】解:由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,则•=||||cos45°=2×=4.故答案为:411.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是[,+∞).【考点】函数与方程的综合运用.【分析】根据对称函数的定义,结合h(x)≥g(x)恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可.【解答】解:解:∵x∈D,点(x,g(x))与点(x,h(x))都关于点(x,f (x))对称,∴g(x)+h(x)=2f(x),∵h(x)≥g(x)恒成立,∴2f(x)=g(x)+h(x)≥g(x)+g(x)=2g(x),即f(x)≥g(x)恒成立,作出g(x)和f(x)的图象,若h(x)≥g(x)恒成立,则h(x)在直线f(x)的上方,即g(x)在直线f(x)的下方,则直线f(x)的截距b>0,且原点到直线y=3x+b的距离d≥1,d=⇒b≥或b(舍去)即实数b的取值范围是[,+∞),12.已知数列{a n}满足:对任意的n∈N*均有a n=ka n+3k﹣3,其中k为不等于0+1与1的常数,若a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.【考点】数列递推式.+3=k(a n+3),再对a1=﹣3与a1≠﹣3讨论,特别是【分析】依题意,可得a n+1a1≠﹣3时对公比k分|k|>1与|k|<1,即可求得a1所有可能值,从而可得答案.=ka n+3k﹣3,【解答】解:∵a n+1∴a n+3=k(a n+3),+1∴①若a1=﹣3,则a1+1+3=k(a1+3)=0,a2=﹣3,同理可得,a3=a4=a5=﹣3,即a1=﹣3复合题意;②若a1≠﹣3,k为不等于0与1的常数,则数列{a n+3}是以k为公比的等比数列,∵a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,a n+3可以取﹣675,﹣75,25,225,∵﹣75=25×(﹣3),225=﹣75×(﹣3),﹣675=225×(﹣3),∴若公比|k|>1,则k=﹣3,由a2+3=22+3=﹣3(a1+3)得:a1=﹣﹣3=﹣;若公比|k|<1,则k=﹣,由a2+3=﹣675=﹣(a1+3)得:a1=2025﹣3=2022;综上所述,满足条件的a1所有可能值为﹣3,﹣,2022.∴a1所有可能值的和为:﹣3﹣+2022=..故答案为:.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知f(x)=sin x,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种【考点】三角函数的化简求值.【分析】对于s值,求出函数的值,然后用排列组合求出满足f(s)•f(t)=0的个数.【解答】解:已知函数f(x)=sin x,A={1,2,3,4,5,6,7,8},现从A中任取两个不同的元素s、t,则使得f(s)•f(t)=0,s=3时f(s)=cos=0,满足f(s)•f(t)=0的个数为s=3时8个t=3时8个,重复1个,共有15个.故选D.14.已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④【考点】命题的真假判断与应用.【分析】①,两条平行线中的一条垂直一个平面,另一条也垂直此平面;②,n与α不一定垂直;③,m∥n;m∥α⇒n∥α或n⊂α;④,m∥n,m⊥α⇒n⊥α,又∵α∥β⇒n⊥β.【解答】解:已知空间两条直线m,n两个平面α,β对于①,两条平行线中的一条垂直一个平面,另一条也垂直此平面,故正确;对于②,n与α不一定垂直,显然错误;对于③,m∥n;m∥α⇒n∥α或n⊂α,故错;对于④,m∥n,m⊥α⇒n⊥α,又∵α∥β⇒n⊥β,故正确.故选:A.15.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.【考点】函数的图象.【分析】求矩形ABCD面积的表达式,又要注意P点在长方形ABCD内,所以要注意分析自变量的取值范围,并以自变量的限制条件为分类标准进行分类讨论.判断函数的图象即可.【解答】解:设AD长为x,则CD长为16﹣x又因为要将P点围在矩形ABCD内,∴a≤x≤12则矩形ABCD的面积为x(16﹣x),当0<a≤8时,当且仅当x=8时,S=64当8<a<12时,S=a(16﹣a)S=,分段画出函数图形可得其形状与C接近故选:B.16.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④【考点】命题的真假判断与应用.【分析】由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.【解答】解:由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.①M={(x,y)|y=},其图象向左向右和x轴无限接近,向上和y轴无限接近,据幂函数的图象和性质可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=}是“垂直对点集”.②M={(x,y)|y=log2x},(x>0),取(1,0),则不存在点(x2,log2x2)(x2>0),满足1×x2+0=0,因此集合M不是“垂直对点集”;对于③M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,据指数函数的图象和性质可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.对于④M={(x,y)|y=sinx+1},在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故④符合;综上可得:只有①③④是“垂直对点集”.故选:C三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.【考点】棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台);异面直线及其所成的角.【分析】(Ⅰ)取BC的中点D,连接OD,AD,则OD∥A1C,∠AOD(或其补角)为异面直线A1C与AB1的所成角,利用余弦定理,可求异面直线A1C与AB1的所成角的大小;(II)设圆柱的底面半径为r,母线长度为h,当点C是弧弧AB的中点时,求出三棱柱ABC﹣A1B1C1的体积,求出三棱锥A1﹣ABC的体积为,从而求出四棱锥A1﹣BCC1B1的体积,再求出圆柱的体积,即可求出四棱锥A1﹣BCC1B1与圆柱的体积比.【解答】解:(Ⅰ)如图,取BC的中点D,连接OD,AD,则OD∥A1C,∴∠AOD(或其补角)为异面直线A1C与AB1的所成角,设正方形的边长为2,则△AOD中,OD=A1C=,AO=,AD=,∴cos∠AOD==∴∠AOD=;(Ⅱ)设圆柱的底面半径为r,母线长度为h,当点C是弧AB的中点时,,,,∴.18.已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.【考点】三角函数的最值.【分析】(1)利用三角恒等变换的应用可化简f(x)=sin(2x﹣),再利用正弦函数的单调性可求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,由A<B,且f(A)=f(B)=,可求得A=,B=,再利用正弦定理即可求得的值.【解答】(本题满分14分)第(1)小题满分,第(2)小题满分.解:f(x)=sin2x+cos2(﹣x)﹣=•+﹣=sin2x﹣cos2x=sin(2x﹣)(1)由于0≤x≤,因此﹣≤2x﹣≤,所以当2x﹣=即x=时,f(x)取得最大值,最大值为1;(2)由已知,A、B是△ABC的内角,A<B,且f(A)=f(B)=,可得:2A﹣=,2B﹣=,解得A=,B=,所以C=π﹣A﹣B=,得==.19.如图,F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.【考点】直线与椭圆的位置关系.【分析】(1)由题意焦距求得c,由对称性结合|F1A|+|F1B|=4可得2a,再由隐含条件求得b,则椭圆方程可求;(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0),分别写出PA、PB所在直线方程,求出M、N的坐标,进一步求出MF2、NF2的斜率分别为k1、k2,结合A、B在椭圆上可得k1•k2是定值.【解答】解:(1)∵焦距,∴2c=2,得c=,由椭圆的对称性及已知得|F1A|=|F2B|,又∵|F1A|+|F1B|=4,|F1B|+|F2B|=4,因此2a=4,a=2,于是b=,因此椭圆方程为;(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0),直线PA的方程为,令x=0,得,故M(0,);直线PB的方程为,令x=0,得,故N(0,);∴,,因此.∵A,B在椭圆C上,∴,∴.20.如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Q n点,再从C2上的点作直线平行于y轴,交曲线C1于P n点,点P n(n=1,2,3…)的横坐标构成数列{a n}.+1(1)求曲线C1和曲线C2的交点坐标;与a n之间的关系;(2)试求a n+1(3)证明:.【考点】数列与解析几何的综合.【分析】(1)取立,能求出曲线C1和曲线C2的交点坐标.(2)设P n(),,由已知,能求出.(3)由,,得与异号,由.此能证明a2n﹣1【解答】解:(1)∵曲线及曲线,取立,得x=,y=,∴曲线C1和曲线C2的交点坐标是().(2)设P n(),,由已知,又,===,.证明:(3)a n>0,由,,得与异号,∵0<a1,,,,.∴a2n﹣121.已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.【考点】二次函数的性质.【分析】(1)a=2时,把不等式﹣3<f(x)<5化为不等式组﹣3<x2﹣4x<5,求出解集即可;(2)由二次函数的图象与性质,讨论a>0时|f(x)|≤5在x∈[0,M(a)]上恒成立时,M(a)最大,此时对应的方程f(x)=±5根的情况,从而求出M (a)的解析式;(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0,分类讨论,利用y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.【解答】解:(1)当a=2时,函数f(x)=x2﹣4x,∴不等式﹣3<f(x)<5可化为﹣3<x2﹣4x<5,解得,∴不等式的解集为(﹣1,1)∪(3,5);(2)∵a>0时,f(x)=x2﹣2ax=(x﹣a)2﹣a2,∴当﹣a2<﹣5,即a>时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=﹣5的较小的根,即M(a)=a﹣;当﹣a2≥﹣5,即0<a≤时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=5的较大的根,即M(a)=a+;综上,M(a)=.(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0.①若t=0,则a≥t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,a=﹣2不合题意,舍去当f(2)=4﹣4a=﹣4时,a=2,②若t+2=2a,则a≤t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2a﹣2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,若a=2,t=2,符合题意;若a=﹣2,则与题设矛盾,不合题意,舍去当f(2a﹣2)=﹣4时,a=2,t=2综上所述,a=2,t=0和a=2,t=2符合题意.2017年1月13日。
2017年上海市黄浦区高考数学一模试卷(解析版)
2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.抛物线y2=2x的准线方程是.3.若复数z满足(i为虚数单位),则z=.4.已知sin(α+)=,α∈(﹣,0),则tanα=.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x ∈R ,则“x >1”是“”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.关于直线l ,m 及平面α,β,下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,m ∥α,则l ⊥mD .若l ∥α,m ⊥l ,则m ⊥α15.在直角坐标平面内,点A ,B 的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan ∠PBA=m (m 为非零常数)的点P 的轨迹方程是( )A .B .C .D .16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数,则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0,1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确的是( )A .①和②均为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①和②均为假命题 三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P ﹣ABC 中,底面ABC 是边长为6的正三角形,PA ⊥底面ABC ,且PB 与底面ABC 所成的角为.(1)求三棱锥P ﹣ABC 的体积;(2)若M 是BC 的中点,求异面直线PM 与AB 所成角的大小(结果用反三角函数值表示).18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.已知数列{a n},{b n}满足b n=a n﹣a n(n=1,2,3,…).+1(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要(n=1,2,3,…)”.条件是“数列{c n}为等差数列且b n≤b n+12017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2} .【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩Z即可.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣3.若复数z满足(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由,得z=1+2i.故答案为:1+2i.4.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【考点】圆的切线方程.【分析】由点到直线的距离求出半径,从而得到圆的方程.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【考点】二项式定理的应用.【分析】根据题意求得n=5,再在二项展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项的系数.【解答】解:∵二项式的展开式共有6项,故n=5,=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,则此展开式的通项公式为T r+1中含x4的项的系数=10,故答案为:10.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【考点】向量的模.【分析】利用≤+r即可得出.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=﹣7.【考点】反函数.【分析】根据反函数与原函数的关系,可知反函数的定义域是原函数的值域,即可求解.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为﹣12.【考点】数列的极限.【分析】由题意可得数列{a n}为公比为﹣的等比数列,运用数列极限的运算,解方程即可得到所求.【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【考点】排列、组合及简单计数问题.【分析】根据题意,甲、乙所选的课程中至多有1门相同,其包含两种情况:①甲乙所选的课程全不相同,②甲乙所选的课程有1门相同;分别计算每种情况下的选法数目,相加可得答案.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【考点】直线与椭圆的位置关系.【分析】由题意画出图形,求出的坐标,代入,结合隐含条件求得实数λ的值.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【考点】函数恒成立问题.【分析】依题意可知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,利用对勾函数的单调性质可求g(x2)min=g(1)=3;再对f(x)=2ax2+2x中的二次项系数a分a=0、a>0、a<0三类讨论,利用函数的单调性质可求得f(x)在区间[1,4]上的最大值,解f(x)max≤3即可求得实数a的取值范围.【解答】解:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾'函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】在A中,l与m平行或异面;在B中,l与m相交、平行或异面;在C 中,由线面垂直的性质定理得l⊥m;在D中,m与α相交、平行或m⊂α.【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【考点】轨迹方程.【分析】设P(x,y),则由题意,(m≠0),化简可得结论.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选C.16.若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【考点】命题的真假判断与应用.【分析】对函数,G(x)=在(0,1)上的单调性进行判断,得命题①是真命题.对函数=,H(x)=在(0,1)上单调性进行判断,得命题②是假命题.【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)在Rt△PAB中计算PA,再代入棱锥的体积公式计算;(2)取棱AC的中点N,连接MN,NP,分别求出△PMN的三边长,利用余弦定理计算cos∠PMN即可.【解答】解:(1)∵PA⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵PA⊥平面ABC,∴PA⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵PA⊥平面ABC,所以PA⊥AM,PA⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【考点】直线与双曲线的位置关系;双曲线的标准方程.【分析】(1)设出双曲线C方程,利用已知条件求出c,a,解得b,即可求出双曲线方程与渐近线的方程;(2)设直线l的方程为y=x+t,将其代入方程,通过△>0,求出t的范围,设A(x1,y1),B(x2,y2),利用韦达定理,通过x1x2+y1y2=0,求解t即可得到直线方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…所以b2=c2﹣a2=3,故双曲线C的方程为.…双曲线C的渐近线方程为.…(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【考点】函数模型的选择与应用.【分析】(1)设M是CD中点,连OM,推出∠COM=∠DOM=,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=,在△DFO中,利用正弦定理+S ODF+S OCE=S△COD+2S ODF的解析式即可.,求解S=S△COD(2)利用S的解析式,通过三角函数的最值求解即可.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=Rsinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(2)…=(其中)…当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【考点】抽象函数及其应用.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g (x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b ⇔3×2x+4bx﹣4=0,…令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…21.已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【考点】数列与函数的综合;数列的应用;数列递推式.【分析】(1)判断{b n}是等差数列.然后化简a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)利用等差数列的性质求和即可.(2)利用a2n+3﹣a2n+1=22n+1﹣231﹣2n,判断a2n+3<a2n+1,求出n<7.5,a2n+3>a2n+1求出n>7.5,带带数列{a2n+1}中a17最小,即第8项最小..法二:化简,求出a2n+1=a1+b1+b2+b3+…+b2n=,利用基本不等式求出最小值得到数列{a2n+1}中的第8项最小.(3)若数列{a n}为等差数列,设其公差为d,说明数列{c n}为等差数列.由b n=a n+1﹣a n=d(n=1,2,3,…),推出b n≤b n+1,若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,转化推出b n+1=b n(n=1,2,3,…),说明数列{a n}为等差数列.得到结果.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…法二:由,…可知a2n+1=a1+b1+b2+b3+…+b2n==…(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n ≤b n+1(n=1,2,3,…)”.…2017年2月18日。
2017年上海市普陀区高考数学一模试卷
2017年上海市普陀区高考数学一模试卷一、填空题(共12小题,满分54分)1.(4分)若集合A={x|y2=x,y∈R},B={y|y=sinx,x∈R},A∩B=.2.(4分)若﹣<a<,sinα=,则cot2α=.3.(4分)函数f(x)=1+log2x(x≥1)的反函数f﹣1(x)=.4.(4分)若(1+x)5=a0+a1x+a2x2+…+a5x5,则a1+a2+…+a5=.5.(4分)设k∈R,若﹣=1表示焦点在y轴上的双曲线,则半焦距的取值范围是.6.(4分)设m∈R,若函数f(x)=(m+1)x+mx+1是偶函数,则f(x)的单调递增区间是.7.(5分)方程log2(9x﹣5)=2+log2(3x﹣2)的解为.8.(5分)已知圆C:x2+y2+2kx+2y+k2=0(k∈R)和定点P(1,﹣1),若过P点可以作两条直线与圆C相切,则k的取值范围是.9.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=BC=1,若A1C与平面B1BCC1所成的角为,则三棱锥A1﹣ABC的体积为.10.(5分)掷两颗骰子得两个数,若两数的差为d,则d∈{﹣2,﹣1,0,1,2}出现的概率的最大值为(结果用最简分数表示)11.(5分)设地球半径为R,若A、B两地均位于北纬45°,且两地所在纬度圈上的弧长为πR,则A、B之间的球面距离是(结果用含有R的代数式表示)12.(5分)已知定义域为R的函数y=f(x)满足f(x+2)=f(x),且﹣1≤x<1时,f(x)=1﹣x2;函数g(x)=,若F(x)=f(x)﹣g(x),则x ∈[﹣5,10],函数F(x)零点的个数是.二、选择题(共4小题,满分20分)13.(5分)若a<b<0,则下列不等式关系中,不能成立的是()A.B.C.a D.a2>b214.(5分)设无穷等比数列{a n}的首项为a1,公比为q,前n项和为S n,则“a1+q=1”=1”成立()是“SA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件15.(5分)设α﹣l﹣β是直二面角,直线a在平面α内,直线b在平面β内,且a、b与l均不垂直,则()A.a与b可能垂直,但不可能平行B.a与b可能垂直也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能垂直,也不可能平行16.(5分)设θ是两个非零向量、的夹角,若对任意实数t,|+t|的最小值为1,则下列判断正确的是()A.若||确定,则θ唯一确定B.若||确定,则θ唯一确定C.若θ确定,则||唯一确定D.若θ确定,则||唯一确定三、解答题(共5小题,满分76分)17.(14分)已知a∈R,函数f(x)=a+(1)当a=1时,解不等式f(x)≤2x;(2)若关于x的方程f(x)﹣2x=0在区间[﹣2,﹣1]上有解,求实数a的取值范围.18.(14分)已知椭圆Г:+=1(a>b>0)的左、右两个焦点分别为F1、F2,P是椭圆上位于第一象限内的点,PQ⊥x轴,垂足为Q,且|F1F2|=6,∠PF1F2=arccos,△PF1F2的面积为3.(1)求椭圆Г的方程;(2)若M是椭圆上的动点,求|MQ|的最大值.并求出|MQ|取得最大值时M 的坐标.19.(14分)现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为7.8g/cm3,总重量为5.8kg,其中一个螺帽的三视图如图所示,(单位毫米)(1)这堆螺帽至少有多少个;(2)对于上述螺帽做防腐处理,每平方米需要耗材0.11千克,共需要多少千克防腐材料?(结果精确到0.01)20.(16分)已知数列{a n}的各项均为正数,且a1=1,对任意的n∈N*,均有a n+12﹣1=4a n(a n+1),b n=2log2(1+a n)﹣1.(1)求证:{1+a n}是等比数列,并求出{a n}的通项公式;(2)若数列{b n}中去掉{a n}的项后,余下的项组成数列{c n},求c1+c2+…+c100;(3)设d n=,数列{d n}的前n项和为T n,是否存在正整数m(1<m<n),使得T1、T m、T n成等比数列,若存在,求出m的值;若不存在,请说明理由.21.(18分)已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x﹣k)成立,则称函数f(x)的“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡“数对.(1)若m=1,判断f(x)=sinx是否为“可平衡“函数,并说明理由;(2)若a∈R,a≠0,当a变化时,求证f(x)=x2与g(x)=a+2x的平衡“数对”相同.(3)若m1、m2∈R,且(m1,)(m2,)均为函数,f(x)=cos2x(0)的“平衡”数对,求m12+m22的取值范围.2017年上海市普陀区高考数学一模试卷参考答案与试题解析一、填空题(共12小题,满分54分)1.(4分)若集合A={x|y2=x,y∈R},B={y|y=sinx,x∈R},A∩B={x|0≤x≤1} .【分析】求出A中x的范围确定出A,求出B中y的范围确定出B,找出两集合的交集即可.【解答】解:∵A={x|y2=x,y∈R}={x|x≥0},B={y|y=sinx}={y|﹣1≤y≤1},∴A∩B={x|0≤x≤1},故答案为:{x|0≤x≤1}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(4分)若﹣<a<,sinα=,则cot2α=.【分析】根据α的取值范围求得cosα=,由同角三角函数关系得到tanα=,结合倍角公式进行解答.【解答】解:∵﹣<a<,sinα=,∴cosα=,∴tanα=,∴tan2α===,∴cot2α==.故答案是:.【点评】本题主要考察了同角三角函数关系式和二倍角的应用,属于基本知识的考查.3.(4分)函数f(x)=1+log2x(x≥1)的反函数f﹣1(x)=2x﹣1(x≥1).【分析】由x≥1,可得y=1+log2x≥1,由y=1+log2x,解得x=2y﹣1,把x与y互换即可得出反函数.【解答】解:∵x≥1,∴y=1+log2x≥1,由y=1+log2x,解得x=2y﹣1,故f﹣1(x)=2x﹣1(x≥1).故答案为:2x﹣1(x≥1).【点评】本题考查了反函数的求法、指数与对数的互化,属于基础题.4.(4分)若(1+x)5=a0+a1x+a2x2+…+a5x5,则a1+a2+…+a5=31.【分析】依题意,分别令x=0(可求得a0=1)与x=1,即可求得a1+a2+…+a5的值.【解答】解:∵(1+x)5=a0+a1x+a2x2+…+a5x5,∴当x=0时,a0=1;当x=1时,(1+1)5=a0+a1+a2+…+a5=32,∴a1+a2+…+a5=32﹣1=31.故答案为:31.【点评】本题考查二项式定理的应用,突出考查赋值法的运用,属于中档题.5.(4分)设k∈R,若﹣=1表示焦点在y轴上的双曲线,则半焦距的取值范围是(,+∞).【分析】利用双曲线的焦点坐标的位置,列出不等式组求解k,然后求解半焦距的取值范围即可.【解答】解:若﹣=1表示焦点在y轴上的双曲线,可得,可得k>2,半焦距c==.则半焦距的取值范围是:(,+∞).故答案为:(,+∞).【点评】本题考查双曲线的简单性质的应用,考查计算能力.6.(4分)设m∈R,若函数f(x)=(m+1)x+mx+1是偶函数,则f(x)的单调递增区间是[0,+∞).【分析】由题意函数f(x)=(m+1)x+mx+1是偶函数,则mx=0,可得m=0,可得f(x)=x+1,可求单调递增区间.【解答】解:由题意:函数f(x)=(m+1)x+mx+1是偶函数,则mx=0,故得m=0,那么:f(x)=x+1,根据幂函数的性质可知:函数f(x)的单点增区间为[0,+∞).故答案为:[0,+∞).【点评】本题考查了幂函数的图象及性质的运用.属于基础题.7.(5分)方程log2(9x﹣5)=2+log2(3x﹣2)的解为1.【分析】可先将2+log2(3x﹣2)化为对数,利用对数的性质,即可将问题转化为一元二次方程问题,求出方程的解,注意验证解得x的值.【解答】解:由题意可知:方程log2(9x﹣5)=2+log2(3x﹣2)化为:log2(9x﹣5)=log24(3x﹣2)即9x﹣5=4×3x﹣8解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1.故答案为1.【点评】本题考查的是对数方程问题.在解答的过程当中充分体现了函数与方程的思想注意,解方程的思想.注意隐含条件的利用,值得同学们体会和反思.8.(5分)已知圆C:x2+y2+2kx+2y+k2=0(k∈R)和定点P(1,﹣1),若过P点可以作两条直线与圆C相切,则k的取值范围是(0,+∞)∪(﹣∞,﹣2)..【分析】把圆的方程化为标准方程后,由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,求出两解集的并集即为实数k的取值范围.【解答】解:把圆的方程化为标准方程得:(x+k)2+(y+1)2=1,由过定点(1,﹣1)可作圆的2条切线可知点(1,﹣1)应在已知圆的外部,把点代入圆方程得:(1+k)2+(﹣1+1)2>1∴k>0或k<﹣2,则实数k的取值范围是(0,+∞)∪(﹣∞,﹣2).故答案为(0,+∞)∪(﹣∞,﹣2).【点评】此题考查了点与圆的位置关系,一元二次不等式的解法.理解过已知点总利用作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.9.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=BC=1,若A1C与平面B1BCC1所成的角为,则三棱锥A1﹣ABC的体积为.【分析】由已知可得A1B1⊥平面BB1C1C,连接B1C,则∠A1CB1为A1C与平面B1BCC1所成的角为,求解直角三角形得到BB1,再由棱锥体积公式求得三棱锥A1﹣ABC的体积.【解答】解:如图,在直三棱柱ABC﹣A1B1C1中,∵∠ABC=90°,A1B1⊥平面BB1C1C,连接B1C,则∠A1CB1为A1C与平面B1BCC1所成的角为,∵A 1B1=AB=1,∴,又BC=1,∴.∴.故答案为:.【点评】本题考查棱柱、棱锥、棱台体积的求法,考查空间想象能力和思维能力,考查直角三角形的解法,是中档题.10.(5分)掷两颗骰子得两个数,若两数的差为d,则d∈{﹣2,﹣1,0,1,2}出现的概率的最大值为(结果用最简分数表示)【分析】掷两颗骰子得两个数,共有36种情况,d=﹣2,有4种情况,d=﹣1,有5种情况,d=0,有6种情况,d=1,有5种情况,d=2,有4种情况,即可求出d∈{﹣2,﹣1,0,1,2}出现的概率的最大值.【解答】解:掷两颗骰子得两个数,共有36种情况,d=﹣2,有4种情况,d=﹣1,有5种情况,d=0,有6种情况,d=1,有5种情况,d=2,有4种情况,∴d∈{﹣2,﹣1,0,1,2}出现的概率的最大值为=.故答案为.【点评】本题考查概率的计算,考查学生分析解决问题的能力,属于中档题.11.(5分)设地球半径为R,若A、B两地均位于北纬45°,且两地所在纬度圈上的弧长为πR,则A、B之间的球面距离是R(结果用含有R的代数式表示)【分析】求出北纬45°圈的纬度圈半径,利用两地所在纬度圈上的弧长为πR,求出球心角,即可求出球面距离.【解答】解:北纬45°圈上两点A、B,设纬度圈半径为r,∴r=R•cos45°.∵两地所在纬度圈上的弧长为πR,∴|α|=∴|AB|==R,∴∠AOB=∴A、B两点间的球面距离为R.故答案为:R.【点评】本题考查球的有关经纬度知识,球面距离,弧长公式,考查空间想象能力,逻辑思维能力,是基础题.12.(5分)已知定义域为R的函数y=f(x)满足f(x+2)=f(x),且﹣1≤x<1时,f(x)=1﹣x2;函数g(x)=,若F(x)=f(x)﹣g(x),则x ∈[﹣5,10],函数F(x)零点的个数是15.【分析】由题意可得f(x)的周期为2,令F(x)=0,即f(x)=g(x),分别作出y=f(x)和y=g(x)的图象,找出在[﹣5,10]的交点个数,即可得到函数F (x)零点的个数.【解答】解:定义域为R的函数y=f(x)满足f(x+2)=f(x),可得f(x)的周期为2,F(x)=f(x)﹣g(x),则令F(x)=0,即f(x)=g(x),分别作出y=f(x)和y=g(x)的图象,观察图象在[﹣5,10]的交点个数为15.则函数F(x)零点的个数是15.故答案为:15.【点评】本题考查函数零点个数的求法,注意运用数形结合的思想方法,同时考查函数的周期的运用,属于中档题.二、选择题(共4小题,满分20分)13.(5分)若a<b<0,则下列不等式关系中,不能成立的是()A.B.C.a D.a2>b2【分析】根据不等式的基本性质逐一判断即可【解答】解:对于A:a<b<0,两边同除以ab可得,>,故A正确,对于B:a<b<0,即a﹣b>a,则两边同除以a(a﹣b)可得<,故B错误,对于C,根据幂函数的单调性可知,C正确,对于D,a<b<0,则a2>b2,故D正确,故选:B.【点评】本题考查了不等式的基本性质,属于基础题.14.(5分)设无穷等比数列{a n}的首项为a1,公比为q,前n项和为S n,则“a1+q=1”=1”成立()是“SA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据充要条件的定义,结合无穷缩减数列和的极限值公式,可得答案.【解答】解:当a 1<0时,q>1,则S n=﹣∞≠1,故“a 1+q=1”是“S n=1”不充分条件,若“S=1”,则a1=1﹣q,即“a1+q=1”,故“a 1+q=1”是“S n=1”必要条件,综上可得:“a 1+q=1”是“S n=1”成立必要非充分条件,故选:B.【点评】本题考查的知识点是充要条件的定义,无穷缩减数列和的极限值公式,难度中档.15.(5分)设α﹣l﹣β是直二面角,直线a在平面α内,直线b在平面β内,且a、b与l均不垂直,则()A.a与b可能垂直,但不可能平行B.a与b可能垂直也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能垂直,也不可能平行【分析】利用空间中线线间的位置关系求解.【解答】解:∵α﹣l﹣β是直二面角,直线a在平面α内,直线b在平面β内,且a、b与l均不垂直,∴当a∥l,且b∥l时,由平行公理得a∥b,即a,b可能平行,故A与D错误;当a,b垂直时,若二面角是直二面角,则a⊥l,与已知矛盾,∴a与b不可能垂直,也有可能平行.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.16.(5分)设θ是两个非零向量、的夹角,若对任意实数t,|+t|的最小值为1,则下列判断正确的是()A.若||确定,则θ唯一确定B.若||确定,则θ唯一确定C.若θ确定,则||唯一确定D.若θ确定,则||唯一确定【分析】令g(t)==+2t+,可得△≤0,恒成立.当且仅当t=﹣=﹣时,g(t)取得最小值1,代入即可得出.【解答】解:令g(t)==+2t+,∴△=4﹣4≤0,恒成立.当且仅当t=﹣=﹣时,g(t)取得最小值1,∴﹣2×+=1,化为:sin2θ=1.∴θ确定,则||唯一确定.故选:D.【点评】本题考查了向量数量积运算性质、二次函数的性质,考查了推理能力与计算能力,属于中档题.三、解答题(共5小题,满分76分)17.(14分)已知a∈R,函数f(x)=a+(1)当a=1时,解不等式f(x)≤2x;(2)若关于x的方程f(x)﹣2x=0在区间[﹣2,﹣1]上有解,求实数a的取值范围.【分析】(1)当a=1时,分类讨论解不等式f(x)≤2x;(2)若关于x的方程f(x)﹣2x=0在区间[﹣2,﹣1]上有解,即a=2x﹣在区间[﹣2,﹣1]上有解,即可求实数a的取值范围.【解答】解:(1)当a=1时,不等式f(x)≤2x,即1+≤2x,x>0,可化为2x2﹣x﹣1≥0,解得x≥1;x<0,可化为2x2﹣x+1≤0,无解,综上所述,不等式的解集为{x|x≥1};(2)关于x的方程f(x)﹣2x=0在区间[﹣2,﹣1]上有解,即a=2x﹣在区间[﹣2,﹣1]上有解,∴a=2x+在区间[﹣2,﹣1]上单调递增,∴﹣≤a≤﹣3.【点评】本题考查绝对值不等式的解法,考查方程解的问题,正确转化是关键.18.(14分)已知椭圆Г:+=1(a>b>0)的左、右两个焦点分别为F1、F2,P是椭圆上位于第一象限内的点,PQ⊥x轴,垂足为Q,且|F1F2|=6,∠PF1F2=arccos,△PF1F2的面积为3.(1)求椭圆Г的方程;(2)若M是椭圆上的动点,求|MQ|的最大值.并求出|MQ|取得最大值时M 的坐标.【分析】由【解答】解:(1)由△PF1F2的面积为3,|F1F2|=6,得,∴,又∠PF1F2=arccos,∴,则由,解得.∴,解得:.∴2a=4,a=2,c=3,b2=a2﹣c2=3.∴椭圆Г的方程为;(2)由(1)知,,代入,可得x p=2,∴Q(2,0),设M(x0,y0),则,∴.∴|MQ|===.∵,∴当时,.【点评】本题考查了直线与椭圆的位置关系,19.(14分)现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为7.8g/cm3,总重量为5.8kg,其中一个螺帽的三视图如图所示,(单位毫米)(1)这堆螺帽至少有多少个;(2)对于上述螺帽做防腐处理,每平方米需要耗材0.11千克,共需要多少千克防腐材料?(结果精确到0.01)【分析】(1)一个六角螺帽毛坯的体积为,再利用螺帽的个数=5.8×1000÷(7.8n)即可得出.(2)求出正六棱柱型金属螺帽毛坯的表面积,即可得出结论.【解答】解:(1)由三视图可得,正六棱柱型金属螺帽毛坯的底面六边形边长是12mm,高是10mm,内孔直径是10mm.一个六角螺帽毛坯的体积=≈2.956(cm3).∴螺帽的个数=5.8×1000÷(7.8×2.956)≈252(个).(2)正六棱柱型金属螺帽毛坯的表面积是6××2+6×12×10﹣π•52•2+2π•5•10≈1625.224(mm3).∵每平方米需要耗材0.11千克,∴0.001625224×0.11×252≈0.05千克.【点评】本题考查了六棱柱与圆柱的体积、表面积计算公式,考查了推理能力与计算能力,属于基础题.20.(16分)已知数列{a n}的各项均为正数,且a1=1,对任意的n∈N*,均有a n+12﹣1=4a n(a n+1),b n=2log2(1+a n)﹣1.(1)求证:{1+a n}是等比数列,并求出{a n}的通项公式;(2)若数列{b n}中去掉{a n}的项后,余下的项组成数列{c n},求c1+c2+…+c100;(3)设d n=,数列{d n}的前n项和为T n,是否存在正整数m(1<m<n),使得T1、T m、T n成等比数列,若存在,求出m的值;若不存在,请说明理由.【分析】(1)对任意的n∈N*,均有a n+12﹣1=4an(a n+1),可得a n+12=,又数列{a n}的各项均为正数,可得a n+1=2a n+1,变形为a n+1+1=2(a n+1),即可证明.(2)b n=2log2(1+a n)﹣1=2n﹣1.由n=7时,a7=127;n=8时,a8=255>213=b107.可得c1+c2+…+c100=b1+b2+…+b106+b107(a1+…+a6+a7)即可得出.(3)d n===,可得数列{d n}的前n项和为T n=.假设存在正整数m(1<m<n),使得T1、T m、T n成等比数列,则=T1T n,即=,即=>0,解出即可判断出结论.【解答】(1)证明:∵对任意的n∈N*,均有a n+12﹣1=4an(a n+1),∴a n+12=,又数列{an}的各项均为正数,∴a n+1=2a n+1,变形为a n+1+1=2(a n+1),∴{1+a n}是等比数列,公比为2,首项为2,∴1+a n=2n,即a n=2n﹣1.(2)解:b n=2log2(1+a n)﹣1=2n﹣1.∵n=7时,a7=127;n=8时,a8=255>213=b107.∴c1+c2+…+c100=b1+b2+…+b106+b107(a1+…+a6+a7)=﹣+7=11449﹣256+9=11202.(3)解:d n===,∴数列{d n}的前n项和为T n=+…+==.假设存在正整数m(1<m<n),使得T1、T m、T n成等比数列,则=T1T n,即=,即=>0,即2m2﹣4m﹣1<0,解得1﹣<m<1+.∵m是正整数且m>1,∴m=2,此时n=12当且仅当m=2,n=12时,T1、T m、T n成等比数列.【点评】本题考查了等差数列与等比数列的通项公式及其求和公式、“裂项求和”方法、不等式的解法,考查了推理能力与计算能力,属于难题.21.(18分)已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x﹣k)成立,则称函数f(x)的“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡“数对.(1)若m=1,判断f(x)=sinx是否为“可平衡“函数,并说明理由;(2)若a∈R,a≠0,当a变化时,求证f(x)=x2与g(x)=a+2x的平衡“数对”相同.(3)若m1、m2∈R,且(m1,)(m2,)均为函数,f(x)=cos2x(0)的“平衡”数对,求m12+m22的取值范围.【分析】(1)当m=1时,f(x)=f(x+k)+f(x﹣k)成立,求出k=2nπ±,n ∈Z,可得结论;(2)证明(2,0)分别是函数f(x)=x2与g(x)=a+2x的“平衡“数对,可得结论;(3)假设存在实数m、k(k≠0),对于定义域内的任意x均有m•f(x)=f(x+k)+f(x﹣k)成立,则mcos2x=cos2(x+k)+cos2(x﹣k)=[1+cos2(x+k)]+[1+cos2(x﹣k)],得出m12+m22的函数,即可求m12+m22的取值范围.【解答】解:(1)当m=1时,f(x)=f(x+k)+f(x﹣k)成立,∴sinx=sin(x+k)+sin(x﹣k)=sinxcosk+cosxsink+sinxcosk﹣cosxsink=2sinxcosk,∴sinx(1﹣2cosk)=0,∵对于定义域内的任意实数x,f(x)=f(x+k)+f(x﹣k)成立,∴1﹣2cosk=0,即cosk=,∴k=2nπ±,n∈Z,∴f(x)=sinx是“可平衡“函数;(2)∵f(x)=x2的定义域为R.假设存在实数m、k(k≠0),对于定义域内的任意x均有m•f(x)=f(x+k)+f (x﹣k)成立,则mx2=(x+k)2+(x﹣k)2=2x2+2k2,即(m﹣2)x2=2k2,由于上式对于任意实数x都成立,∴,解得m=2,k=0,∴(2,0)是函数f(x)=x2的“平衡“数对,∵g(x)=a+2x,∴m(a+2x)=a+2x+k+a+2x﹣k,∴,解得m=2,k=0,∴(2,0)是函数g(x)=a+2x的“平衡“数对,∴f(x)=x2与g(x)=a+2x的平衡“数对”相同(3)假设存在实数m、k(k≠0),对于定义域内的任意x均有m•f(x)=f(x+k)+f(x﹣k)成立,则mcos2x=cos2(x+k)+cos2(x﹣k)=[1+cos2(x+k)]+[1+cos2(x﹣k)]∴m(1+cos2x)=[1+cos2(x+k)]+[1+cos2(x﹣k)]∴m+mcos2x=1+cos2xcos2k﹣sin2xsin2k+1+cos2xcos2k+sin2xsin2k,∴m(1+cos2x)=2+2cos2xcos2k,∵(m1,)(m2,)均为函数,∴m1(1+cos2x)=2+2cos2xcosπ=2﹣2co2x,m2(1+cos2x)=2+2cos2xcos=2,∵0,∴0<2x≤,∴0<cos2x≤1,∴m1====2tan2x,m2==∴m12+m22=4tan4x+,设h(x)=4tan4x+,(0)∴h(0)≤h(x)≤h(),即1≤h(x)≤8∴m12+m22的取范围为[1,8]【点评】本题考查新定义的理解和运用,考查函数的性质和运用,考查运算能力,属于难题.。
上海市长宁、嘉定区2017届高三数学一模+答案
2016-2017学年度长宁、嘉定区高三年级第一次质量调研数 学 试 卷一.填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1~6题每题填对得4分,第7~12题每题填对得5分.1.设集合},1|2|{R ∈<-=x x x A ,集合Z =B ,则=B A I _____________.2.函数⎪⎭⎫ ⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω____________. 3.设i 为虚数单位,在复平面上,复数2)2(3i -对应的点到原点的距离为__________. 4.若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.5.已知nb a )3(+展开式中,各项系数的和与各项二项式系数的和之比为64,则=n ______.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有___________种.7.若圆锥的侧面展开图是半径为2cm 、圆心角为︒270的扇形,则这个圆锥的体积为_____________3cm . 8.若数列}{n a 的所有项都是正数,且n n a a a n 3221+=+++Λ(*N ∈n ),则=⎪⎭⎫ ⎝⎛++++∞→1321lim212n a a a n n n Λ_____________. 9.如图,在△ABC 中,︒=∠45B ,D 是BC 边上的一点,5=AD ,7=AC ,3=DC ,则AB 的长为_____________.10.有以下命题:① 若函数)(x f 既是奇函数又是偶函数,则)(x f 的值域为}0{;② 若函数)(x f 是偶函数,则)(|)(|x f x f =;③ 若函数)(x f 在其定义域内不是单调函数,则)(x f 不存在反函数;④ 若函数)(x f 存在反函数)(1x f-,且)(1x f -与)(x f 不完全相同,则)(x f 与)(1x f -图像的公共点必在直线x y =上.其中真命题的序号是______________(写出所有真命题的序号).11.设向量)2,1(-=OA ,)1,(-=a OB ,)0,(b OC -=,其中O 为坐标原点,0>a ,0>b ,若A 、B 、C 三点共线,则ba 21+的最小值为____________. 12.如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为__________cm .二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.13.“2<x ”是“24x <”的……………………………………………………………( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件14.若无穷等差数列}{n a 的首项01<a ,公差0>d ,}{n a 的前n 项和为n S ,则以下结论中一定正确的是……………………………………………………………………………( )(A )n S 单调递增 (B )n S 单调递减 (C )n S 有最小值 (D )n S 有最大值15.给出下列命题:(1)存在实数α使23cos sin =+αα; (2)直线2π-=x 是函数x y sin =图象的一条对称轴;(3))cos(cos x y =(R ∈x )的值域是]1,1[cos ;(4)若α,β都是第一象限角,且βα>,则βαtan tan >.其中正确命题的序号为……………………………………………………………………( )(A )(1)(2) (B )(2)(3) (C )(3)(4) (D )(1)(4)16.如果对一切正实数x ,y ,不等式yx a x y 9sin cos 42-≥-恒成立,则实数a 的取值范围是…………………………………………………………………………………………( )(A )⎥⎦⎤ ⎝⎛∞-34, (B )),3[∞+ (C )]22,22[- (D )]3,3[- 三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图:已知⊥AB 平面BCD ,CD BC ⊥,AD 与平面BCD 所成的角为︒30,且2==BC AB . (1)求三棱锥BCD A -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小(结果用反三角函数值表示).18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且72cos 22sin 82=-+A C B . (1)求角A 的大小;(2)若3=a ,3=+cb ,求b 和c 的值. 19.(本题满分16分)本题共有2个小题,第1小题满分5分,第2小题满分11分.某地要建造一个边长为2(单位:km )的正方形市民休闲公园OABC ,将其中的区域ODC 开挖成一个池塘.如图建立平面直角坐标系后,点D 的坐标为)2,1(,曲线OD 是函数2ax y =图像的一部分,过边OA 上一点M 在区域OABD 内作一次函数b kx y +=(0>k )的图像,与线段DB 交于点N (点N 不与点D 重合),且线段MN 与曲线OD 有且只有一个公共点P ,四边形MABN 为绿化风景区.(1)求证:28k b =-; (2)设点P 的横坐标为t ,① 用t 表示M ,N 两点的坐标;② 将四边形MABN 的面积S 表示成关于t 的函数)(t S S=,并求S 的最大值.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数3329)(+⋅-=x x a x f .(1)若1=a ,]1,0[∈x ,求)(x f 的值域;(2)当]1,1[-∈x 时,求)(x f 的最小值)(a h ;(3)是否存在实数m 、n ,同时满足下列条件:①3>>m n ;② 当)(a h 的定义域为],[n m 时,其值域为],[22n m .若存在,求出m 、n 的值;若不存在,请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知无穷数列}{n a 的各项都是正数,其前n 项和为n S ,且满足:a a =1,11-=+n n n a a rS ,其中1≠a ,常数r N ∈.(1)求证:n n a a -+2是一个定值;(2)若数列}{n a 是一个周期数列(存在正整数T ,使得对任意*N ∈n ,都有n T n a a =+成立,则称}{n a 为周期数列,T 为它的一个周期),求该数列的最小周期;(3)若数列}{n a 是各项均为有理数的等差数列,132-⋅=n n c (*N ∈n ),问:数列}{n c 中的所有项是否都是数列}{n a 中的项?若是,请说明理由;若不是,请举出反例.2016学年长宁、嘉定区高三年级第一次联合质量调研数学试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1~6题每题填对得4分,第7~12题每题填对得5分.1.}2{ 2.2 3.53 4.3 5.6 6.60 7.π873 8.2 9.265 10.① ② 11.8 12.13 二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.13.B 14.C 15.B 16.D三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 17.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.(1)因为⊥AB 平面BCD ,所以ADB ∠就是AD 与平面BCD 所成的角,即︒=∠30ADB ,且AB 为三棱锥BCD A -的高. …………………………(2分)由2==BC AB ,得32=BD ,又由CD BC ⊥,得22=CD . …………(3分) 所以,324213131=⋅⋅⋅⋅=⋅=∆AB CD BC h S V BCD . ……………………(5分) (2)取AB 中点E ,连结EM ,EC ,则EM ∥AD ,所以EMC ∠就是异面直线AD 与CM 所成的角(或其补角), ……………………………………(1分)在△EMC 中,2=EM ,3=CM ,5=EC , …………………………(3分)所以,633225342cos 222=⋅⋅-+=⋅-+=∠CM EM EC CM EM EMC , ……………………(6分) 即63arccos =∠EMC . 所以异面直线AD 与CM 所成角的大小为63arccos. ……………………(7分) 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(1)由72cos 22sin 82=-+A C B ,得01)cos(4cos 42=+++C B A ,……(2分) 因为π=++C B A ,所以A C B cos )cos(-=+,故0)1cos 2(2=-A ,…………(4分) 所以,21cos =A ,3π=A . …………………………………………………………(6分) (2)由余弦定理,A bc c b a cos 2222-+=,得322=-+bc c b , ………………(2分)33)(2=-+bc c b ,得2=bc , ……………………………………(4分)由⎩⎨⎧==+,2,3bc c b 解得⎩⎨⎧==,1,2c b 或⎩⎨⎧==.2,1c b ………………………………(8分) 19.(本题满分16分)本题共有2个小题,第1小题满分5分,第2小题满分11分.(1)将)2,1(D 代入2ax y =得,2=a, 所以二次函数的解析式为22x y =(10≤≤x ), …………………………(2分) 由⎩⎨⎧=+=,2,2x y b kx y 得022=--b kx x , …………………………………………(3分) 由题意,△082=+=b k ,所以82k b -=. ……………………………………(5分) (2)① 由(1),一次函数的解析式为82k kx y -=, …………………………(1分) 因为直线过点)2,(2t t P ,所以8222k kt t -=,解得t k 4=,故22t b -=.…………(2分) 所以一次函数为224t tx y -=,令0=y ,得2t x =,即⎪⎭⎫ ⎝⎛0,2t M , ………………(3分) 令2=y ,得⎪⎭⎫ ⎝⎛+=t t x 121,即⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+2,121t t N . ………………………………(5分) ② 22||t MA -=,⎪⎭⎫ ⎝⎛+-=t t NB 1212||, …………………………………………(1分) 当点N 与点B 重合时,22242=-⋅t t ,解得32-=t ,所以)1,32(-∈t . 所以,⎪⎭⎫ ⎝⎛+-=⋅+⋅=t t AB NB MA t S 214|||)||(|21)(,)1,32(-∈t .…………(4分)因为221≥+t t ,当且仅当22=t 时取等号,所以当且仅当22=t (km ),时)(t S 取最大值)24(-(2km ). ………………………………………………(6分)20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)当1=a 时,由3329+⋅-=x x y ,得2)13(2+-=x y , ………………(2分)因为]1,0[∈x ,所以]3,1[3∈x ,]6,2[∈y . …………………………………(4分) (2)令t x =3,因为]1,1[-∈x ,故⎥⎦⎤⎢⎣⎡∈3,31t ,函数)(x f 可化为 2223)(32)(a a t at t t g -+-=+-=. …………………………………………(2分) ① 当31<a 时,3292831)(a g a h -=⎪⎭⎫ ⎝⎛=; …………………………………………(3分) ② 当331≤≤a 时,23)()(a a g a h -==; …………………………………………(4分) ③ 当3>a 时,a g a h 612)3()(-==. ……………………………………………(5分)综上,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤-<-=.3.612,331,3,31,32928)(2a a a a a a a h ………………………………………………(6分) (3)因为3>>m n ,a a h 612)(-=为减函数,所以)(a h 在],[n m 上的值域为)](,)([m h n h , …………………………………………(2分)又)(a h 在],[n m 上的值域为],[22n m ,所以,⎪⎩⎪⎨⎧==,)(,)(22n m h m n h 即⎪⎩⎪⎨⎧=-=-,612,61222n m m n …(3分) 两式相减,得))(()(622n m n m n m n m -+=-=-,因为3>>m n ,所以6=+n m ,而由3>>m n 可得6>+n m ,矛盾.所以,不存在满足条件的实数m 、n . …………………………………………(6分)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)由11-=+n n n a a rS ①, 得1211-=+++n n n a a rS ②②-①,得)(211n n n n a a a ra -=+++, ………………………………(2分)因为0>n a ,所以r a a n n =-+2(定值). ………………………………(4分)(2)当1=n 时,a a =1,故12-=aa ra ,a r a ra a 112+=+=, ……………(1分) 根据(1)知,数列}{n a 的奇数项和偶数项分别成等差数列,公差都是r ,所以, r n a a n )1(12-+=-,nr a a n +=12, …………………………………………(3分) 当0>r 时,}{n a 的奇数项与偶数项都是递增的,不可能是周期数列, …………(4分) 所以0=r ,所以a a n =-12,aa n 12=,所以,数列}{n a 是周期数列,其最小周期为2. ……………………………………………………(6分) (3)因为数列}{n a 是有理项等差数列,由a a =1,r a a +=12,r a a +=3,得 ⎪⎭⎫ ⎝⎛+=++r a r a a 12,整理得0222=--ra a , 得4162++=r r a (负根舍去),……………………………………………………(1分) 因为a 是有理数,所以162+r是一个完全平方数,设2216k r =+(*N ∈k ), 当0=r时,1=a (舍去). ……………………………………………………(2分) 当0>r 时,由2216k r =+,得16))((=+-r k r k ,由于r ,*N ∈k ,所以只有3=r,5=k 符合要求, …………………………(4分) 此时2=a ,数列}{n a 的公差232==r d ,所以213+=n a n (*N ∈n ).…………(6分) 对任意*N ∈n ,若132-⋅=n n c 是数列}{n a 中的项,令m n a c =,即213321+=⋅-m n , 则31341-⋅=-n m ,1=n 时,1=m ,2=n 时,*311N ∉=m ,故2c 不是数列}{n a 中的项. …………………………………………………(8分)。
上海市宝山区2017届高考数学一模试卷Word版含解析.pdf
2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩?U B=.3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z=.6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a=.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()13.设a∈R,则“a=1”A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1?A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=2.【考点】极限及其运算.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩?U B={﹣1,0,1} .【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义,写出?U B与A∩?U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以?U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩?U B={﹣1,0,1}故答案为:{﹣1,0,1}.3.不等式的解集为(﹣2,﹣1).【考点】其他不等式的解法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).4.椭圆(θ为参数)的焦距为6.【考点】椭圆的参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.5.设复数z满足(i为虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.6.若函数的最小正周期为aπ,则实数a的值为1.【考点】三角函数的周期性及其求法.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f﹣1(x)=2x ﹣1..【考点】反函数.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.8.已知向量,,则在的方向上的投影为.【考点】平面向量数量积的运算.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.11.设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】二项式系数的性质.【分析】利用通项公式T r+1=(r=0,1,2,…,9).令9﹣2r=5,解得r,即可得出.【解答】解:T r+1==(r=0,1,2,…,9).令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】排列、组合及简单计数问题.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【考点】分层抽样方法.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选C.15.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】相互独立事件的概率乘法公式.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.16.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2【考点】函数的最值及其几何意义.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═(|t|﹣1)2+≤,故选:C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC?h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】椭圆的简单性质.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=?=?=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】数列与不等式的综合.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.(2)y n+1﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)与等比数列的求和公式即可得出y n.代入不等式,化简即可得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n+1﹣y n=x n=,且y1=2,∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.【考点】对数函数的图象与性质.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即,∴,n∈N.解得:<x<,n∈N.又∵2+x>0,即x>﹣2,∴≥﹣2,n∈N.解得:k,∵k∈Z,∴k≥0.故得任意n∈N均成立,实数x的取值集合为(,),k∈N,n ∈N.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1?A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】双曲线的简单性质.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λSk >0恒成立,?>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3?﹣m=n2,∴S m+S n﹣λSk>0恒成立,?>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n?F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n?F n=(﹣1)n+2?F n+2+(﹣1)n+1?F n+1,故A是自生集;②对于任意n≥2,对于任一正整数t∈[1,F2n+1﹣1],存在集合Ar一个有限子集{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,则n=k+1时,只须对任何整数m∈[F2k+1,F2k+3]讨论,若m<F2k+2,则m=F2k+2+,∈(﹣F2k+1,0),故=﹣F2k+1+m′,m′∈[1,F2k+1),由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1的元素的和.因为m=F2k+2﹣F2k+1+m′=(﹣1)2k+2?F2k+2+(﹣1)2k+1?F2k+1+m′,所以m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.若m=F2k+2,则结论显然成立.若F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.。
【上海中学】2017年高考模拟数学试卷(一)-答案
上海中学2017年高考模拟数学试卷(一)答 案一、填空题 1.0 2.0 3.5 4.4 5.()(24)a a a a ---,,6.837.1924 8.129.11()0)({}-∞-+∞,,10.11.24 12.8.413.cos cos (2||||OB OC AB B AC COP AB AC l +=++ 二、选择题 14-17.DDAB 三、解答题18.解:(1)∵222cos π()cos ()11sin(2)26x f x x x x x x =-∈∈=+-=-+R R ,w w w w w w .由于它的最小正周期为π,故2ππw=,∴1w =.故π1sin(2(6))f x x -+=.(2)∵]π[0x ∈,, ∴ππ13π2[]6x +∈,.列表如下:如图:19.解:(1)设i z a b =+(a ,b R ∈且0b ≠)则i z a b =-∵||21510|z z +=+∴|()|2152i (+10)i|a b a b ++-∴2275a b +==∴||z =(2)设i z c b =+(c ,b ∈R 且0b ≠)假设存在实数a 使z aa z+∈R 则有2222()R z a c ac b ab a z a c b a c b +=++-∈++ ∴220b ab a c b-=+ ∵0b ≠∴a =由(1=∴a =±20.解:(1)11B C C A ⊥证明如下: 在平面1BA 内,过1B 作1B D AB ⊥于D , ∵1BA ABC ⊥侧面平面,∴1B D ABC ⊥平面,1B BA ∠是1BB 与平面ABC 所成的角,∴1π2ππ33B BA ∠=-=,连接1BC , ∵11BB CC 是菱形,∴11BC B C ⊥,1CD A B ⊥平面,1B D AB ⊥, ∴1B C AB ⊥, ∴11B C ABC ⊥平面, ∴11B C C A ⊥.(2)解:由题意及图,11111222423B ACC A B A AC A ABC V V V ---===⨯答:四棱锥11B ACC A -的体积为221.解:(1)210110%0.(1)2.8y n n n n n =+++∈N *, (2)由20.2 1.810 1.1%n n n p +≤⨯,得0.2 1.8%10 1.1nn p +≥⨯, 令0.2 1.810 1.1n nn a +=⨯,由11n n nn a a a a +-≥⎧⎨≥⎩,得12n ≤≤, ∴122%11p a a ≥==, ∴20011p ≥. 22.解:(1)∵当2b =,4m =-时,()()f x g x ≥恒成立,∴2225804||28()30x x x c x x x x x ⎧-+-≥⎪≥=⎨---<⎪⎩,---,,由二次函数的性质得74c ≥-.(2)2()||32x b x --=-,即2(||)1b x x -=+有四个不同的解,∴2()(1)0xb x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解, 由根的分布得1b ≥且514b <<, ∴514b <<. 23.解:(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩即220020ax ax x ax -+= ∴222200440a x a x ∆=-= ∴l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点00()N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣ 则22222000044()0(1)a x a by ax by =+>△﹣﹣ ∴22242220000000ax by b y ax abx y -+-+> ∴22001by ax +>∴00()N x y ,在椭圆C 的外部.(3)同理可得此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y l l l l +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l 上,即01011ax x by y +=,整理得12222001112()10ax by ax by l +-++-= 同理得关于2l 的方程,类似.即1l 、2l 是222200211(0)1ax by ax by l +-++-=的两根 ∴120+=λλ.上海中学2017年高考模拟数学试卷(一)解 析一、填空题1.【考点】3Q :函数的周期性;3L :函数奇偶性的性质.【分析】根据()f x 是奇函数可得()()f x f x -=-,又根据()f x 是以2为周期的周期函数得()()2f x f x +=,取1x =-可求出()1f 的值.【解答】解:∵()f x 是以2为周期的周期函数, ∴1(1)()f f =-, 又函数()f x 是奇函数, ∴()(111)()f f f -=-=, ∴()(0)11f f =-= 故答案为:02.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果. 【解答】解:∵1(1)(1)1(1)111(1)(1)222bi bi i b b i b b i i i i ++-++-+-===+++-, ∵实部和虚部互为相反数,∴11022b b +-+=, ∴202b =,∴0b =, 故答案为:03.【考点】DC :二项式定理的应用.【分析】由题意可得(122)Tr Cnr x r rCnrxr +==分别令3r =,1r =可得含3x ,x 项的系数,从而可求 【解答】解:由题意可得二项展开式的通项,(122)Tr Cnr x r rCnrxr +== 令3r =可得含3x 项的系数为:38Cn ,令1r =可得含x 项的系数为12Cn ∴31882Cn Cn =⨯ ∴5n = 故答案为:54.【考点】7C :简单线性规划.【分析】先根据条件画出可行域,设2z x y =+,再利用几何意义求最值,将最小值转化为y 轴上的截距,只需求出直线2z x y =+,过可行域内的点2(1)A ,时的最小值,从而得到z 最小值即可.【解答】解:设变量x 、y 满足约束条件126x y x y ≥⎧⎪≥⎨⎪+≤⎩,在坐标系中画出可行域三角形,A (1,2),(4,2),C (1,5), 则目标函数2z x y =+的最小值为4. 故答案为:4.5.【考点】R2:绝对值不等式.【分析】把不等式转化为0||3x a a <+<-,利用绝对值不等式的几何意义,即可求出不等式的解集. 【解答】解:因为0a <,则关于x 的不等式3||1ax a>+,所以不等式0||3x a a <+<-, 根据绝对值不等式的几何意义:数轴上的点到a -的距离大于0并且小于3a -, 可知不等式的解集为:()()24a a a a -⋃--,,. 故答案为:()()24a a a a -⋃--,,. 6.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知12||10||PF PF +=,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF 1F 2分成三个三角形分别求出面积,再利用面积相等建立等式求得P 点纵坐标. 【解答】解:根据椭圆的定义可知12||10||PF PF +=,12||6F F =, 令内切圆圆心为O则1212121212|||1(2|||)PF F POF POF OF F PF r PF r S S S S F F r =++++=△△△△=1212||||11(||)28PF PF F F +⋅=+=又∵12121||23PF F F F yP yP S ⋅==△. 所以38yp =,83yp =.故答案为83.7.【考点】8E :数列的求和;6F :极限及其运算.【分析】先分奇数与偶数分别求前n 项和记为S n ,再求它们的极限.【解答】解:当2n k =时,221111[1()][1()]9924111149nnSn --=+-- 当21n k =+时,1221111[1()][1()]9924111149nn Sn +--=+-- ∴lim21193824n n S −−→∞=+=故答案为1924. 8.【考点】C7:等可能事件的概率.【分析】把城市A 被选中的情况和城市A 未被选中的情况都找出来,即可得到城市A 被选中的概率. 【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A 被选中的情况有:ACE ACF ACG ACH ADF ADG ADH AEG AEH AFH 、、、、、、、、、,共10种.则城市A 未被选中的情况有:BDF BDG BDH BEG BEH BFH CEG CEH CFH DFH 、、、、、、、、、,共10种.故城市A 被选中的概率为:101=10+102, 故答案为:12. 9.【考点】J9:直线与圆的位置关系.【分析】据题意设1y 22y kx =-+,画出函数1y k 的取值范围.【解答】解:根据题意设1y 22y kx =-+, 当0k =时,方程只有一个解0x =,满足题意; 当0k ≠时,根据题意画出图象,如图所示:根据图象可知,当1k ->或1k -<-时,直线2y kx =-+与y = 综上,满足题意k 的取值范围为0k =或1k >或1k <-. 故答案为:11()0)({}-∞-⋃+∞⋃,,.10.【考点】9S :数量积表示两个向量的夹角;93:向量的模;HP :正弦定理.【分析】由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,根据海仑公式得:22422162416(12128)S a a a =-+-=--+,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,所以设22a p +=所以根据海仑公式得:S = 所以22422162416(12128)S a a a =-+-=--+,当212a =时,即当a =ABC 的面积有最大值,并且最大值为故答案为11.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P Q R S ,,,四点重合,所得几何体为下图中的四棱锥, 且底面四边形ABCD 为边长是6的正方形,侧棱PD ABCD ⊥平面,6PD =∴1666723P ABCD V =⨯⨯⨯=四棱锥﹣∵棱长为12的正方体体积为1212121728⨯⨯= ∵17282472=, ∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体. 故答案为2412.【考点】4R :反函数.【分析】根据题意画出图形,如图,设()A x ax ,,函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,得出点A 到直线y x =的距离为AB 的一半,利用点到直线的距离公式及()A x ax ,在函数1y x=的图象上得到18.4a =≈即可. 【解答】解:根据题意画出图形,如图, 设()A x ax ,,∵函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,∴||AB =,⇒点A 到直线y x =,x=⇒2ax x =﹣,① 又()A x ax ,在函数1y x=的图象上,⇒1ax x =,②由①②得:12x x -=⇒1x x=,∴11)2-=,⇒18.4a =≈ 故答案为:8.4.13.【考点】F3:类比推理;LL :空间图形的公理. 【分析】由题意可得:cos cos (0||||AB B AC C BC AB AC l ⋅+=,即BC 与cos cos (||||AB B AC CAB AC l +垂直,设D 为BC的中点,则2OB OCOD +=,可得cos cos (||||AB B AC C DP AB AC +=λ,即可得到0BC DP ⋅=,进而得到点P 在BC 的垂直平分线上,即可得到答案. 【解答】解:由题意可得:cos cos (||||0||||AB B AC CBC BC BC AB AC l ⋅+=-+=∴BC 与cos cos (||||AB B AC CAB AC l +垂直 设D 为BC 的中点,则2OB OCOD +=, 所以cos cos (2||||OB OC AB B AC COP AB AC l +=++, 所以cos cos (||||AB B AC C DP AB AC l +=,因为BC 与cos cos (||||AB B AC CAB AC l +垂直所以0BC DP ⋅=, 又∵点D 为BC 的中点,∴点P 在BC 的垂直平分线上,即P 的轨迹会通过△ABC 的外心. 故答案为:cos cos (2||||OB OC AB B AC COP AB AC l +=++. 二.选择题14.【考点】H5:正弦函数的单调性;HA :余弦函数的单调性.【分析】可把A B C D ,,,四个选项中的值分别代入题设中进行验证,只有D 项的符合题意.【解答】解:cos2y x =在区间π[0]2,上是减函数,πsin )6π([0]3y x =+,上单调增,在ππ[]32,上单调减,故排除A .πsin )4π([0]4y x =+,在π[0]4,单调增,在ππ[]42,上单调减,故排除B .πsin )3π([0]6y x =+,在π[0]6,单调增,在ππ[]62,上单调减,故排除C .(πsin )2y x =+在区间π[0]2,上也是减函数,故选D .15.【考点】HP :正弦定理.【分析】根据正弦定理分别求得AC 和AB ,最后三边相加整理即可得到答案. 【解答】解:根据正弦定理sin sin BC ACA B =,sin sin(120)BC AB A B =-∴sin sin BC AC B B A ==,sin(120)s 3cos in B A CB B AB B =-= ∴△ABC的周长为π3cos 36sin 3)6(B B B B ++=++故选D .16.【考点】IH :直线的一般式方程与直线的性质.【分析】先根据点M 、N 在直线上,则点坐标适合直线方程,通过消元法可求得a 与c 的关系,从而可判定点)(1P c a ,,1()Q b c,和l 的关系,选出正确选项.【解答】解:∵点)(1M a b ,和)(1N b c ,都在直线l :1x y +=上∴11a b +=,11b c += 则11b a =-即1111a c+=-化简得11c a +=∴点)(1P c a ,在直线l 上而11b c +=则1()Q b c,在直线l 上故选A .17.【考点】8H :数列递推式;8E :数列的求和.【分析】1223111n n n a a a a a a na a ++⋯++=+,①;12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②;①-②,得11()12112n n n n a a na a n a a -++=+++﹣,1214n n n n a a +++-=,同理,得114n n n na a ++-=,整理,得12211n n n a a a ++=+,1{}an是等差数列. 由此能求出1297111...a a a ++. 【解答】解:1223111n n n a a a a a a na a ++⋯++=+,①12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②①-②,得11()12112n n n n a a na a n a a -++=+++﹣,∴1214n n n na a +++-=, 同理,得114n n n na a ++-=, ∴12111n n n n n n n n a a a a ++++--=-, 整理,得12211n n n a a a ++=+, ∴1{}an 是等差数列. ∵114a =,215a =,∴等差数列1{}an 的首项是114a =,公差2111541d a a =-=-=,14(1)13nn n a =+-⨯=+. ∴12971119796 (974150442)a a a ⨯++=⨯+⨯=. 故选B .18.【考点】HK :由(n )si y A x w j =+的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数π1sin(2())6f x x w =-+,再由它的周期等于π求出1w =,故π1sin(2(6))f x x =-+.(2)由]π[0x ∈,,可得ππ13π2[]666x +∈,,列表作图即得所求. 19.【考点】A8:复数求模.【分析】(1)设z a bi =+(a ,b R ∈且0b ≠)则z a bi =-代入条件||21510|z z +=+然后根据复数的运||z 的值(2)对于此种题型可假设存在实数a 使z aR a z+∈根据复数的运算法则设(z c bi =+(c ,b R ∈且0b ≠))可得2222()z a c ac b ab R a z a c b a c b +=++-∈++即220b ab a c b -=+再结合0b ≠和(1)的结论即可求解.20.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)判断知,B 1C 与C 1A 垂直,可在平面BA 1内,过B 1作1B D AB ⊥于D ,证明11B C ABC ⊥平面,再由线面垂直的定义得出线线垂直;(2)由图形知,111122B ACC A B A AC A ABC V V V ---==,变换棱锥的底与高后,求出它的体积即可; 21.【考点】8B :数列的应用.【分析】(1)210110%0.2( 1.8)N *y n n n n n =+++∈, (2)由20.2 1.8101.1%n n n n p +≤⋅,得0.2 1.8%10 1.1nn p +≥⨯,令0.2 1.810 1.1nn n a +=⨯,由此能求出p 的最小值. 22.【考点】3R :函数恒成立问题.【分析】(1)将2b =,4m =-代入函数解析式,根据()()f x g x ≥恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c 的取值范围;(2)将3c =-,2m =-代入函数解析式得2()||1x b x =+﹣有四个不同的解,然后转化成2()(1)0x b x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解,最后根据根的分布建立关系式,求出b 的取值范围.23.【考点】KG :直线与圆锥曲线的关系.【分析】(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩,由根的差别式能得到l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点)00(N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣.由22222000044()0(1)a x a by ax by =+>△﹣﹣,能求出00()N x y ,在椭圆C 的外部.(3)此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y l l l l +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l上,得222220011111()0ax by ax by l +-++-=.由此能求出120l l +=.。
2017年上海市嘉定区高考数学一模试卷解析版
2017年上海市嘉定区高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B= .2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω= .3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为 .4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a= .5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n= .6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为 cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()= .9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为 .10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是 .(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a >0,b>0,若A、B、C三点共线,则+的最小值为 .12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为 cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的( )A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是( )A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是( )A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D 的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n 成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.2017年上海市嘉定区高考数学一模试卷参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B= {2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω= 2 .【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为 .【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a= 3 .【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n= 6 .【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 60 种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为 cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()= 2 .【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为 .【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是 ①② .(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a >0,b>0,若A、B、C三点共线,则+的最小值为 8 .【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+=(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为 13 cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的( )A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是( )A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos (cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是( )A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)min=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)min=3;当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f (y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f(y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD 的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M (),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题. 19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA 上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S 的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h (a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n 成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。
上海市普陀区2017届高三一模数学试卷Word版含答案
上海市普陀区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 若集合2{|,}A x y x y R ==∈,{|sin ,}B y y x x R ==∈,则A B =2. 若22ππα-<<,3sin 5α=,则cot 2α= 3. 函数2()1log f x x =+(1x ≥)的反函数1()f x -=4. 若550125(1)x a a x a x a x +=+++⋅⋅⋅+,则125a a a ++⋅⋅⋅+=5. 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是 6. 设m R ∈,若23()(1)1f x m x mx =+++是偶函数,则()f x 的单调递增区间是7. 方程22log (95)2log (32)x x -=+-的解x =8. 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直 线与圆C 相切,则k 的取值范围是9. 如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒, 1AB BC ==,若1AC 与平面11B BCC 所成的角为6π, 则三棱锥1A ABC -的体积为 10. 掷两颗骰子得两个数,若两数的差为d ,则{2,1,0,1,2}d ∈--出现的概率的最大值 为 (结果用最简分数表示)11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示) 12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-,函 数()F x 零点的个数是二. 选择题(本大题共4题,每题5分,共20分)13. 若0a b <<,则下列不等关系中,不能成立的是( )A. 11a b> B. 11a b a >- C. 1133a b < D. 22a b >14. 设无穷等比数列{}n a 的首项为1a ,公比为q ,前n 项和为n S ,则“11a q +=”是 “lim 1n n S →∞=”成立的( )条件 A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分也非必要15. 设l αβ--是直二面角,直线a 在平面α内,直线b 在平面β内,且a 、b 与l 均不垂 直,则( )A. a 与b 可能垂直,但不可能平行B. a 与b 可能垂直,也可能平行C. a 与b 不可能垂直,但可能平行D. a 与b 不可能垂直,也不可能平行16. 设θ是两个非零向量a 、b 的夹角,若对任意实数t ,||a tb + 的最小值为1,则下列判断正确的是( )A. 若||a 确定,则θ唯一确定B. 若||b 确定,则θ唯一确定C. 若θ确定,则||b 唯一确定D. 若θ确定,则||a 唯一确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知a R ∈,函数1()||f x a x =+; (1)当1a =时,解不等式()2f x x ≤; (2)若关于x 的方程()20f x x -=在区间[2,1]--上有解,求实数a 的取值范围;18. 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12PF F ∠=,12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值,并求出||MQ 取得最大值时M 的坐标;19. 现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为7.83/g cm ,总重量为5.8kg ,其中一个螺帽的三视图如下图所示(单位:毫米);(1)这堆螺帽至少有多少个;(2)对上述螺帽作防腐处理,每平方米需要耗材0.11千克,共需要多少千克防腐材料?(结果精确到0.01)20. 已知数列{}n a 的各项均为正数,且11a =,对任意的*n N ∈,均有2114(1)n n n a a a +-=⋅+,22log (1)1n n b a =+-; (1)求证:{1}n a +是等比数列,并求出{}n a 的通项公式;(2)若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求12100c c c ++⋅⋅⋅+;(3)设11n n n d b b +=⋅,数列{}n d 的前n 项和为n T ,是否存在正整数m (1m n <<),使得 1T 、m T 、n T 成等比数列,若存在,求出m 的值,若不存在,请说明理由;21. 已知函数()y f x =,若存在实数m 、k (0m ≠),使得对于定义域内的任意实数x , 均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(,)m k 称为函数()f x 的“平衡”数对;(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化,求证:2()f x x =与()2x g x a =+的“平衡”数对相同;(3)若1m 、2m R ∈,且1(,)2m π、2(,)4m π均为函数2()cos f x x =(04x π<≤)的“平衡”数对,求2212m m +的取值范围;参考答案一. 填空题1. [0,1]2. 7243. 12x -(1)x ≥4. 315. )+∞6. [0,)+∞7. 1x =8. 2k <-或0k >9.6 10. 23 11.3R π 12. 13二. 选择题13. B 14. B 15. C 16. D三. 解答题17.(1)[1,)+∞;(2)9[,3]2--;18.(1)221123x y +=;(2)(M -,max ||2MQ =+ 19.(1)252个;(2)0.05千克;20.(1)21n n a =-;(2)11202;(3)2m =,12n =;21.(1)是;(2)平衡数对(2,0);(3)(1,8]。
2017年上海高三数学各区一模试题-数列专题
2017年上海高三数学各区一模试题-数列专题1.(2017宝山区一模)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有 项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列, 则2668型标准数列的个数为 32.(2017宝山区一模)设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;3.(2017崇明县一模)实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+构成的数列( D )A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列4.(2017崇明县一模) 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和;(1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式;(2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式;(3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;解:(1)12n b =;(2)1n a n =+;(3)略; 5.(2017金山区一模)若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 2 6.(2017金山区一模)数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a与1i a +之间插入i 个(1)ii b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和;(3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由; 解:(1)n b n =;(2)201822033134+;(3)不存在;7.(2017虹口区一模)若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 2 8.(2017虹口区一模)已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ; 解:(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;9.(2017闵行区一模)已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=, 数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无 数次,则满足要求的1b 的值为 210.(2017松江区一模)已知数列{}n a 满足11a =,23a =,若1||2nn n a a +-=*()n N ∈,且21{}n a -是递增数列,2{}n a 是递减数列,则212limn n na a -→∞= 12-11.(2017松江区一模)如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时,试判断数列{}n c 是否为“H 型数列”,并说明理由;解:(1)1(,0)(,)2-∞+∞;(2)不存在; (3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;12.(2017浦东新区一模)设数列{}n a 满足21241n n a a n n +=+-+,22n n b a n n =+-; (1)若12a =,求证:数列{}n b 为等比数列;(2)在(1)的条件下,对于正整数2、q 、r (2)q r <<,若25b 、q b 、r b 这三项经适当 排序后能构成等差数列,求符合条件的数组(,)q r ; (3)若11a =,n n c bn =+,n d =n M 是n d 的前n 项和,求不超过2016M 的最大整数; 解:(1)12n n b -=;(2)(3,5);(3)2016;13.(2017青浦区一模)已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值的和为 22010314.(2017青浦区一模)如图,已知曲线12:1x C y x =+(0x >)及曲线21:3C y x=(0x >),1C 上的点1P 的横坐标为1a (1102a <<),从1C 上的点n P (*n N ∈)作直线平行于x 轴,交曲线2C 于n Q点,再从2C 上的点n Q (*n N ∈)作直线平行于y 轴,交曲线1C 于1n P +点,点n P (1,2,3,n =⋅⋅⋅)的横坐标构成数列{}n a ; (1)求曲线1C 和曲线2C 的交点坐标; (2)试求1n a +与n a 之间的关系; (3)证明:21212n n a a -<; 解:(1)12(,)23;(2)116n n na a a ++=;(3)略;15.(2017奉贤区一模)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为 516.(2017奉贤区一模)设数列{}n a 的前n 项和为n S ,若1122n na a +≤≤ *()n N ∈,则称{}n a 是“紧密数列”;(1)若11a =,232a =,3a x =,44a =,求x 的取值范围; (2)若{}n a 为等差数列,首项1a ,公差d ,且10d a <≤,判断{}n a 是否为“紧密数列”;(3)设数列{}n a 是公比为q 的等比数列,若数列{}n a 与{}n S 都是“紧密数列”,求q 的 取值范围;解:(1)[2,3];(2)是;(3)1[,1]2;17.(2017嘉定区一模)若数列{}n a23n n=+(*n N ∈),则1221lim()231n n a a a n n →∞++⋅⋅⋅+=+ 218.(2017嘉定区一模)已知无穷数列{}n a 的各项都是正数,其前n 项和为n S ,且满足:1a a =, 11n n n rS a a +=-,其中1a ≠,常数r N ∈;(1)求证:2n n a a +-是一个定值;(2)若数列{}n a 是一个周期数列(存在正整数T ,使得对任意*n N ∈,都有n T n a a +=成立,则称{}n a 为周期数列,T 为它的一个周期),求该数列的最小周期; (3)若数列{}n a 是各项均为有理数的等差数列,123n n c -=⋅(*n N ∈),问:数列{}n c 中的所有项是否都是数列{}n a 中的项?若是,请说明理由,若不是,请举出反例; 解:(1)2n n a a r +-=;(2)2T =;(3)不是;19.(2017普陀区一模)已知数列{}n a 的各项均为正数,且11a =,对任意的*n N ∈,均有2114(1)n n n a a a +-=⋅+,22log (1)1n n b a =+-;(1)求证:{1}n a +是等比数列,并求出{}n a 的通项公式;(2)若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求12100c c c ++⋅⋅⋅+; (3)设11n n n d b b +=⋅,数列{}n d 的前n 项和为n T ,是否存在正整数m (1m n <<),使得1T 、m T 、n T 成等比数列,若存在,求出m 的值,若不存在,请说明理由;解:(1)21nn a =-;(2)11202;(3)2m =,12n =;20.(2017徐家汇区一模)已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n nS b n =⋅*()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是 [0,1) 21.(2017徐家汇区一模)正数数列{}n a 、{}n b 满足:11a b ≥,且对一切2k ≥,k N *∈,ka 是1k a -与1kb -的等差中项,k b 是1k a -与1k b -的等比中项; (1)若22a =,21b =,求1a 、1b 的值;(2)求证:{}n a 是等差数列的充要条件是n a 为常数数列; (3)记||n n n c a b =-,当2n ≥,n N *∈,指出2n c c ++与1c 的大小关系并说明理由; 解:(1)12a =12b =(2)略;(3)21n c c c ++<;。
2017年上海高考数学一模卷(分类汇编--三角H
2017年高考数学一模分类汇编--三角一、填空题汇编:(第1--6题4分/题;第7--12题5分/题)1、(17年普陀一模2) 若22ππα-<<,3sin 5α=,则cot 2α=2、(17年浦东一模8) 函数()3cos 3sin )f x x x x x =+-的最小正周期为3、(17年长宁/嘉定一模2) 函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω=4、(17年长宁/嘉定一模9)如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为5、(17年杨浦一模4)若ABC ∆中,4=+b a ,︒=∠30C ,则ABC ∆面积的最大值是 .6、(17年松江一模5)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为7、(17年闵行一模1)集合[]{}cos(cos )0,0,x x x ππ=∈=_____________ .(用列举法表示)8(17年松江一模)如右图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅的取值范围是_____________.9、(17年静安一模2).函数⎪⎭⎫⎝⎛+-=4sin 31)(2πx x f 的最小正周期为 .10、(17年静安一模6).已知为锐角,且,则________ .11、(17年静安一模9).直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为___________.12、(17年金山一模3).如果5sin 13α=-,且α为第四象限角,则tan α的值是 13、(17年金山一模4).函数cos sin ()sin cos x xf x x x=的最小正周期是14、(17年虹口一模3).设函数()sin cos f x x x =-,且()1f α=,则sin2α= . 15、(17年虹口一模6).已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin A =的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).16、(17年奉贤一模11).参数方程[)πθθθθ2,0,sin 12cos2sin ∈⎪⎩⎪⎨⎧+=+=y x 表示的曲线的普通方程是_________.3cos()45πα+=sin α=17、(17年奉贤一模12).已知函数()()sin cos 0,f x wx wx w x R =+>∈,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为____________.18、(17年崇明一模9).已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是19、(17年崇明一模11).在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)20、(17年宝山一模6). 若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为二、选择题汇编:(5分/题) 1、(17年徐汇一模13)、“4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要2、(17年青浦一模13)、已知()sin3f x x π=,{1,2,3,4,5,6,7,8}A =现从集合A 中任取两个不同元素s 、t ,则使得()()0f s f t ⋅=的可能情况为 ( ).A .12种B .13种C .14种D .15种3、(17年浦东一模13) 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+ C. cos(2)3y x π=-D. cos(2)6y x π=- 4、(17年长宁/嘉定一模15)给出下列命题:① 存在实数α使3sin cos 2αα+=;② 直线2x π=-是函数sin y x =图像的一条对称轴;③ cos(cos )y x =(x R ∈)的值域是[cos1,1];④ 若α、β都是第一象限角,且αβ>,则tan tan αβ>;其中正确命题的题号为( )A. ①②B. ②③C. ③④D. ①④5、(17年长宁/嘉定一模16) 如果对一切实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-6、(17年杨浦一模13)若直线1=+bya x 通过点()θθsin ,c os P ,则下列不等式正确的是 ( )(A )122≤+b a (B )122≥+b a (C )11122≤+b a (D )11122≥+ba7、(17年松江一模16)解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-8、(17年虹口一模14).已知函数()sin(2)3f x x π=+在区间[]0,a (其中0a >)上单调递增,则实数a 的取值范围是( )..A 02a <≤π.B 012a π<≤.C ,12a k k N ππ*=+∈ .D 22,12k a k k N <≤+∈πππ9、(17年奉贤一模15).已知函数22sin ,()cos(),x x f x x x α⎧+⎪=⎨-++⎪⎩00x x ≥<([0,2)απ∈是奇函数,则α=( )A .0 B .2πC .πD .23π10、(17年崇明一模13). 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =三、解答题汇编1、(17年徐汇一模18)、已知函数2sin ()1x xf x x -=;(1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c,若()2Af =4a =,5b c +=, 求△ABC 的面积;2、(17年青浦一模18)、本题满分14分)第(1)小题满分6分,第(2)小题满分8分.已知函数()()221cos 42f x x x x π⎛⎫=+--∈ ⎪⎝⎭R .(1) 求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值; (2)在ABC ∆中,若A B <,且()()12f A f B ==,求BCAB的值.3、(17年浦东一模13)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =ABC 的面积S =a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;4、(17年长宁/嘉定一模18)(14分) 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且28sin 2cos 272B C A +-=;(1)求角A 的大小;(2)若a =3b c +=,求b 和c 的值;5、(17年杨浦一模17)(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题6分. 如图,某柱体实心铜质零件的截面边界是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中︒=∠60BAC . (1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,试求该零件的重量(每1立方厘米铜重8.9克,按四舍五入精确到0.1克).6、(17年松江一模19)松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”,兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求: (1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)60° A B PC7、(17年松江一模18)(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知()23,1m =,2cos ,sin 2A n A ⎛⎫= ⎪⎝⎭,A B C 、、是ABC △的内角. (1)当2A π=时,求n 的值;(2)若23C π=,3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长.8、(17年静安一模18).(本题满分14分,第1小题7分,第2小题7分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向2cos θ⎛⎫= ⎪ ⎪⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?9、(17年金山一模18). 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;10、(17年虹口一模18).(本题满分14分)如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30︒方向与它相距20海里的B 处有一外国船只,且D 岛位于海监船正东18海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1︒,速度精确到0.1海里/小时).A11、(17年奉贤一模19).(本题满分14分)本题共有1个小题,满分14分一艘轮船在江中向正东方向航行,在点观测到灯塔在一直线上,并与航线成角α()0900<<α.轮船沿航线前进b 米到达处,此时观测到灯塔在北偏西方向,灯塔在北偏东β()0900<<α方向,0090αβ<+<.求.(结果用,,b αβ的表达式表示).12、(17年崇明一模18).在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E正北55海里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A相距B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+(其中sin θ=090θ︒︒<<)且与点A相距海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时) (2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;P A B ,C A 45︒B CB。
上海市徐汇区2017届高三一模数学试题+答案
2016-2017学年第一学期徐汇区学习能力诊断卷高三年级数学学科2016.12一.填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分(或5分),否则一律得0分. 1. 25lim1n n n →∞-=+____________.【解答】25lim 1n n n →∞-=+52n lim 11n n→∞-=+2010=+=2. 2. 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则其焦点到准线的距离为____________.【解答】由题意可知:由焦点在x 轴上,若C 经过点M (1,3), 则图象经过第一象限,∴设抛物线的方程:y 2=2px , 将M (1,3)代入9=2p ,解得:p=92, ∴抛物线的标准方程为:y 2=9x , 由焦点到准线的距离d=p=2p , 3. 若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛b a 1020,解为21x y =⎧⎨=⎩,则=+b a ____________. 【解答】解:由题意知21x y =⎧⎨=⎩是方程组2ax y b =⎧⎨=⎩的解,即,则a +b=1+1=2, 故答案为:2.4. 若复数z 满足:3i z i ⋅=+(i 是虚数单位),则z =______.【解答】解:由iz=+i ,得z==1﹣i ,故|z |==2, 故答案为:2.5. 在622()x x +的二项展开式中第四项的系数是____________.(结果用数值表示)【解答】解:在(x +)6的二项展开式中第四项:=8Cx ﹣3=160x ﹣3.∴在(x +)6的二项展开式中第四项的系数是160.故答案为:160.6. 在长方体1111ABCD A B C D -中,若11,2AB BC AA ===,则异面直线1BD 与1CC 所成角的大小为____________.【解答】解:如图,连接D 1B 1; ∵CC 1∥BB 1;∴BD 1与CC 1所成角等于BD 1与BB 1所成角; ∴∠B 1BD 1为异面直线BD 1与CC 1所成角; ∴在Rt △BB 1D 1中,cos ∠B 1BD 1=;∴异面直线BD 1与CC 1所成角的大小为.故答案为:.7. 若函数22,0(),0x x f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________.【解答】解:x ≤0时:f (x )=2x ≤1.x >0时,f (x )=﹣x 2+m ,函数的对称轴x=0,f (x )在(﹣∞,0)递增,∴f (x )=﹣x 2+m <m , 函数f (x )=的值域为(﹣∞,1],故m <1,故答案为:(﹣∞,1]8. 如图:在ABC ∆中,若13,cos ,22AB AC BAC DC BD ==∠==,则AD BC ⋅=____________.【解答】解:根据条件:===;∴===.9. 定义在R 上的偶函数()y f x =,当0x ≥时,2()lg(33)f x x x =-+,则()f x 在R 上的零点个数为___________个.【解答】解:当x ≥0时,f (x )=lg (x 2﹣3x +3),函数的零点由:lg (x 2﹣3x +3)=0,即x 2﹣3x +3=1,解得x=1或x=2. 因为函数是定义在R 上的偶函数y=f (x ),所以函数的零点个数为:4个. 故答案为:4.10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A 与B 的位置,那么不同的停车位置安排共有____________种?(结果用数值表示)【解答】解:由题意,不同的停车位置安排共有A 22A 86=40320种. 故答案为40320.11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S .设*()2nn nS b n N n =∈⋅,若数列{}n b 是递减数列,则实数m 的取值范围是____________. 【解答】解:S n =n +×2m=mn 2+(1﹣m )n .∴b n ==,∵数列{b n }是递减数列, ∴b n +1<b n ,∴<,化为:m <n ,对于∀n ∈N *,即可得出. 因此m <1.则实数m 的取值范围是(﹣∞,1). 故答案为:(﹣∞,1).12. 若使集合{}2|(6)(4)0,A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值范围是_______________.【解答】解:集合A={x |(kx ﹣k 2﹣6)(x ﹣4)>0,x ∈Z }, ∵方程(kx ﹣k 2﹣6)(x ﹣4)=0, 解得:,x 2=4,∴(kx ﹣k 2﹣6)(x ﹣4)>0,x ∈Z 当k=0时,A=(﹣∞,4);当k >0时,4<k +,A=(﹣∞,4)∪(k +,+∞); 当k <0时,k +<4,A=(k +,4). ∴当k ≥0时,集合A 的元素的个数无限;当k <0时,k +<4,A=(k +,4).集合A 的元素的个数有限,此时集合A 的元素个数最少.则有:,解得:k <0.故答案为:(﹣∞,0).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.13. “()4x k k Z ππ=+∈”是“tan 1x =”成立的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【解答】解:∵tanx=1,∴x=k π+(k ∈Z )∵x=k π+(k ∈Z )则tanx=1,∴根据充分必要条件定义可判断: “x=k π+(k ∈Z )“是“tanx=1”成立的充分必要条件故选:C14. 若12i -(i 是虚数单位)是关于x 的实系数方程20x bx c ++=的一个复数根,则( )(A )2,3b c == (B )2,1b c ==-(C )2,1b c =-=- (D )2,3b c =-= 【解答】解:∵1﹣i 是关于x 的实系数方程x 2+bx +c=0的一个复数根, ∴1+i 是关于x 的实系数方程x 2+bx +c=0的一个复数根, ∴,解得b=﹣2,c=3.故选:D .15. 已知函数()x f 为R 上的单调函数,()x f1-是它的反函数,点()3,1-A 和点()1,1B 均在函 数()x f 的图像上,则不等式()121<-x f 的解集为()(A )()1,1-(B )()1,3(C )()20,log 3(D )()21,log 3 【解答】解:∵点A (﹣1,3)和点B (1,1)在图象上, ∴f (﹣1)=3,f (1)=1,又f ﹣1(x )是f (x )的反函数, ∴f ﹣1(3)=﹣1,f ﹣1(1)=1,由|f ﹣1(2x )|<1,得﹣1<f ﹣1(2x )<1,即f ﹣1(3)<f ﹣1(2x )<f ﹣1(1),函数f (x )为R 的减函数,∴f ﹣1(x )是定义域上的减函数, 则1<2x <3,解得:0<x <log 23.∴不等式|f ﹣1(2x )|<1的解集为(0,log 23). 故选:C .16. 如图,两个椭圆221259x y +=,221259y x +=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:① P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值;② 曲线C 关于直线y x =、y x =-均对称; ③ 曲线C 所围区域面积必小于36.上述判断中正确命题的个数为( )(A )0个 (B )1个 (C )2个 (D )3个【解答】解:对于①,若点P 在椭圆+=1上,P 到F 1(﹣4,0)、F 2(4,0)两点的距离之和为定值、到E 1(0,﹣4)、E 2(0,4)两点的距离之和不为定值,故错; 对于②,两个椭圆+=1,+=1关于直线y=x 、y=﹣x 均对称,曲线C 关于直线y=x 、y=﹣x 均对称,故正确;对于③,曲线C 所围区域在边长为6的正方形内部,所以面积必小于36,故正确.故选:C三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. (本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,已知⊥PA 平面ABC ,AB AC ⊥,2==BC AP ,︒=∠30CBA ,D 是AB 的中点.(1)求PD 与平面PAC 所成角的大小(结果用反三角函数值表示); (2)求PDB ∆绕直线PA 旋转一周所构成的旋转体的体积(结果保留π).18. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数23sin ()cos 1x xf x x-=. (1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若()3,4,52Af a b c ==+=,求ABC ∆的面积.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元) (1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.如图:双曲线Γ:2213x y -=的左、右焦点分别为12,F F ,过2F 作直线l 交y 轴于点Q . (1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上...是否存在点P ,满足110F P FQ ⋅=?若存在, 求出P 点的坐标;若不存在,说明理由;(3)若直线l 与Γ交于不同两点A B 、,且Γ上存在一点M ,满足40OA OB OM ++=(其中O 为坐标原点),求直线l 的方程.21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.正数数列{}n a 、{}n b 满足:11a b ≥,且对一切2,*k k N ≥∈,k a 是1k a -与1k b -的等差中项,kb 是1k a -与1k b -的等比中项.(1)若222,1a b ==,求11,a b 的值;(2)求证:{}n a 是等差数列的充要条件是{}n a 为常数数列; (3)记||n n n c a b =-,当*2()n n N ≥∈时,指出2n c c ++与1c 的大小关系并说明理由.参考答案一、填空题:(共54分,第1题至第6题每小题4分;第7题至第12题每小题5分)1. 22.92 3. 2 4. 2 5. 160 6. 4π 7. 01m <≤ 8. 32- 9. 4 10. 4032011. 01m ≤< 12. []3,2--二、选择题:(共20分,每小题5分)13. C 14. D 15. C 16. C三、解答题17、解:(1) ⊥PA 平面ABC ,AB PA ⊥,又 AB AC ⊥,⊥∴AB 平面PAC ,所以DPA ∠就是PD 与平面PAC 所成的角.………4分在PAD Rt ∆中,23,2==AD PA ,………………………………………6分 所以43arctan=∠DPA , 即PD 与平面PAC 所成的角的大小为43arctan.………………………8分 (2)PDB ∆绕直线PA 旋转一周所构成的旋转体,是以AB 为底面半径、AP 为高的圆锥中挖去一个以AD 为底面半径、AP 为高的小圆锥. ………10分所以体积πππ232)23(312)3(3122=⋅⋅-⋅⋅=V . ……………14分.18、解:(1)由条件得:21cos 21()sin cos sin 222x f x x x x x +=+⋅=+,即1()cos 2sin 2222f x x x =++………2分sin(2)32x π=++,………3分因为[0,]2x π∈,所以sin(2)[3x π+∈因此()sin(2)3f x x π=++1]+………6分(2)由()2Af =sin()32A π+=因为(0,)A π∈,所以4(,)333A πππ+∈,所以233A ππ+=,即3A π=.………8分 由余弦定理得:2216b c bc +-=,所以2()316b c bc +-=, 又5b c +=,解得3bc =,………12分所以1sin 24ABC S bc A ∆==.………14分19、解:(1)1()(0)4f x x x =≥.……3分,()0)g x x =≥.………6分 (2)设B 产品的投资额为x 万元,则A 产品的投资额为(10x -)万元,创业团队获得的利润为y 万元,则1()(10)(10)(010)4y g x f x x x =+-=-≤≤.………10分t =,()1002545412≤≤++-=t t t y,即21565()(04216y t t =--+≤≤,当52t =,即 6.25x =时,y 取得最大值4.0625………13分答:当B 产品的投资额为6.25万元时,创业团队获得的最大利润为4.0625万元.……14分 20、解:(1)易得1(2,0)F -,2(2,0)F ,Γ的渐近线方程为y x =,由对称性,不妨设:2) l y x =-,即20x --=,------------------2分 所以,1(2,0)F -到l的距离2d ==.-----------------------------4分(2)当直线l 的斜率为1时,l 的方程为2y x =-,------------------------5分 因此,(0,2)Q -, -----------------------------6分 又1(2,0)F -,故1(2,2)FQ =-, 设Γ右支上的点P 的坐标为(,),(0)x y x >,则1(2,)F P x y =+, 由110F P FQ ⋅=,得2(2)20x y +-=,-----------------------8分又2213x y -=,联立消去y 得2212150x x ++=,由根与系数的关系知,此方程无正根,因此,在双曲线Γ的右支上不存在点P ,满足110F P FQ ⋅=. --------------------10分(3)设1122(,),(,) A x y B x y ,则1212(,)44x x y y M ----, ----------------11分 由M 点在曲线上,故212212()4()134x x y y -----=(*)设:(2) l y k x =-联立l 与Γ的方程,得2222(13)121230k x k x k -+--=---------------------------12分由于l 与Γ交于不同两点,所以,k ≠. 所以,21221213k x x k -+=-, 因此,12121224(2)(2)()413k y y k x k x k x x k k-+=-+-=+-=-. ------------14分 从而(*)即为22222124()3()481313k k k k---=--,解得2k =±.即直线l 的方程为20x ±-= . -------------------------------------------16分21、解:(1)由条件得1122a b +==,11a =2,1b =2.----------4分 (2)充分性:当{}n a 为常数数列时,{}n a 是公差为零的等差数列;--------------5分 必要性:当{}n a 为等差数列时,1120m m m a a a -++-=对任意2,*m m N ≥∈恒成立,----------------------------------------------------------------------6分而112m m m a a a -++-=1m a -+1211()()m m m m a b a b --+-+ =121()m m m a b b -+-=1111(22m m m a b b ---++-,0>0=,即11m m a b --=,-------------9分 从而1111122m m m m m m a b a a a a -----++===对2,*m m N ≥∈恒成立, 所以{}n a 为常数列. ------------------------------------------------------------------------10分(3)因为任意*,2n N n ∈≥,112n n n n a b a b --+=≥=,--------------12分 又已知11a b ≥,所以n n n c a b =-.从而11n n a b ++-=111((2)()2222n n n n n n n n n a b a b a b b a b +=+-≤+-=-, 即112n n c c +≤, ----------------------------------------------------------------------------------14分 则n c ≤121n c -≤2212n c -≤…≤1112n c -,----------------------------------------------16分 所以2n c c ++≤112c ++1112n c -=11(1)2n --1c <1c .-------------------18分。
【上海中学年】2017学年高考模拟数学年试题(一)答案
上海中学2017年高考模拟数学试卷(一)一、填空题1.定义在R 上的奇函数()f x 以2为周期,则(1)f =________.2.如果复数1i 1ib ++(b ∈R )的实部和虚部互为相反数,则b 等于________. 3.若12x n +()展开式中含3x 项的系数等于含x 项系数的8倍,则正整数n =________.4.(文)若126x y x y ≥⎧⎪≥⎨⎪+≤⎩,则目标函数2z x y =+的最小值为________.5.已知0a <,则关于x 的不等式31a x a>+的解集为________. 6.点P 是椭圆2212516x y +=上一点,1F 、2F 是椭圆的两个焦点,且12PF F △的内切圆半径为1,当P 在第一象限内时,P 点的纵坐标为________.7.数列{}n a 满足:1213nn nn a n ⎧⎪⎪=⎨⎪⎪⎩,为奇数,为偶数.,它的前n 项和记为n S ,则lim n n S →∞=________. 8.某市为加强城市圈的建设,计划对周边如图所示的A 、B 、C 、D 、E 、F 、G 、H 八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A 被选中的概率为________.92kx -仅有一个实数根,则k 的取值范围是________.10.在ABC △中,已知||2AB =,22||1||2BC CA =,则ABC △面积的最大值为________. 11.如图为一几何体的展开图,其中ABCD 是边长为6的正方形,6SD PD ==,CR SC =,AQ AP =,点S ,D ,A ,Q 及P ,D ,C ,R 共线,沿图中虚线将它们折叠,使P ,Q ,R ,S 四点重合,则需要________个这样的几何体,就可以拼成一个棱长为12的正方体.12.若函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象分别交于点A 、B ,若||AB =则a 约等于________(精确到0.1).13.老师告诉学生小明说,“若O 为ABC △所在平面上的任意一点,且有等式c o s C c o s B ()||||AB AC OP OA AB AC =++,则P 点的轨迹必过ABC △的垂心”,小明进一步思考何时P 点的轨迹会通过ABC △的外心,得到的条件等式应为OP =________.(用O ,A ,B ,C 四个点所构成的向量和角A ,B ,C 的三角函数以及表示)二、选择题14.若函数cos2y x =与函数()sin y x =+在区间π[0]2,上的单调性相同,则的一个值是( ) A .π6 B .π4 C .π3 D .π215.△ABC 中,π3A =,3BC =,则△ABC 的周长为( )A .π)33B ++ B .π)36B ++C .π6sin()33B ++ D .π6sin()36B ++ 16.若点1(,)M a b和1(,)N b c 都在直线l :1x y +=上,则点1(,)P c a ,1()Q b c ,和l 的关系是( ) A .P 和Q 都在l 上 B .P 和Q 都不在l 上 C .P 在l 上,Q 不在l 上 D .P 不在l 上,Q 在l 上 17.数列{}n a 满足:114a =,215a =,且1223111n n n a a a a a a na a ++⋯++=+对任何的正整数n 都成立,则1297111...a a a +++的值为() A .5 032B .5 044C .5 048D .5 050三、解答题 18.已知函数2cos cos 3()()2f x x x x x =-+∈∈R R ,的最小正周期为π,且当π6x =时,函数有最小值.(1)求()f x 的解析式;(2)作出()f x 在[0,π]范围内的大致图象.19.设虚数z 满足|215|10|z z +=+.(1)计算||z 的值;(2)是否存在实数a ,使z a a z+∈R ?若存在,求出a 的值;若不存在,说明理由. 20.如图所示,已知斜三棱柱ABC ﹣A 1B 1C 1的各棱长均为2,侧棱与底面所成角为π3,且侧面ABB 1A 1垂直于底面.(1)判断B 1C 与C 1A 是否垂直,并证明你的结论;(2)求四棱锥B ﹣ACC 1A 1的体积.21.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n 年该公司付给职工工资总额y (万元)表示成年限n 的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p %,求p 的最小值.22.已知函数||2()()f x x b c =+-,函数()g x x m =+.(1)当2b =,4m =-时,()()f x g x ≥恒成立,求实数c 的取值范围;(2)当3c =-,2m =-时,方程()()f x g x =有四个不同的解,求实数b 的取值范围.23.若给定椭圆C :221ax by +=(0a >,0b >,a b ≠)和点00()N x y ,,则称直线l :001ax x by y +=为椭圆C 的“伴随直线”.(1)若00()N x y ,在椭圆C 上,判断椭圆C 与它的“伴随直线”的位置关系)当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点00()N x y ,在椭圆C 的外部,则直线l 与椭圆C 必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若00()N x y ,在椭圆C 的内部,过N 点任意作一条直线,交椭圆C 于A 、B ,交l 于M 点(异于A 、B ),设1MA AN =,2MB BN =,问12+是否为定值?说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 抛掷一枚均匀的骰子(刻有1、2、3、4、5、6)三次,得到的数字依次记作a 、b 、c , 则a bi +(i 为虚数单位)是方程220x x c -+=的根的概率是8. 设常数0a >,9(x+展开式中6x 的系数为4,则2lim()n n a a a →∞++⋅⋅⋅+=9. 已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为10. 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共 点,则此双曲线的标准方程为11.平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得 ||2||PA PB =,则实数m 的取值范围是15. 一个公司有8名员工,其中6位员工的月工资分别为5200、5300、5500、6100、6500、 6600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是( )A. 5800B. 6000C. 6200D. 64007. 若函数22,0(),0x x f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(,1]-∞,则实数m 的取值范围是 8. 如图,在△ABC 中,若3AB AC ==,1cos 2BAC ∠=,2DC BD =uuu r uu u r ,则AD BC ⋅=uuu r uu u r9. 定义在R 上的偶函数()y f x =,当0x ≥时,2()lg(33)f x x x =-+,则()f x 在R 上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A 与B 的位置,那么不同的停车位置安排共有 种(结果用数值表示)11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n n S b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是18. 已知函数23sin ()cos 1x x f x x -=; (1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若()32Af =4a =,5b c +=,求△ABC 的面积;上海市长宁、嘉定区2017届高三一模数学试卷8. 若数列{}n a 23n n =+(*n N ∈),则 1221lim ()231n n a a a n n →∞++⋅⋅⋅+=+ 9. 如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为10. 有以下命题:① 若函数()f x 既是奇函数又是偶函数,则()f x 的值域为{0};② 若函数()f x 是偶函数,则(||)()f x f x =;③ 若函数()f x 在其定义域内不是单调函数,则()f x 不存在反函数;④ 若函数()f x 存在反函数1()f x -,且1()f x -与()f x 不完全相同,则()f x 与1()f x -图 像的公共点必在直线y x =上;其中真命题的序号是 (写出所有真命题的序号)17. 如图,已知AB ⊥平面BCD ,BC CD ⊥,AD 与平面BCD 所成的角为30°,且2AB BC ==;(1)求三棱锥A BCD -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM所成角的大小(结果用反三角函数值表示);8. 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直 线与圆C 相切,则k 的取值范围是9. 如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒, 1AB BC ==,若1A C 与平面11B BCC 所成的角为6π, 则三棱锥1A ABC -的体积为 10. 掷两颗骰子得两个数,若两数的差为d ,则{2,1,0,1,2}d ∈--出现的概率的最大值 为 (结果用最简分数表示)15. 设l αβ--是直二面角,直线a 在平面α内,直线b 在平面β内,且a 、b 与l 均不垂 直,则( )A. a 与b 可能垂直,但不可能平行B. a 与b 可能垂直,也可能平行C. a 与b 不可能垂直,但可能平行D. a 与b 不可能垂直,也不可能平行18. 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12PF F ∠=12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值,并求出||MQ 取得最大值时M 的坐标;8. 若21(2)n x x +*()n N ∈的二项展开式中的第9项是常数项,则n = 9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是15. 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A. 221255x y +=B. 2213010x y += C. 2213616x y += D. 2214525x y += 18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+(其中sin 26θ=,090θ︒︒<<)且与点A 相距海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由;9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x +的二项展开式中5x 的系数为144,则a =15. 设M 、N 为两个随机事件,给出以下命题: (1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =U ; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件; 其中正确命题的个数为( )A. 1B. 2C. 3D. 417. 如图,已知正三棱柱111ABC A B C -的底面积为4,侧面积为36; (1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1A C 与AB 所成的角的大小;上海市松江区2017届高三一模数学试卷8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y是曲线1C =上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF + 的最大值为15. 若矩阵11122122a a a a ⎛⎫ ⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈, 且111221220a a a a =,则这样的互不相等的矩阵共有( ) A. 2个 B. 6个 C. 8个 D. 10个18. 已知函数21()21x x a f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;8. 如图,一个空间几何体的主视图、左视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为1,那么这个几何体的表面积为9. 已知互异复数0mn ≠,集合22{,}{,}m n m n =,则 m n +=10. 已知等比数列{}n a 的公比为q ,前n 项和为n S ,对任意的*n N ∈,0n S >恒成立,则 公比q 的取值范围是15. 已知函数22sin ,0()cos(),0x x x f x x x x α⎧+≥⎪=⎨-++<⎪⎩([0,2))απ∈是奇函数,则α=( ) A. 0 B. 2π C. π D. 32π 18. 已知函数22()log (2)x x f x a a =+-(0)a >,且(1)2f =;(1)求a 和()f x 的单调区间;(2)(1)()2f x f x +->;8. 已知数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取值范围是9. 将边长为10的正三角形ABC ,按“斜二测”画法在水平放置的平面上画出为△A B C ''', 则△A B C '''中最短边的边长为 (精确到0.01)10. 已知点A 是圆22:4O x y +=上的一个定点,点B 是圆O 上的一个动点,若满足 ||||AO BO AO BO +=-uuu r uu u r uuu r uu u r ,则AO AB ⋅=uuu r uu u r14. 已知空间两条直线m 、n ,两个平面α、β,给出下面四个命题:①m ∥n ,m n αα⊥⇒⊥;②α∥β,m α,n β⇒m ∥n ;③m ∥n ,m ∥αn ⇒∥α;④α∥β,m ∥n ,m α⊥n β⇒⊥;其中正确的序号是( )A. ①④B. ②③C. ①②④D. ①③④17. 如图所示,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周 上不与A 、B 重合的一个点;(1)若圆柱的轴截面是正方形,当点C 是弧AB 的中点时,求异面直线1A C 与AB 的所成 角的大小(结果用反三角函数值表示);(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比;上海市浦东新区2017届高三一模数学试卷9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02x x m --<在区间[0,1]内恒成立,则实数m 的范围14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像() A. 关于y 轴对称 B. 关于原点对称C. 关于直线0x y +=对称D. 关于直线0x y -=对称15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则2a >D. 若10a <,则2123()()0a a a a --> 18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =,△ABC 的面积2S =,求a c +的值;(2)若22cos ()C BA BC AB AC c ⋅+⋅=u u r u u u r u u u r u u u r ,求角C ;上海市闵行区2017届高三一模数学试卷7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧»AB 上的一个动点,则OP AB ⋅uu u r uu u r 取值范围是10. 已知x 、y 满足曲线方程2212x y +=,则22x y +的 取值范围是17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)上海市虹口区2017届高三一模数学试卷8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为9. 一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( )A. 若m ∥α,m 、n 不平行,则n 与α不平行B. 若m ∥α,m 、n 不垂直,则n 与α不垂直C. 若m α⊥,m 、n 不平行,则n 与α不垂直D. 若m α⊥,m 、n 不垂直,则n 与α不平行15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅u u u r u u u r 的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处;(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);7. 根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫克的行为属 于饮酒驾驶,假设饮酒后,血液中的酒精含量为0p 毫克/100毫克,经过x 个小时,酒精含量降为p 毫克/100毫克,且满足关系式0rx p p e =⋅(r 为常数)若某人饮酒后血液中的酒精含量为89毫克/100毫克,2小时后,测得其血液中酒精含量降为61毫克/100毫克,则此人饮酒后需经过 小时方可驾车8. 已知奇函数()f x 是定义在R 上的增函数,数列{}n x 是一个公差为2的等差数列,满足 78()()0f x f x +=,则2017x 的值为9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅u u u r u u u u r 的最大值为13. 某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加, 那么不同的发言顺序有( )A. 336种B. 320种C. 192种D. 144种17. 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅uuu r uuu u r 的取值范围;(2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程;7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示)9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是 (结果化为普通方程)10. 若n a 是(2)n x +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+=15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点; (1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示)(2)求三棱锥P AFD -的体积;。