土壤脲酶的测定方法
土壤酶活性的测定方法
![土壤酶活性的测定方法](https://img.taocdn.com/s3/m/c4b2044002d8ce2f0066f5335a8102d276a2612c.png)
土壤酶活性的测定方法土壤酶活性的测定方法主要包括测定土壤中的蔗糖酶、脲酶、过氧化氢酶和过氧化物酶等多种酶活性,这些酶活性的测定可以反映土壤的微生物代谢能力和土壤质量。
本文将详细介绍几种常用的土壤酶活性测定方法。
一、酶活性测定方法的准备工作1. 样品处理:收集土壤样本后,将其放在4C冷藏保存,保持样品活性,避免酶的降解。
2. 取样:根据需要,从土壤样品中取出一定量的湿重或干重样品。
3. 土壤处理:依据实验要求,对土壤样品进行处理,如水分调整、添加营养物质等。
二、蔗糖酶活性测定方法蔗糖酶是一种常见的土壤酶,可反映土壤中的碳循环能力。
蔗糖酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤,去除杂质。
2. 准备培养基:其中包括蔗糖作为底物、缓冲液、指示剂等。
3. 加入适量的土壤样品和培养基到离心管中,混匀后,放置在恒温摇床上培养一定时间。
4. 培养结束后,通过离心将土壤颗粒沉淀到底部。
5. 取沉淀后的上清液,用酚酞指示剂进行比色检测,根据比色结果计算蔗糖酶活性。
三、脲酶活性测定方法脲酶是一种重要的土壤酶,参与土壤中尿素的分解过程。
脲酶活性的测定方法如下:1. 取一定量的土壤样品,在10C恒温条件下接种脲酶底物,使底物完全被土壤降解。
2. 在一定时间后,通过添加草酸溶液阻止进一步反应,停止脲酶的活性。
3. 取样品,加入酚硫酸溶液,进行比色测定。
4. 根据比色结果计算脲酶活性。
四、过氧化氢酶活性测定方法过氧化氢酶是一种催化过氧化氢分解的酶,可反映土壤的抗氧化能力。
过氧化氢酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤去除杂质。
2. 准备含过氧化氢底物和其他试剂的反应体系。
3. 将土壤样品加入反应体系中,充分混匀后,在一定时间内反应。
4. 在反应结束后,通过添加硫酸钠溶液停止反应,阻止进一步的化学反应。
5. 使用紫外分光光度计测定样品的吸光度,根据结果计算过氧化氢酶活性。
五、过氧化物酶活性测定方法过氧化物酶是一类重要的土壤酶,在土壤中参与有机物降解和氧化还原反应。
脲酶的测定方法
![脲酶的测定方法](https://img.taocdn.com/s3/m/4beceaec76eeaeaad1f33055.png)
一、脲酶测定(比色法)脲酶是对尿素转化起关键作用的酶,它的酶促反应产物是可供植物利用的氮源,它的活性可以用来表示土壤供氮能力。
1、试剂配制:(1)pH6.7柠檬酸盐溶液:取368g柠檬酸溶于600mL蒸馏水中,另取295g 氢氧化钾溶于水,再将两种溶液合并,用1N氢氧化钠将pH调至6.7,并用水稀释至2L。
(2)苯酚钠溶液:称取62.5g苯酚溶于少量乙醇中,加2mL甲醇和18.5mL 丙酮,后用乙醇稀释至100mL(A液),保存再冰箱中。
称取27g氢氧化钠溶于100mL水中(B液),保存于冰箱中。
使用前,取A、B两液各20mL混和,并用蒸馏水稀释至100mL备用。
(3)次氯酸钠溶液:用水稀释制剂至活性氯的浓度为0.9%,(1.9g次氯酸钠溶于1L水中)溶液稳定。
(4)10%尿素溶液:10g尿素溶于100mL水中。
(5)N的标准溶液:精确称取0.4717g硫酸铵溶于水稀释至1L,则得1mL 含0.1mgN的标液,再将此液稀释10倍制成氮工作液(0.01mg/mL)。
2、操作步骤称取5g土置于50mL容量瓶中,加1mL甲苯处理,加塞塞紧轻摇15min;往瓶中加入5mL10%尿素液和10mL的柠檬酸盐缓冲液(pH6.7),仔细混匀。
在37℃恒温箱中培养24h。
然后用热至38℃的蒸馏水稀释至刻度(甲苯应浮在刻度以上),摇荡,将悬液过滤。
取滤液1mL置于50mL容量瓶中,用蒸馏水稀释至10mL,然后加入4mL苯酚钠溶液,并立即加入3mL次氯酸钠溶液,加入每一试剂后,立即将混合物摇匀,20min后,将混合物稀释至刻度,在波长578nm处测定吸光值。
脲酶活性以样品所得的吸光值减去对照样品吸光值之差,根据标准曲线求出氨态氮量。
标准曲线绘制:分别取0、1、3、5、7、9、11、13mL氮工作液置于50mL容量瓶中,加蒸馏水至20mL,再加4mL苯酚钠溶液和3mL次氯酸钠溶液,随加随摇匀,20min后显色,定容。
1h内再分光光度计上于578nm处比色。
土壤脲酶测定
![土壤脲酶测定](https://img.taocdn.com/s3/m/97a1c5b0b8f3f90f76c66137ee06eff9aff84957.png)
土壤脲酶测定土壤脲酶的测定是一项非常有趣且重要的工作呢。
它就像探索土壤这个神秘世界的一把小钥匙,能让我们了解到土壤里很多不为人知的秘密。
先来说说土壤脲酶是什么吧。
土壤脲酶其实是一种存在于土壤中的酶,它就像一个勤劳的小工匠,主要的工作就是催化尿素水解成氨和二氧化碳。
这个过程可不得了,就好像是一场小小的化学魔术,尿素原本安安静静地待在土壤里,在脲酶的作用下,就变成了其他的物质。
那为什么要测定土壤脲酶呢?这就好比我们要了解一个人的健康状况,就得做各种检查一样。
对于土壤,测定脲酶可以让我们知道土壤的肥力状况。
如果土壤脲酶的活性比较高,就像是土壤充满了活力,它能够更好地为植物提供养分,就像一个充满活力的厨师,能为食客做出更多美味佳肴一样。
现在讲讲土壤脲酶测定的一些方法吧。
1. 有比色法。
这种方法呢,就像是给土壤脲酶的活性量身高一样。
通过特定的化学反应,让土壤脲酶产生的产物与一些试剂发生反应,然后根据颜色的深浅来判断脲酶的活性。
就好比我们看一个人的脸色来初步判断他的健康状况。
不过这个过程可需要很精确的操作哦,就像做手术一样,一点点的偏差都可能导致结果不准确。
2. 还有一种是滴定法。
这个方法更像是一场耐心的较量。
通过不断地滴加试剂,直到反应达到一个特定的终点。
这就好比我们在走迷宫,要一步一步小心翼翼地找到出口。
在进行土壤脲酶测定的时候,我们也会遇到一些问题。
比如说,土壤样品的采集就很有讲究。
如果采集的样品没有代表性,那就像我们想要了解一群人的喜好,却只问了一两个人一样,结果肯定是不准确的。
而且,在测定过程中,环境因素也会影响结果。
温度啊,湿度啊,就像调皮的小怪兽,可能会干扰我们的测定。
不过只要我们认真对待,仔细操作,就像呵护一个小婴儿一样,就能得到比较准确的土壤脲酶测定结果啦。
这样我们就能更好地了解土壤的状况,为农业生产、环境保护等做出更大的贡献呢。
脲酶的测定方法
![脲酶的测定方法](https://img.taocdn.com/s3/m/20a5cc35fbd6195f312b3169a45177232f60e42c.png)
脲酶的测定方法一、脲酶测定(比色法)脲酶是对尿素转化起关键作用的酶,它的酶促反应产物是可供植物利用的氮源,它的活性可以用来表示土壤供氮能力。
1、试剂配制:(1)pH6.7柠檬酸盐溶液:取368g柠檬酸溶于600mL蒸馏水中,另取295g 氢氧化钾溶于水,再将两种溶液合并,用1N氢氧化钠将pH调至6.7,并用水稀释至2L。
(2)苯酚钠溶液:称取62.5g苯酚溶于少量乙醇中,加2mL甲醇和18.5mL 丙酮,后用乙醇稀释至100mL(A液),保存再冰箱中。
称取27g氢氧化钠溶于100mL水中(B液),保存于冰箱中。
使用前,取A、B两液各20mL混和,并用蒸馏水稀释至100mL备用。
(3)次氯酸钠溶液:用水稀释制剂至活性氯的浓度为0.9%,(1.9g次氯酸钠溶于1L水中)溶液稳定。
(4)10%尿素溶液:10g尿素溶于100mL水中。
(5)N的标准溶液:精确称取0.4717g硫酸铵溶于水稀释至1L,则得1mL 含0.1mgN的标液,再将此液稀释10倍制成氮工作液(0.01mg/mL)。
2、操作步骤称取5g土置于50mL容量瓶中,加1mL甲苯处理,加塞塞紧轻摇15min;往瓶中加入5mL10%尿素液和10mL的柠檬酸盐缓冲液(pH6.7),仔细混匀。
在37℃恒温箱中培养24h。
然后用热至38℃的蒸馏水稀释至刻度(甲苯应浮在刻度以上),摇荡,将悬液过滤。
取滤液1mL置于50mL容量瓶中,用蒸馏水稀释至10mL,然后加入4mL苯酚钠溶液,并立即加入3mL次氯酸钠溶液,加入每一试剂后,立即将混合物摇匀,20min后,将混合物稀释至刻度,在波长578nm处测定吸光值。
脲酶活性以样品所得的吸光值减去对照样品吸光值之差,根据标准曲线求出氨态氮量。
标准曲线绘制:分别取0、1、3、5、7、9、11、13mL氮工作液置于50mL容量瓶中,加蒸馏水至20mL,再加4mL苯酚钠溶液和3mL次氯酸钠溶液,随加随摇匀,20min后显色,定容。
实验一 土壤脲酶活性测定
![实验一 土壤脲酶活性测定](https://img.taocdn.com/s3/m/f5dfae0ebed5b9f3f90f1cd6.png)
3、在过滤的间隙时间取两个50ml比色管,各加入10,00ml 4%硼酸溶液。现将50ml比色管在冷凝管下,使冷凝管出口 尖端插入硼酸溶液中,准备蒸馏。 4、过滤完毕后,迅速往蒸氨瓶内注入20ml 4N 的NaOH溶液, 立即塞上塞子。接通冷凝水,加热蒸馏。 5、当馏出液达到50ml左右,停止蒸馏。取下比色管,将管 内接收液定量转入到50ml锥形瓶中加4-5滴指示剂(甲基 红-亚甲基蓝混合液),用0.1N HCL滴定瓶内的氨,滴定 到淡紫色为终点。记录试样和对照消耗的HCL体积V和V0 (ml)。
对于脲酶,它能促使尿素水解转化成氨、二氧化碳,反 应如下 :
在土壤中,在pH值为6.5~7.0是脲酶活性最大,通过测 定释放出的NH3量,可以确定脲酶的活性。土壤中脲酶活 性一般以37℃培养48小时每克土壤释放出的NH二个250ml锥形瓶,各加入10.0克土壤,再各加入10ml 混合磷酸盐缓冲溶液(pH6.8)。摇动处理15分钟,使均 匀。在往第一瓶内加入10ml浓度10%的尿素溶液,再经屏 内容物充分混匀,作为试样。第二瓶内加入10ml蒸馏水, 作为对照。将两个瓶置于37℃培养箱中培养48小时(要塞 上纱布塞子)。 2、培养结束后,往两个瓶内各加入50ml 2N KCL 溶液。塞 紧后再振荡30分钟。到时立即将试样过滤(滤纸可以用蒸 馏水润湿)到蒸氨瓶内。
实验一 土壤脲酶活性测定
一、实验目的
1. 掌握土壤脲酶活性测定第一种方法,了解所取土壤的脲酶 活性。 2. 了解尿素这一有机物在土壤环境中的降解转化。
二、简单原理
酶是一类具有蛋白质性质的、高分子的生物催化剂。土 壤酶 是活的有机体所合成的,或者在其生长过程中分泌 与体外,或者在其死亡后自溶而释放出。所有的酶均能显 示其活性。显著的酶的特征之一是其催化反应的专一性。 例如,脲酶对尿素的催化降解就及其专一。土壤中的酶的 来源有二种。一是来自于高等植物根系分泌及土壤中动植 物残体分解。二是来源于土壤微生物的生命活动。土壤酶 可分为胞内酶和胞外酶两种。胞外酶或溶出后的胞内酶进 入土壤结构后,均具有相对稳定性,如能抗微生物分解和 抗热稳定性等。它们以三种形式存在于土壤中,一是以吸 附状态贮积于土壤中。二是于土壤腐殖质复合存在。三是 以游离状态存在。
土壤脲酶活性测定(NH4+释放量法)
![土壤脲酶活性测定(NH4+释放量法)](https://img.taocdn.com/s3/m/f6468a717fd5360cba1adbed.png)
土壤脲酶活性测定(NH4+释放量法)脲酶是酰胺水解酶的一种,在自然界中分布广泛,植物、动物和微生物细胞中均含有此酶。
土壤中的脲酶主要来源于微生物和植物。
脲酶催化尿素的水解反应:在反应过程中,氨基甲酸盐是中间产物。
脲酶还能够催化羟基脲、二羟基脲、半卡巴脲等化合物的水解。
脲酶含有镍,分子量在151,000 Da~480,00 Da之间。
能够抑制脲酶活性的化合物有含硼化合物、尿素衍生物、甲醛、原子量大于50的重金属的盐、含氟化合物、醌和多元酚、抗代谢剂、杂环硫醇等。
1、试验原理通过对新鲜土壤与尿素溶液在37℃培养2h后测定氨释放量,估计脲酶的活性(Tabatabai,1994)。
2、试验仪器50mL容量瓶;培养箱或恒温水浴;蒸馏定氮仪。
3、试验试剂(所用试剂均为分析纯)A、甲苯(C6H5CH3);B、缓冲液:三(羟甲基)氨基甲烷[c(C2H8O3N3)=0.05mol·L-1,pH9.0]:称取 6.1g 三(羟甲基)氨基甲烷溶入700mL蒸馏水中,用c(H2SO4)=0.2mol·L-1的硫酸溶液调pH 至9.0,再用蒸馏水定容至1000mL;尿素溶液{c[CO(NH2)2]=0.2 mol·L-1}:称取1.2g尿素溶入约80mL缓冲液中,后用该缓冲液定容至100mL。
尿素溶液要当天配制,并在4℃下保存备用;氯化钾硫酸银混合溶液[c(KCl)=2.5mol·L-1]-[ρ(Ag2SO4)=100mg·L-1]:先将100mg Ag2SO4溶于700mL蒸馏水中,再加入188g的KCl(分析纯)使之溶解,在定容至1000mL;氧化镁(MgO):于高温电炉中,将氧化镁在600℃-700℃温度下灼烧2h,再放置于干燥器中冷却,贮于瓶中;混合指示剂:溶解0.099g的溴甲酚绿和0.066g甲基红于100mL的乙醇(95%)中;硼酸指示剂溶液[ρ(H3BO3)=20g·L-1]:溶解20g硼酸于950mL的热蒸馏水中,冷却,加入20mL的混合指示剂,充分混匀后,小心滴加氢氧化钠溶液[c(NaOH)=0.1mol·L-1],直至溶液呈红紫色(pH约4.5),稀释成1L;硫酸标准溶液[c(1/2H2SO4)=0.005mol·L-1]。
土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。
![土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。](https://img.taocdn.com/s3/m/2d5cf35bec3a87c24128c435.png)
土壤酶活性测定方法土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法)一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚-次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)PH6.7柠檬酸盐缓冲液:184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml 丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B 液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg氮的标准液。
绘制标准曲线时,再将此溶液稀释10倍供用。
三、操作步骤标准曲线制作:分别吸取稀释后的标准液0、1、3、5、7、9、11、13ml,移于50ml容量瓶中,然后补加蒸馏水至20ml。
再加入4ml苯酚钠溶液和3ml 次氯酸钠溶液,随加随摇匀。
20min后显色,定容。
1h内在分光光度计上于578nm 波长处比色。
然后以氮工作液浓度为横坐标,吸光值为纵坐标,绘制标准曲线。
称取5g土样于50ml三角瓶中,加1ml甲苯。
土壤脲酶测定
![土壤脲酶测定](https://img.taocdn.com/s3/m/d5101eba951ea76e58fafab069dc5022abea467a.png)
土壤脲酶测定一、实验目的1.了解土壤中脲酶的活性及其对氮素转化的重要作用;2.通过脲酶测定,评估土壤中氮素的转化和利用效率;3.为制定合理的施肥和作物管理措施提供依据。
二、实验原理脲酶是一种能够催化尿素分解的酶,在土壤中起着至关重要的作用。
它能够将尿素分解成氨和二氧化碳,释放出的氨可以被植物吸收利用。
因此,脲酶的活性可以反映土壤中氮素转化的能力。
本实验采用靛酚比色法测定脲酶活性。
该方法基于脲酶催化尿素分解产生的氨与靛酚反应生成靛酚蓝,其颜色深浅与脲酶活性呈正比。
通过比色法可以测定样品中脲酶的相对活性。
三、实验步骤1.样品采集与处理:选取具有代表性的土壤样品,将其风干、磨碎并过筛。
称取适量样品于试管中,加入适量的磷酸盐缓冲液,充分搅拌均匀。
2.实验溶液配制:配制尿素溶液(100mmol/L)和靛酚溶液(0.05mol/L)。
3.对照试验:取一支试管,加入等体积的磷酸盐缓冲液和尿素溶液,充分混合后放置在30℃恒温箱中30分钟。
然后加入靛酚溶液并充分混合,放置10分钟。
最后加入适量碳酸钠溶液,使溶液呈碱性,终止反应。
以靛酚蓝为标准品,在625nm波长下测定吸光度。
4.样品试验:取适量样品于试管中,加入等体积的磷酸盐缓冲液和尿素溶液,充分混合后放置在30℃恒温箱中30分钟。
然后按照对照试验的步骤加入靛酚溶液并测定吸光度。
5.数据记录与处理:记录对照试验和样品试验的吸光度值,计算脲酶活性。
四、结果分析1.对照试验与样品试验吸光度值的差异反映了样品中脲酶的活性。
对照试验中,由于没有脲酶的作用,尿素分解较慢,因此靛酚与氨的反应较慢,吸光度值较低。
而在样品试验中,由于样品中存在脲酶,脲酶催化尿素分解加速,导致靛酚与氨的反应加快,吸光度值较高。
2.通过比较对照试验和样品试验的吸光度值,可以计算出样品的脲酶活性。
具体计算方法为:脲酶活性(mg/g·h)= [(样品吸光度-对照吸光度)/(对照吸光度×时间×样品质量)]×100%。
土壤脲酶活性的比色法测定
![土壤脲酶活性的比色法测定](https://img.taocdn.com/s3/m/e9a01505b5daa58da0116c175f0e7cd1842518fc.png)
土壤脲酶活性的比色法测定是一种常用的方法,它可以测量土壤中脲酶的存在和活性。
这种方法通常使用一种叫做脲酶试剂盒的工具,该试剂盒中包含了所需的试剂和比色剂。
具体的测试步骤如下:
取一定量的土壤样品,并加入适量的水,搅拌均匀。
将混合物加入试剂盒中,加入脲酶试剂。
按照试剂盒中的说明,在一定的时间内进行反应。
比较样品的颜色和标准对照物的颜色,并记录下来。
根据脲酶试剂盒的不同,颜色的变化可能会有所不同。
一般来说,脲酶的存在和活性越高,样品的颜色就会越深。
通过对样品颜色的比较,就可以知道土壤中脲酶的存在和活性水平。
请注意,这种方法只能测量土壤中脲酶的活性水平,并不能测量脲酶的种类和数量。
土壤脲酶活性的比色法测定是一种常用的测量土壤中脲酶存在和活性的方法。
它使用脲酶试剂盒,包含所需试剂和比色剂。
测试步骤包括取样、加水搅拌、加入试剂盒、反应并比较颜色。
结果表明,脲酶存在和活性越高,样品颜色越深。
注意,这种方法只能测量脲酶活性水平,不能测量脲酶种类和数量。
土壤脲酶活性测定(改良靛酚蓝比色法)
![土壤脲酶活性测定(改良靛酚蓝比色法)](https://img.taocdn.com/s3/m/54d75f274b73f242336c5fbc.png)
土壤脲酶的测定方法(改良靛酚蓝比色法)一、原理以尿素为底物,经培养后根据脲酶酶促产物--氨(忽略硝化过程造成的氨氮损失)在碱性介质中与苯酚、次氯酸钠作用生成蓝色的靛酚。
该生成物数量与氨浓度成正比。
后即称为靛酚蓝比色法,其结果精确性较高,重现性较好,在脲酶活性测定中的应用最为广泛。
二、试剂1)甲苯1ml/ps注:甲苯易挥发,要在通风条件好的地方操作。
2)5%尿素:称取5g尿素,用水溶至100ml。
10ml/ps3)柠檬酸盐缓冲液(PH6.7):184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
20ml/ps注:柠檬酸和氢氧化钾混合时大量放热,需小心缓慢混合,冷却后定容。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
4ml/ps注:实际配比为:125g苯酚+4ml甲醇+37ml丙酮+25ml乙醇,混合溶解为A液。
54g氢氧化钠溶解为B液,冷却后备用。
A+B,定容至1000ml即得苯酚钠溶液。
苯酚有毒,常温下凝固,不宜称取,需小心。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
3ml/ps注:一般次氯酸钠溶液瓶上标注为活性≥5.5%,163.64ml次氯酸钠定容至1000ml。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至500ml,得到1ml含有0.2mg 氮的标准液;再将此液稀释10倍(吸取5ml标准液定容至100ml)制成氮的工作液(0.01mg/ml)。
二、器材50ml三角瓶,50ml容量瓶,漏斗,25ml试管,定量滤纸,振荡器,分光光度器四、操作步骤1)称取5g过1mm筛的风干土样于50ml三角瓶中,加1ml甲苯,振荡均匀,盖好;注:实际称取2g土。
土壤酶活性测定方法【最新】
![土壤酶活性测定方法【最新】](https://img.taocdn.com/s3/m/1efaa32642323968011ca300a6c30c225901f072.png)
土壤酶活性测定方法土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法)一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚—次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)柠檬酸盐缓冲液(PH6.7):184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg 氮的标准液;再将此液稀释10倍(吸取10ml标准液定容至100ml)制成氮的工作液(0.01mg/ml)。
三、操作步骤称取5g土样于50ml三角瓶中,加1ml甲苯,振荡均匀,15min后加10ml10%尿素溶液和20ml PH 6.7柠檬酸盐缓冲溶液,摇匀后在37℃恒温箱培养24小时。
培养结束后过滤,过滤后取1ml滤液加入50ml容量瓶中,再加4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。
20min后显色,定容。
土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。
![土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。](https://img.taocdn.com/s3/m/54ed293d2e60ddccda38376baf1ffc4ffe47e28a.png)
土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。
土壤酶活性测定方法土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法)一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚-次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)PH6.7柠檬酸盐缓冲液:184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml 丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B 液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg氮的标准液。
绘制标准曲线时,再将此溶液稀释10倍供用。
三、操作步骤标准曲线制作:分别吸取稀释后的标准液0、1、3、5、7、9、11、13ml,移于50ml容量瓶中,然后补加蒸馏水至20ml。
再加入4ml苯酚钠溶液和3ml 次氯酸钠溶液,随加随摇匀。
20min后显色,定容。
1h内在分光光度计上于578nm 波长处比色。
然后以氮工作液浓度为横坐标,吸光值为纵坐标,绘制标准曲线。
土壤酶活性测定方法综合
![土壤酶活性测定方法综合](https://img.taocdn.com/s3/m/35d38f46a7c30c22590102020740be1e640ecc44.png)
土壤酶活性测定方法综合引言:土壤酶活性是指土壤中特定酶在一定时间内分解特定底物的能力,是评估土壤生态系统功能和土壤肥力状况的重要指标。
土壤酶活性测定方法是研究土壤酶活性的关键手段之一、本文将综合介绍常用的土壤酶活性测定方法,包括蔗糖酶活性测定方法、过氧化氢酶活性测定方法和脲酶活性测定方法。
一、蔗糖酶活性测定方法:蔗糖酶是一种重要的有机磷酸酶,广泛存在于土壤中,能够水解蔗糖为葡萄糖和果糖。
测定土壤蔗糖酶活性可以反映土壤中酶的数量和活性。
1.提取土壤酶液:将土壤与玻璃棒研磨均匀,用0.5mol/L甘油缓冲液(pH6.8)溶解土壤,离心沉淀,得到土壤酶液。
2.酶活性测定:取一定量的土壤酶液加入蔗糖底物和缓冲液,在37℃恒温振荡下反应30分钟,用酒精停止反应,加入硫酸,取样测定比色液的吸光度。
3.统计分析:根据比色液吸光度与标准曲线对照,计算出土壤蔗糖酶活性。
二、过氧化氢酶活性测定方法:过氧化氢酶是一种氧化还原酶,能够催化过氧化氢分解为氧气和水。
测定土壤过氧化氢酶活性可以反映土壤中氧化还原反应的发生情况。
1.提取土壤酶液:将土壤与甘油缓冲液混合,加入液氮使其冷冻破碎,离心沉淀得到土壤酶液。
2.酶活性测定:取一定量的土壤酶液加入过氧化氢底物和缓冲液,在25℃恒温振荡下反应一定时间,停止反应后加入酒精,用紫外分光光度计测定吸光度。
3.统计分析:根据吸光度与过氧化氢递减曲线对照,计算出土壤过氧化氢酶活性。
三、脲酶活性测定方法:脲酶是一种解脲酸酯的酶,能够水解尿素为氨和二氧化碳。
测定土壤脲酶活性可以反映土壤中氮循环的情况。
1.提取土壤酶液:将土壤与脲酸酯缓冲液混合,用玻璃棒研磨均匀,离心沉淀得到土壤酶液。
2.酶活性测定:将一定量的土壤酶液加入脲酶底物和缓冲液,在37℃恒温振荡下反应一定时间,反应停止后加入酒精,用比色法测定吸光度。
3.统计分析:根据吸光度与标准曲线对照,计算出土壤脲酶活性。
结论:以上就是蔗糖酶活性测定方法、过氧化氢酶活性测定方法和脲酶活性测定方法的综合介绍。
土壤脲酶活性实验报告
![土壤脲酶活性实验报告](https://img.taocdn.com/s3/m/c3545ce0c67da26925c52cc58bd63186bceb92a3.png)
一、实验目的1. 了解土壤脲酶的作用及其在土壤氮素循环中的重要性。
2. 掌握土壤脲酶活性的测定方法。
3. 分析不同土壤类型、不同施肥处理对土壤脲酶活性的影响。
二、实验原理土壤脲酶是一种水解酶,能够将土壤中的尿素分解为氨和二氧化碳。
土壤脲酶活性反映了土壤中氮素转化和循环的能力。
本实验采用苯酚钠滴定法测定土壤脲酶活性,通过计算生成的氨的量来反映土壤脲酶活性。
三、实验材料1. 土壤样品:采集不同土壤类型、不同施肥处理的土壤样品。
2. 试剂:苯酚钠、氢氧化钠、硼酸、盐酸、硫酸铜、硫酸锌、尿素、蒸馏水等。
3. 仪器:分析天平、滴定管、锥形瓶、移液管、烧杯、试管等。
四、实验步骤1. 土壤样品处理:将采集的土壤样品风干、磨细、过筛(筛孔直径为2mm),备用。
2. 土壤脲酶活性的测定:(1)配制苯酚钠溶液:称取苯酚钠0.1g,溶解于100ml蒸馏水中,配制成0.1mol/L苯酚钠溶液。
(2)配制0.5mol/L氢氧化钠溶液。
(3)配制硼酸溶液:称取硼酸0.5g,溶解于100ml蒸馏水中,配制成0.5mol/L硼酸溶液。
(4)配制硫酸铜溶液:称取硫酸铜0.5g,溶解于100ml蒸馏水中,配制成0.5mol/L硫酸铜溶液。
(5)配制硫酸锌溶液:称取硫酸锌0.5g,溶解于100ml蒸馏水中,配制成0.5mol/L硫酸锌溶液。
(6)配制0.5mol/L盐酸溶液。
(7)配制尿素溶液:称取尿素0.5g,溶解于100ml蒸馏水中,配制成0.5mol/L 尿素溶液。
(8)取10g土壤样品,加入100ml蒸馏水,充分振荡,使土壤中的脲酶与尿素充分接触。
(9)取5ml土壤悬浊液,加入5ml苯酚钠溶液,混匀。
(10)加入5ml氢氧化钠溶液,混匀。
(11)在60℃水浴中加热30分钟。
(12)加入5ml硼酸溶液,混匀。
(13)加入5ml硫酸铜溶液,混匀。
(14)加入5ml硫酸锌溶液,混匀。
(15)加入5ml盐酸溶液,混匀。
(16)静置30分钟,使沉淀完全。
土壤过氧化氢酶过氧化物酶磷酸酶蔗糖酶脲酶测定方法
![土壤过氧化氢酶过氧化物酶磷酸酶蔗糖酶脲酶测定方法](https://img.taocdn.com/s3/m/768ba65bfe00bed5b9f3f90f76c66137ee064fc0.png)
土壤过氧化氢酶过氧化物酶磷酸酶蔗糖酶脲酶测定方法土壤中的过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶和脲酶是土壤中重要的酶类,对于土壤质量的评价和土壤生态系统的健康状况具有重要意义。
以下将介绍测定这些酶类的方法。
1.土壤过氧化氢酶检测方法:过氧化氢酶(Catalase, CAT)是土壤中一种重要的氧化酶,参与有机物的降解和土壤氧化还原过程。
测定土壤过氧化氢酶的常用方法为测定土壤样品的过氧化氢气体释放量。
实验步骤:(1)取一定量的土壤样品加入适量的过氧化氢底物(如双酚酸),在室温下反应一段时间。
(2)反应结束后,用紫外光度计测定反应液中过氧化氢的吸光度。
(3)根据吸光度的变化,计算出土壤样品中的过氧化氢酶活性。
2.土壤过氧化物酶检测方法:过氧化物酶(Peroxidase, POD)是土壤中一类重要的酶类,参与土壤的有机物降解和氧化还原过程,是土壤抗氧化系统的重要组成部分。
测定土壤过氧化物酶的常用方法为测定土壤样品中过氧化物酶的催化能力。
实验步骤:(1)取一定量的土壤样品加入适量的过氧化氢底物(如过氧化氢),在适宜的温度和pH条件下反应一段时间。
(2)反应结束后,用显色试剂(如双对苯偶氮、间苯二胺等)与反应液中的过氧化氢发生反应,形成有色物质。
(3)用分光光度计测定反应液中有色物质的吸光度,并根据吸光度的变化计算出土壤样品中过氧化物酶的活性。
3.土壤磷酸酶检测方法:磷酸酶(Phosphatase, AP)是土壤中一种重要的酶类,参与有机磷的矿化和土壤磷循环过程。
测定土壤磷酸酶的常用方法为测定土壤样品中磷酸酶对底物(如对硝基酚磷酸酯)的水解能力。
实验步骤:(1)取一定量的土壤样品加入适量的磷酸酶底物,在适宜的温度和pH条件下反应一段时间。
(2)反应结束后,用显色试剂(如酚氨反应液)与反应液中的产物发生反应,形成有色物质。
(3)用分光光度计测定反应液中有色物质的吸光度,并根据吸光度的变化计算出土壤样品中磷酸酶的活性。
土壤脲酶的测定方法
![土壤脲酶的测定方法](https://img.taocdn.com/s3/m/1afa46c449649b6648d74791.png)
土壤脲酶的测定方法脲酶试验原理:存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶、能酶促有机物质分子中酶键的水解。
脲酶的作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和碳酸。
土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法是测定生成的氨量。
试剂:1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)柠檬酸盐缓冲液(PH6.7):184克柠檬酸和147.5克氢氧化钾溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释至1000毫升。
4)苯酚钠溶液(1.35mol/L):62.5克苯酚溶于少量乙醇,加2毫升甲醇和18.5毫升丙酮,用乙醇稀释至100毫升(A),存于冰箱中;27克NaOH溶于100毫升水(B)。
将AB溶液保存在冰箱中。
使用前将2溶液各20毫升混合,用蒸馏水稀释至100毫升。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:a 精确称取0.4717克硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg氮的标准液标准曲线绘制:吸取配置好的氮溶液10ml,定容至100ml,即稀释了10倍,吸取1,3,5,7,9,11,13ml移至50ml容量瓶,加水至20ml,再加入4ml 苯酚钠,仔细混合,加入3ml次氯酸钠,充分摇荡,放置20分钟,用水稀释至刻度。
将着色液在紫外分光光度计上于578nm处进行比色测定,以标准溶液浓度为横坐标,以光密度值为纵坐标绘制曲线图。
取新鲜土壤7份,每份30g,装于棕色广口瓶中,先将1,3-二氯丙烯溶于丙酮(定量),6份分别加入不同浓度均为1.5ml的1,3-二氯丙烯,使之在土壤中的浓度分别为1、10、50、100、200、500µg/g,另1份相应加入1.5ml的丙酮作为对照,然后调节土壤的含水量至最大田间持水量的60%(记录此时重量,以便补充水分)。
土脲酶测定实验报告
![土脲酶测定实验报告](https://img.taocdn.com/s3/m/cd20154c6fdb6f1aff00bed5b9f3f90f76c64d21.png)
一、实验目的1. 了解土脲酶的概念和作用;2. 掌握土脲酶的测定方法;3. 分析土脲酶在土壤环境中的分布和影响因素。
二、实验原理土脲酶是一种水解脲的酶,能将土壤中的尿素分解成氨和二氧化碳,从而释放出氮素。
土脲酶的活性是土壤氮素循环的重要指标,对土壤肥力、作物生长及环境质量具有重要意义。
本实验采用酚酞比色法测定土脲酶活性。
在碱性条件下,脲酶将尿素分解成氨,氨与酚酞指示剂发生反应,生成红色络合物,通过测定红色络合物的吸光度,可以计算出氨的浓度,进而推算出土脲酶的活性。
三、实验材料与仪器1. 实验材料:土壤样品、尿素、酚酞指示剂、氢氧化钠、硫酸、无水碳酸钠、硫酸钾、蒸馏水等;2. 实验仪器:分光光度计、电子天平、锥形瓶、移液管、烧杯、漏斗、玻璃棒、容量瓶等。
四、实验步骤1. 土壤样品的制备:取一定量的土壤样品,加入适量的蒸馏水,充分振荡,过滤,收集滤液;2. 标准曲线的制作:配制一系列不同浓度的氨标准溶液,分别加入酚酞指示剂,用氢氧化钠溶液滴定至终点,记录滴定数据,绘制标准曲线;3. 土脲酶活性的测定:a. 将土壤样品与适量的尿素溶液混合,加入酚酞指示剂,在一定的温度下反应一定时间;b. 反应结束后,用氢氧化钠溶液滴定至终点,记录滴定数据;c. 根据标准曲线,计算氨的浓度,进而推算出土脲酶的活性。
五、实验结果与分析1. 标准曲线的制作:绘制标准曲线,线性范围为0.1-1.0mg/L;2. 土脲酶活性的测定:根据实验数据,计算出不同土壤样品的土脲酶活性,并进行分析。
(此处省略实验数据及分析)六、实验结论1. 土脲酶在土壤环境中具有重要作用,其活性受土壤类型、温度、水分、有机质等因素的影响;2. 本实验采用酚酞比色法测定土脲酶活性,操作简便,结果准确;3. 通过对土壤样品的测定,可以了解土壤中土脲酶的分布及影响因素,为土壤改良和作物生长提供依据。
七、实验注意事项1. 实验过程中要严格控制温度、时间等因素,确保实验结果的准确性;2. 使用移液管、滴定管等精密仪器时,要注意操作规范,避免误差;3. 实验过程中要妥善处理废弃物,确保实验安全。
土壤酶活活性测定方法
![土壤酶活活性测定方法](https://img.taocdn.com/s3/m/9f33c25d58eef8c75fbfc77da26925c52cc591c3.png)
土壤酶活活性测定方法酶活性是指酶在一定时间内单位体积或质量产生的酶催化反应产物的数量。
酶活性在土壤中起着关键作用,因为它们能够将无机和有机物质转化为可供植物吸收的形式。
常用的土壤酶活性指标包括脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶等。
下面将介绍常见的土壤酶活活性测定方法:1.脲酶活性测定:脲酶能够催化尿素的水解,生成氨和二氧化碳。
用于测定土壤脲酶活性的方法是通过在土壤样品中加入一定浓度的尿素,经过一定时间后,测量生成的氨量来评估脲酶活性水平。
2.过氧化氢酶活性测定:过氧化氢酶是一种重要的抗氧化酶,能够将过氧化氢分解为氧气和水。
测定土壤中过氧化氢酶活性的方法是在土壤样品中加入过氧化氢底物,经过一定时间后,通过测量反应体系中氧气释放速率来评估过氧化氢酶活性水平。
3.蔗糖酶活性测定:蔗糖酶是一种能够催化蔗糖水解生成葡萄糖和果糖的酶。
测定土壤中蔗糖酶活性的方法是在土壤样品中加入一定浓度的蔗糖,经过一定时间后,测量生成的葡萄糖和果糖的量来评估蔗糖酶活性水平。
4.碱性磷酸酶活性测定:碱性磷酸酶是一种能够催化有机磷酸盐水解为无机磷酸盐的酶。
测定土壤中碱性磷酸酶活性的方法是在土壤样品中加入一定浓度的磷酸酯底物,经过一定时间后,通过测量反应体系中无机磷酸盐生成的速率来评估碱性磷酸酶活性水平。
除了以上几种常见的土壤酶活性指标外,还有其他一些指标可以用于评估土壤酶活性,如脱氢酶、葡萄糖氧化酶等。
具体选择测定方法应根据实际需求和研究目的来确定。
总结起来,土壤酶活活性测定方法是通过测定土壤中特定酶活性水平来评估土壤质量和生态系统功能的一种手段。
常见的土壤酶活性指标包括脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶等。
选择适当的测定方法需要考虑实际需求和研究目的。
土壤脲酶、蔗糖酶、磷酸酶活性的测定
![土壤脲酶、蔗糖酶、磷酸酶活性的测定](https://img.taocdn.com/s3/m/ffc80ef6aef8941ea76e05d8.png)
土壤酶活性的测定方法及部分样品配制详细请参考《土壤微生物分析方法手册》,《土壤酶及其研究法》土壤样品采集与制备土壤样品取样后混匀,用于土壤酶活性测定的土壤磨细过2mm筛后,置于4℃冰箱内保存备测。
1.土壤酶活性的测定方法1.1.脲酶采用靛酚蓝比色法方法原理:本法基于以尿素为基质,酶促水解生成的氨与酚类化合物起反应生成蓝色的靛酚,颜色深度与氨含量相关,用于尿酶活性的测定。
操作步骤:取10g风干土,置于100ml三角瓶中,加2ml甲苯,15min后加10ml 10%尿素液和20ml pH6.7柠檬酸盐缓冲液。
摇匀后在37℃恒温箱中培养3h。
按此操作,进行以水代替基质,及无土壤的基质对照测定,过滤后取0.5ml滤液于50ml比色管中,然后按绘制标准曲线显色方法进行比色测定。
氮的标液:精确称取0.4717g硫酸按溶于水并稀释至1000ml,则得1ml含0.1mg氮的标准液。
绘制标准曲线时,可将此液稀释10倍供用。
pH6.7柠檬酸盐缓冲液:用368g柠檬酸溶于600ml水,另取295g氢氧化钾溶于水,再将二种溶液混合,然后用1M的氢氧化钠调节pH到6.7,定容到2L。
苯酚溶液:称取苯酚(C6H5OH)10g和硝基铁氰化钠[Na2Fe(CN)5NO2H2O]100mg稀释至1L。
此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。
次氯酸钠碱性溶液:称取氢氧化钠(化学纯)10g、磷酸氢二钠(Na2HPO4·7H2O, 化学纯)7.06g、磷酸钠(Na3PO4·12H2O, 化学纯)31.8g 和52.5g·L-1次氯酸钠(NaOCl,化学纯,即含5%有效氯的漂白粉溶液)10mL 溶于水中,稀释至1L,贮于棕色瓶中,在4℃冰箱中保存。
标线绘制:取稀释的标准液0、l、2、4、6、8、10ml,移于50rnl容量瓶中,然后加入蒸馏水至20mL。
再加4mL苯酸钠溶液和4mL次氯酸钠溶液,随加随摇匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤脲酶的测定方法
脲酶试验原理:存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶、能酶促有机物质分子中酶键的水解。
脲酶的作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和碳酸。
土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法是测定生成的氨量。
试剂:
1)甲苯
2)10%尿素:称取10g尿素,用水溶至100ml。
3)柠檬酸盐缓冲液(PH6.7):184克柠檬酸和147.5克氢氧化钾溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释至1000毫升。
4)苯酚钠溶液(1.35mol/L):62.5克苯酚溶于少量乙醇,加2毫升甲醇和18.5毫升丙酮,用乙醇稀释至100毫升(A),存于冰箱中;27克NaOH溶于100毫升水(B)。
将AB溶液保存在冰箱中。
使用前将2溶液各20毫升混合,用蒸馏水稀释至100毫升。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:a 精确称取0.4717克硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg氮的标准液
标准曲线绘制:吸取配置好的氮溶液10ml,定容至100ml,即稀释了10倍,吸取1,3,5,7,9,11,13ml移至50ml容量瓶,加水至20ml,再加入4ml 苯酚钠,仔细混合,加入3ml次氯酸钠,充分摇荡,放置20分钟,用水稀释至刻度。
将着色液在紫外分光光度计上于578nm处进行比色测定,以标准溶液浓度为横坐标,以光密度值为纵坐标绘制曲线图。
取新鲜土壤7份,每份30g,装于棕色广口瓶中,先将1,3-二氯丙烯溶于丙酮(定量),6份分别加入不同浓度均为1.5ml的1,3-二氯丙烯,使之在土壤中的浓度分别为1、10、50、100、200、500µg/g,另1份相应加入1.5ml的丙酮作为对照,然后调节土壤的含水量至最大田间持水量的60%(记录此时重量,
以便补充水分)。
放置于25℃恒温培养箱,培养后第0d、1d,5d,10d(前10d 密封,后来测定的敞口)、20d,30d,40d,50d分别取土样检测脲酶的活性。
取样前,反复旋转广口瓶,混匀土样,一个处理随机取3个重复。
1) 称取5g过1mm筛的风干土样于100ml容量瓶中
2) 向容量瓶中加入1ml甲苯(以能全部使土样湿润为度)并放置15分钟
3) 之后加入10ml 10%尿素溶液和20ml柠檬酸缓冲液(PH6.7),并仔细
混合
4) 将容量瓶放入37摄氏度恒温箱中,培养24h
5) 培养结束后,用热至38摄氏度水稀释至刻度,仔细摇荡,并将悬液用
致密滤纸过滤于三角瓶中。
6) 显色:吸取3ml滤液于50ml容量瓶中,加入10ml蒸馏水,充分震荡,
然后加入4ml苯酚钠,仔细混合,再加入3ml次氯酸钠,充分摇荡,
放置20分钟,用水稀释至刻度,溶液呈现(青定)酚的蓝色。
7) 1h内在((青定)酚的蓝色在1h内保持稳定)在分光光度计上用1cm
液槽,于578nm处将显色液进行比色测定。
8) 无土对照:不加土样,其他操作与样品实验相同。
以检验试剂纯度,
整个实验设置一个对照
9) 无基质对照:以等体积的水代替基质,其他操作与样品实验相同。
每
个土样都设此对照。
结果计算:土壤脲酶活性以24小时后100g土壤中NH3-N的毫克数表示。
M=(X样品-X无土-X无基质)*100*10
式中:M-土壤脲酶活性值
X样品——样品实验的光密度值在标准曲线上对应的NH3-N毫克数
X无土――无土对照实验中的光密度值在标准曲线上对应的NH3-N毫数X无基质――无基质对照实验中的光密度值在标准曲线上对应的NH3-N 毫克数
100 ――样品定容的体积与测定时吸取量的比值
10 ――酶活性单位的土重与样品土重之比值
注意事项:当脲酶活性为3-80微克NH3-N时,本法能获得可靠结果。
当脲
酶活性小于3微克NH3-N,培养时间需增至24小时(已经24h了)(计算时应考虑这一点)
计算:脲酶活性以24h后1g土壤中NH3-N的mg数表示。
NH3-N(mg)=a*2
A:从标准曲线查得NH3-N毫克数
2 :换算成1k土的系数。