脉冲产生与整形电路PPT

合集下载

一节几种常用脉冲波形产生和整形电路

一节几种常用脉冲波形产生和整形电路
三角波产生电路的特点是频率和占空比连续可调,调节范围较广。但它的输出波形受到运算放大器性能的影响,且需要一定 的调整时间。
锯齿波产生电路
锯齿波产生电路通常由一个运算放大器和两个电容组成。输入信号通过一个电容加到运算放大器的反 相输入端,输出信号通过另一个电容反馈到运算放大器的同相输入端。通过调整电容的充放电时间, 可以获得不同频率和幅度的锯齿波。
多谐振荡器
总结词
多谐振荡器是一种能够产生方波或近似方波的脉冲整 形电路,其输出频率和占空比可以通过电路参数进行 调整。
详细描述
多谐振荡器由两个反相器串联而成,每个反相器都有 一个电容和电阻并联。当输入信号为高电平时,多谐 振荡器的输出信号为低电平;当输入信号为低电平时 ,多谐振荡器的输出信号为高电平。由于电容的作用 ,多谐振荡器的输出信号频率和占空比可以通过调整 电阻和电容的值来改变。多谐振荡器在数字电路、通 信系统和控制系统中有着广泛的应用。
脉冲幅度解调(PAD)
定义
脉冲幅度解调是将脉冲幅度调制信号还原为原始模拟信号 的过程。通过检测脉冲的幅度并将其转换为相应的模拟信 号值。
工作原理
在PAD中,输入的PAM信号被检测并转换为相应的模拟信 号。通过比较每个脉冲的幅度与预设阈值,可以还原出原 始的模拟信号波形。
应用
PAD广泛应用于数字通信、雷达、测距等领域的接收端, 用于将传输的PAM信号还原为原始的模拟信号。
应用
PFM电路广泛应用于通信、测量和控制等领域。例如,在无线电广播中,PFM用于将音频信号传输到听 众的收音机中。
脉冲频率解调(DFM)
01
定义
脉冲频率解调是一种将已调制的脉冲信号还原为原始信号的过程。在
DFM中,通过测量脉冲信号的频率来恢复原始信号。

最新版数字电子技术精品电子课件 第5章 脉冲产生与整形电路

最新版数字电子技术精品电子课件 第5章  脉冲产生与整形电路
第5章 脉冲产生与整形电路
5.1 555定时器
5.1.1
555定时器的电路结构
555定时器的基本电路结构图和逻辑功能示意图,如 图5.1.1 所示。它由用3个5K电阻R组成的电阻分压器、 两个集成运放C1和C2组成电压比较器、基本RS触发器、 输出缓冲级G3,放电整形电路
5.2 多谐振荡器
5.2.1
用555定时器组成多谐振荡器
用555定时器组成的多谐振荡器,由于555定时器内部的电压比 较器灵敏度较高,且采用差分电路的形式,振荡器输出的振荡频率 受电源电压和温度变化的影响很小,输出驱动电流较大,功能灵活, 应用较为广泛。 1. 基本典型电路 用555定时器组成多谐振荡器的基本典型电路如图5.2.1(a)所 示。图中R1、R2和C为定时元件。设接通电源前,电容C 的电压vC=0。
国家级精品资源共享课程《数字电子技术》
第5章 脉冲产生与整形电路
江西现代职业技术学院
王连英
课件编辑制作:程豪 徐芳
第5章 学习目标及重点与难点
学习目标及重点与难点
学习目标
熟悉掌握555定时器的特性及工作原理。 了解多谐振荡器、施密特触发器和单稳态触发器的工作原理 及主要应用。 熟练掌握用555定时器组成多谐振荡器、施密特触发器和单 稳态触发器的典型电路结构及主要参数计算。
第5章 脉冲产生与整形电路
5.1 555定时器
根据以上以典型TTL定时器555基本电路为例工作原理的分析, 有555(或7555)定时器的功能表如表5.1.1 所示。
第5章 脉冲产生与整形电路
5.2 多谐振荡器
5.2 多谐振荡器
多谐振荡器(Multi-harmonic Oscillator)是一种产生

第6章 脉冲产生、整形电路

第6章  脉冲产生、整形电路
一、延时与定时 二、整形
6.3 多谐振荡器 6.3.1 用555定时器构成的多谐振荡器 一、电路组成及其工作原理
1.电路组成:仿真图6.3.1所示是用555定时器构成的 多谐振荡器。 2.工作原理:起始状态 (1)暂稳态I (2)自动翻转I (3)暂稳态Ⅱ (4)自动翻转Ⅱ
二、振荡频率的估算和占空比可调电路
6.1.2 集成施密特触发器 一、CMOS集成施密特触发器
1.引出端功能图:仿真图6.1.4所示是国产CMOS集成 施密特触发门电路CC40106(六反相器)和CC4093 (四2输入与非门)的引出端功能图。 2.主要静态参数
二、TTL集成施密特触发器
1.外引线功能图:仿真图6.1.5所示是几种常用的国产 TTL集成施密特触发逻辑的外引线功能图。 2.几个主要参数的典型值
1.振荡频率的估算 2.占空比可调电路:如仿真图6.3.3所示。
6.3.2 石英晶体多谐振荡器
一、石英晶体的选频特性 二、石英晶体多谐振荡器 1.电路组成:仿真图6.3.5所示是一种比较典型的石英 晶体振荡电路。 2.工作原理 3.CMOS石英晶体多谐振荡器:仿真图6.3.6所示是更 简单、更典型的CMOS石英晶体振荡电路。
二、阈值探测、脉冲展宽
1.用作阈值电压探测器 图 6.1.8所示是用作阈值电压探测器时,施密 特触发器的输入、输出波形,显然,凡是幅值达 到UT+的输入电压信号,均可被探测出来并形成相 应的输出脉冲。 2.用作脉冲展宽 图 6.1.9所示是用施密特触发器构成的脉冲展 宽器的电路及工作波形图。 3.用作多谐振荡器 仿真图 6.1.10 所示是用施密特触发反相器构 成的多谐振荡器。
二、可重触发单稳态触发器74122 74122 是一种比较典型的可重触发 TTL 单稳态触发器。 1.图形符号与功能表 (1)图形符号:仿真图6.2.4所示是可重触发单稳态 触发器74122的国标图形符号。 (2)功能表:见表6.2.2 2.功能说明及主要参数 (1)功能说明 (2)主要参数

数字电子技术课件 第7章_脉冲产生与整形

数字电子技术课件 第7章_脉冲产生与整形

VT
R1 R2
VTH
VD
S门电路组成的施密特触发器
(1) 电路组成
(2) 工作原理
假定:VTH
VDD 2
R1< R2 VI为三角波
VI1
R2 R1 R2
VI
R1 R1 R2
VO
CMOS反相器组成的施密特触发器 1)VI上升过程
当VI= 0V时,VI1= 0V,G1门截止,V01=VOH≈VDD,G2门导通, V0=VOL≈0V。输入信号VI从0V电压逐渐增加,只要VI1<VTH,电 路保持V0≈0V不变。当VI继续上升到VI1=VTH时,G1门进入其电压 传输特性转折区,此时VI1的增加在电路中产生如下正反馈过程:
74121的暂稳态脉宽由定时电阻和定时电容的数值决定。定时电容 Cext连接在引脚Cext(第10脚)和Rext/Cext(第11脚)之间。如果使用 有极性的电解电容,电容的正极应接在Cext(第10脚)。
对于定时电阻,有两种选择:
(1)采用内部定时电阻Rint(约为2kΩ),此时只需将Rint引脚(第9 脚) )接至电源VCC。
0 VCC
t tw1
t
tw2 t
3.组成噪声消除电路
如用VI作为下降沿触发的计数器触发脉冲,干扰加入,就 会造成计数错误.
b)用TTL门电阻R的取值可以是任意的吗?
VO
VO1
≥1 G3
采用TTL与非门构成单稳电 路时,电阻R要小于0.7k。
vO
G1 ≥1 Cd
VI
Rd
1 G2
C
VD
R
VDD
7.3.2 集成单稳态触发器
不可重复触发 vI
没有被重复触发
vO

脉冲信号的产生与整形

脉冲信号的产生与整形
施密特触发器是一种能够把输入波形整形成为适合于数字电路需要的矩形脉冲的电路。而且由于具有滞回特性,所以抗干扰能力也很强。 施密特触发器可以由分立元件构成,也可以由门电路及555定时器构成。 施密特触发器在脉冲的产生和整形电路中应用很广。
1
2
电阻R1、R2的作用是保证两个反相器在静态时都能工作在线性放大区。对TTL反相器,常取R1=R2=R=0.7 kΩ~2kΩ,而对于CMOS门,则常取R1=R2=R=10kΩ~100kΩ;C1=C2=C是耦合电容,它们的容抗在石英晶体谐振频率f0时可以忽略不计;石英晶体构成选频环节。
01
振荡频率等于石英晶体的谐振频率f0。
多谐振荡器可以由门电路构成,也可以由555定时器构成。由门电路构成的多谐振荡器和基本RS触发器在结构上极为相似,只是用于反馈的耦合网络不同。RS触发器具有两个稳态,多谐振荡器没有稳态,所以又称为无稳电路。 在多谐振荡器中,由一个暂稳态过渡到另一个暂稳态,其“触发”信号是由电路内部电容充(放)电提供的,因此无需外加触发脉冲。多谐振荡器的振荡周期与电路的阻容元件有关。
ΔUT= UT+-UT-
回差电压(滞后电压):
前面介绍的施密特触发器的回差电压为: ΔUT=UT+-UT-=UT-(UT-UD)=UD= 0.7V 缺点是回差太小,且不能调整。
下限阈值电压
集成施密特触发器
4.3.2 由555定时器构成的施密特触发器
4.3.3 施密特触发器的应用
本节小结:
01
02
74121的输出脉冲宽度:
TR-A、TR-B是两个下降沿有效的触发信号输入端,TR+A、TR+B是两个上升沿有效的触发信号输入端。Q和是两个状态互补的输出端。Rext/Cext、Cext、Rin3个引出端是供外接定时元件使用的,外接定时电阻R(R=5kΩ~50kΩ)、电容C(无限制)的接法与74121相同。RD为直接复位输入端,低电平有效。 当定时电容C>1000pF时,74122的输出脉冲宽度: tp≈0.32RC

脉冲电路PPT课件

脉冲电路PPT课件

三极管由截止转变为饱和导通所需的时 间称为开启时间,即在基区逐渐积累电荷, 使电流由小变大所需时间。由饱和导通转变 为截止所需的时间称为关闭时间,即在基区 通过中和逐渐清除电荷,使电流逐渐变小所 需时间。
通常关闭时间比开启时间要长很多倍, 这主要是射极输入的载流子在基区中积累电 荷比基区中载流子中和这些电荷要快得多, 普通开关管的开启时间约为10~30ns,关闭 时间约为100~200ns,高频管的开关速度比 普通开关管慢得多。对于生物电脉冲,它的 前沿约为数毫秒,也可以用高频管代替开关 管。
第二节 晶体管反相器
一. 晶体三极管的开关特性 晶体三极管不仅有放大作用,而且还有开关作用。在
脉冲数字电路中就是利用三极管的开关作用。 由其特性曲线知,当基极电流Ib≤0时,晶体管工作在
截止区。此时集电极电流Ic≈0,晶体管的发射结和集电结 均处于反向偏置,相当于开关断开。当Ib由零逐渐上升时, 晶体管的工作状态由截止区进入放大区,一旦Ib继续上升 达到临界饱和电流Ibs时,三极管处于临界饱和状态,如再 增大Ib,使Ib>Ibs,三极管进入饱和区。此时集射极电压 Uce接近于零,Ib基本上失去了对Ic的控制能力,相当于开 关接通。
体管饱和程度加深,输出信号 Uo仍然为零。如果充电的时 间常数(R1+rbe)C小于脉冲宽 度,电容C在正脉冲持续期间 (输入高电平)得到完全充电, 其电压(左正右负)接近于输入 脉冲的幅度电压Um。当输入 脉冲下降时,电容C开始放电, 迫使基极电位下降到-Um,三 极管截止,输出信号 Uo上升 到接近于Ec。
电平渐移,对信号
放大、变换和计数等会 造成困难。为了克服这 个缺点,对电路进行改 造,在电阻R上并联一 个二极管 D。
输入波形 输出波形

数字电路ppt-第九章脉冲波形的产生与整形

数字电路ppt-第九章脉冲波形的产生与整形
当UC升至2Ucc/3时, CA1输出跳变为0, Q#=1,Q=0,uo输出 低电平,VTD饱和导 通
此是一种暂稳态
用555定时器构成的自激多谐振荡器
9.3.2 工作原理
VTD饱和导通,电容 通过R2放电,时间常 数为τ2=R2C
当UC降至Ucc/3时, CA2输出跳变为0, Q#=0,Q=1,uo输出 高电平,VTD截止
back
9.6 单稳态触发器
单稳态触发器的特点:
1. 电路有一个稳定状态和一个暂稳状态; 2. 在外来触发脉冲作用下,由稳定状态翻转到暂稳状态
,然后自动返回稳定状态; 3. 暂稳状态持续时间和触发脉冲无关,而是取决于电路
的定时器件的参数;
单稳态触发器一般用于定时、整形以及延时。
9.6.1 用555单定时器构成单稳态触发器
用555多谐振荡器工作波形图
9.3.2 工作原理
占空比可调节的 多谐振荡器电路
9.3.2 工作原理
电容C的充电回路: UCC→R1→VD1→C
充电时间常数是: τ1=R1C
放电回路: C→VD2→R2→VTD
放电时间常数是: τ2=R2C
占空比可调节的多谐振荡器电路
9.3.2 工作原理
用555单定时器构成单稳态触发 器
9.6.1 用555单定时器构成单稳态触发器
四.触发脉冲的脉冲 宽度(即uI的低电 平持续时间)必须 小于电路输出的脉 冲宽度,否则电路 不能正常工作。
用555单定时器构成单稳态触发 器
9.6.1 用555单定时器构成单稳态触发器
2. RS触发器处于1状态, Q=1,Q#=0,输出uO为高 电平,VTD截止,此为暂 稳态。VTD截止时,UCC通 过R对电容C充电,uC逐 渐升高,当uC=2Ucc/3时 ,CA1输出0,则Q=0, Q#=1,uO为低电平,VTD 饱和导通,C通VTD放 电,使uO≈0,电路返回 了稳态。

脉冲的产生与变换教学课件

脉冲的产生与变换教学课件
处理高速、高频率的脉冲信号。
基于DSP的脉冲产生与变换
要点一
总结词
要点二
详细描述
数字信号处理能力强
DSP(数字信号处理器)是一种专门用于数字信号处理的 微处理器,具有强大的数字信号处理能力和高速的运算速 度。基于DSP的脉冲产生与变换,可以利用DSP的运算模 块和数字滤波器,对脉冲信号进行各种数字信号处理,如 滤波、调制和解调等。由于DSP的数字信号处理能力强, 因此这种方案适合于对脉冲信号进行复杂的数字信号处理 。
脉冲调制的变换是指通过改变脉冲的 幅度、宽度、相位等参数,将信息加 载到脉冲信号上的一种技术。
脉冲调制的变换方法包括脉幅调制、 脉宽调制、脉码调制等,广泛应用于 雷达、通信、测量等领域。
脉冲放大的变换
脉冲放大的变换是指通过放大脉冲信号的幅度,提高其能量 的一种技术。
脉冲放大的变换方法包括线性放大和开关放大等,广泛应用 于雷达发射机、激光器等领域。
利用可编程逻辑器件,如FPGA、CPLD等,通过编程配置内部逻辑资源来产生数 字脉冲。
模拟脉冲的产生
模拟电路
利用模拟电子元件,如电阻、电容、 电感等,通过模拟电路设计实现模拟 脉冲的产生。
波形合成
利用波形合成技术,通过模拟信号发 生器或波形合成器来产生模拟脉冲信 号。
03
脉冲的变换技术
脉冲调制的变换
脉冲整形的变换
脉冲整形的变换是指通过改变脉冲的形状,改善其波形质 量的一种技术。
脉冲整形的变换方法包括滤波整形、限幅整形、微分整形 等,广泛应用于信号处理、雷达、通信等领域。
脉冲多相制的变换
脉冲多相制的变换是指通过将多个不同相位或相位的脉冲信号合成在一起,形成 一种新的脉冲信号的一种技术。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CC
1
1 截止
2 3
V
CC
1 3 VCC
1
不变 不变
E8XIT
简化功能表
使用要点
输入
输出
RD TH 0×
TR OUT V 状态 (1) RD 低电平有效,优先级最高,
× 0 导通
不用时应接高电平。
1
2 3 VCC
1 3 VCC
0
导通
(2)TH 和 TR 均为高电平时输出 0,均为低电平时输出 1。
第 9 章 脉冲信号的产生与整形
555 定时器及其应用 本章小结
E1XIT
9.4 555 定时器及其应用
主要要求:
了解 555 定时器的电路结构,掌握其符号和功能。 掌握用 555 定时器构成施密特触发器、单稳态 触发器和多谐振荡器的方法。
E2XIT
一、555 定时器的工作原理和逻辑功能
555 定时器简介
4
URGG222的大6小T。HVCC
RD OUT
VV
RR QQ 2 TR 555
11
7 DIS
CO
GGNNDD接接地地端端
GND
3 5
Q,输出为开路集电极。
1
E4XIT
555 定时器的工作原理与逻辑功能
1 导通
1
定时器 5G555 的功能表
输入
输出
TH TR RD OUT = V 状态
0 × ×0
0 × ×0
Q0 导通
2 3 VCC
1 3 VCC
1
2 3
V
CC
1 3
V
CC
1
2 3
V
CC
1 3 VCC
1
0 导通 1 截止 不变 不变
E6XIT
555 定时器的工作原理与逻辑功能
0 1
01 截止
0
定时器 5G555 的功能表
输入
输出
TH TR RD OUT = V 状态
1 × ×0
Q0 导通
2 3 VCC
E10XIT
[例] 试对应输入波形画出下图中输出波形。
+12V
uI/V
uI TH 6 8
4 3
TR 2 555
uO
10 8
b
d
6 4
c
7
5
1
2a 0.01 F 0
电路构成反相输出的施密特触发器
解: UT+ = 2/3 VCC = 8 V UT- = 1/3 VCC = 4 V
uO/V UOH
因此可画出输出波形为 O
555 定时器是一种结构简单、使用方便灵活、用途 广泛的多功能电路。它电源电压范围宽(双极型 555 定 时器为 5 ~ 16 V,CMOS 555 定时器为 3 ~ 18 V),可提 供与 TTL 及 CMOS 数字电路兼容的接口电平,还可输 出一定功率,驱动微电机、指示灯、扬声器等。
TTL 单定时器型号的最后 3 位数字为 555,双定时 器的为 556;CMOS 单定时器的最后 4 位数为 7555, 双定时器的为 7556。
1
2 3 V CC
1 3
V
CC
1
截止 (3) TR 低电平有效,TH 高电平 有效,因此,TH 加低电平、
1
2 3
V
CC
1 3 VCC
不变
不变
TR 加高电平时为非有效电 平,电路状态不变。
(4)输出 0 时,Q = 1,因此 V 导通;输出 1 时,Q = 0,故 V 截止。
(5)注意:① TH 电平高低是与 2/3VCC 相比较,TR 电平高低是与 1/3VCC 相比较。②若控制输入端 CO 加输入电压 uCO ,则 UR1 = uCO UR2 = uCO/2,故 TH 和 TR 电平高低的比较值将变成 uCO 和 uCO/2。
3
2 3
V CC uOC V CC
uOO UOH
UOL O
tWI tWO
1. 稳定状态
UOL
该电路触发信号为负脉冲,不加
触发信号时,uI = UIH (应 > 1/3 VCC)。
接通电源后 VCC 经 R 向 C 充电,
使 uC 上升。
当 uC ≥ 2/3 VCC 时,满足
1 3 VCC
1
2 3
V
CC
1 3
V
CC
1
2 3
V
CC
1 3 VCC
1
0 导通 1 截止 不变 不变
E7XIT
555 定时器的工作原理与逻辑功能
定时器 5G555 的功能表
输入
输出
TH TR RD OUT = V 状态
1
× ×0
Q0 导通
2 3 VCC
1 3 VCC
1
0 导通
1
2 3
V
CC
1 3
V
Q0 导通
2 3 VCC
1 3
V
CC
1
2 3 V CC
1 3 V CC
1
2 3 V CC
1 3
V
CC
1
0 1 不变
直接置 0 端 RD 低电 平有效,优先级最高。
不用时应使其为 1。
导通 截止 不变
E5XIT
555 定时器的工作原理与逻辑功能
1 0
10 导通
1
定时器 5G OUT = V 状态
UT+ e fUT-
t
t E11XIT
三、用555 定时器组成单稳态触发器
(一)电路结构
VCC
uI
+ uC
-
R THVCC
RD OUT
TR 555
DIS
CO
C
GND
uO 0.01 F
R、C 为定时元件
E12XIT
(二)工作原理、工作波形与参数估算
充电
工作原理
0V UIH 放电 导通
V
uI
1UIH
通常不用 CO 端,为了提高电路工作稳定性,
将其通过 0.01 F 电容接地。
E9XIT
二、用 555 定时器组成施密特触发器
uI
uOO UOOHH
输入
输出
RD TH TR OUT V 状态
0 × × 0 导通
uO
1
2 3 VCC
1 3 VCC
0
导通
1
2 3 V CC
1 3 V CC
1
截止
1
2 3 V CC
1 3 VCC
不变
不变
UOOLL 0
电压传输特U性T+为=反2/相3 V输CC出的滞回特性
1/3VCC 2/3VCC uI
UT- = 1/3 VCC UT = UT+ - UT- = 1/3 VCC
当当当T1H/u3当I=V<TT1CR当且C/H3=<V=u1uTCT/II3由C<RHV时1=高=C/u3CTIV电>R<C2u=平C/Iu3时<逐IV1</C23渐C/V3时下VCCC降时C时,
C1、C阈2 提值输供入两端 TTHH
个参考触电发压输,入端 UR1 = 2/3VCC,
TTRR
UR2 = 1/3VCC。
放电端 DDIISS
66 55kk 22
UURR22
55kk 77
集电极开路输出端
放电管,其输入为
构成电压比输输出出端端
CC22 较器,比较 T电H路符号
SS与 URQ1Q和TR 与8
E3XIT
555 定时器的电路结构与符号
电电源源端端 直直接接置置00端端 构成基本 RS 触发
VVCCCC
RRDD器,决定电路输出。
88
44
压控器制构,电成为压电比输阻较入端分器CCOO
55kk 55UURR11
CC11 RR GG11 QQ
输出缓冲器 GG33 OUT = Q
3 3OOUUTT
相关文档
最新文档