金属橡胶材料恢复力的三维模型
金属橡胶材料迟滞特性力学模型研究
ZOU Longqing , CAO Yiwei , FU Hailong , WANG Yue
( College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163000,
Heilongjiang China )
hysteresis characteristic parameters of the material. In this paper, the effect of dry friction on the mechanical model of hysteresis characteristics was studied by using the theory of metal rubber microelement. A mechanical model of metal wire microelement was constructed based on material microstructure characteristics, and the mechanism of dry fr18-12-17
恒位移加载条件下金属橡胶恢复力信号特征分析
r s a c f r d t e b s n wh c h c n tt tv e a i n o t l u b rma e a a y e r x c l . e e r h o e e h a e o i h t e o siu i e r l to fme a b e y b n l s d mo e e a t r y Ke r s y wo d :me a u b r e t rn o c ;i t re e c t l b e ;r so i g f r e n e f r n e;d t r c s i g r a a p o e sn
结构 , 在高低温条件下能保持很高的工作能力。 金属橡胶 显不 同 。 材 料 是 以 不 同 规格 的 金 属丝 为 原材 料 ,经 螺 旋 缠 绕 、 拉 图l 是在 实验 室 条件 下 , 试验 机 开机 无 负载状 态 下的
伸 、 压 等 特 殊 制 备 T 艺成 型 的 , 种 材料 在 高低 温 、 模 该 腐 蚀环 境 等特 种 工况 下 具有 良好 的阻 尼 隔振 性 能 ] 。 当前 , 绝大 多 数 学 术文 章 在论 述 金 属 橡 胶研 究 时 ,都 仅 仅 是 从
字 木交 ; j ; i
理论 /研发 / 设计 , 嗣逛
恒位移加 载条件下金属橡胶恢复力 信号特征分析
不同结构参数金属橡胶材料的本构关系
数据拟合 , 用 Ma t l a b 编程计算得出了金属橡胶试 件力 一位 移 回归方 程. 最 小二 乘法是 l 1 — 2 1
基金 资助 : 国家 自然科学 基金项 目( 5 0 8 0 5 1 1 2 ) ; 陕西省教育厅专项科研计划项 目( 1 1 J K0 8 5 5 ) 作者简介 : 李宇燕 ( 1 9 7 4 一 ) , 女, 西安工业大学教授 , 主要研究方向为振动与噪声控制. E - ma i l : l i y u y a n @x a t u . e d u . e l l
第 3 3卷第 4 期
2 0 1 3 年 4 月
西
安
工
业
大
学
学
报
Vo 1 . 3 3 No . 4
Ap r . 2 0 1 3
J o u r n a l o f Xi ’ a n Te c h n o l o g i c a l Un i v e r s i t y
构形 状 的模 具 中 , 加压成 型, 并 经 热 处 理 而 成 的 毛 细 多孔 组织 结构 的金 属制 品 . 金属 橡胶 构件 受交 变
法 是最小 二乘 法. 石家 庄 军械 工 程 学 院李 宇 明[ 6 _ 1 o ] 等 人将金 属橡 胶 的恢 复力 表 示 为 高 阶非 线性 多项
金属橡胶的研究进展及其应用
金属橡胶的研究进展及其应用李拓;白鸿柏;路纯红;李玉龙【摘要】作为一种新型的弹性多孔材料,金属橡胶为航空航天、空间技术等领域的发展提供了有力的技术支持,其制备工艺、力学性能、本构关系是金属橡胶研究的基础和关键.本文从制备工艺、隔振、密封、过滤、吸声降噪等方面阐述了金属橡胶的理论进展以及工程应用,简要地对金属橡胶的发展趋势进行了展望,拓宽了有待进一步研究的领域.%As a new kind of elastic porous material, metal rubber provides a strong tool for the advancement in many engineering fields, such as aviation, spaceflight, and so on. Preparation process, force characteristic research and constitutive relationship research are the foundations and key points for the metal rubber research. The preparation and basic characteristics of metal rubber were introduced, and the theoretical advances and engineering applications in aspects of vibration reduction, sealing, filtration, sound absorption and others were described. The future directions of this field were indicated. Finally, key topics for further research were pointed out.【期刊名称】《新技术新工艺》【年(卷),期】2013(000)003【总页数】6页(P85-90)【关键词】金属橡胶;制备工艺;隔振;密封;过滤;吸声降噪【作者】李拓;白鸿柏;路纯红;李玉龙【作者单位】军械工程学院,河北石家庄 053003;军械工程学院,河北石家庄053003;军械工程学院,河北石家庄 053003;军械工程学院,河北石家庄 053003【正文语种】中文【中图分类】TB33220世纪60年代初,前苏联为了满足其空间飞行器能够适应一些特殊工作环境(如超高低温、高压、真空等)的需求,研制了多孔金属橡胶材料。
金属橡胶广义恢复力模型辨识
是振 动微 分方 程 的更 一般 表 达 。在 对 金 属橡 胶 基 于 位 移加 载控 制 的 实 验 中可 以测 得 广 义 恢 复 力 , 为 是 基 因
பைடு நூலகம்
弹性性能 , 可工作在高温 、 低温 、 真空及腐蚀介质中 , 是 传统 橡胶 的最佳替 代 品。它 的 阻尼 、 冲 、 振 性 能 良 缓 减 好, 而且寿命长。正确选择孔隙度 , 还可以使金属橡胶 构件 满足 过 滤 、 封 、 密 热传 导 等 特 殊 要 求 , 航 空 领 域 在 其有 很广 阔的应用 前 景 J 。 在对金属橡胶位移加 载控制 的实验 中 , 力与位移 曲线 成一 迟滞 环 _ 。 以往对 迟 滞恢 复力 辨 识 一 种 是 直 1 j
式 中 口 、 b 。口 、 由下 面式子 确定 。
)
() 1
是位移 、 速度 的函数 , F为外力 。严格讲所有机 j 械工程 振 动都 是 非 线 性 系 统 , 只有 当振 幅 微 小 的可 忽 略非线 性 项 时才被 认 为是 线 性 振 动 。所 以上 面公 式
基金项 目:武 器装备 十一 五预先研 究资助项 目( 110 0 0 ) 5 3 24 4 5
接用 幂 函数来 通过 最 小二 乘 法 分 别 拟合 迟 滞 环 的上 下 半支 , 利用符 号 函数 将其 统 一 写 成 一个 表 达式 , 再 这种
于位移控制 , 以位移一 所 时间曲线是简谐信号 , 广义恢复 力. 时间曲线虽不再是简谐波 , 但仍是周期函数 。我们 知道 在线 性系 统 中 , 当以频 率 激励 时 , 统 只会 产 生 系 频 率 为 的响应 , 在非 线性 振动 中 , 以频 率 激励 但 当 时, 系统 除 了会 产 生 频 率 为 的 响应 , 会 产 生 倍 频 还 /)的响应 , 中 n= 3 … J 2 0 其 2, , 。正 是 由于这 些 倍 频 的
[LSDYNA][材料模型]金属成形材料模型总结
第一章Dyna中已有的关于金属成形的材料模型$1.1 *MAT_003(*MAT_PLASTIC_KINEMATIC)这个模型适合模拟等向和运动强化塑性,有选项可以考虑率效应。
适合于:梁(Hughes-Liu),壳和实体单元。
$1.2 *MAT_012(*MAT_ISOTROPIC_ELASTIC_PLASTIC)这是一个低耗等向塑性模型,适合于三维实体。
对于平面应力壳单元计算中,当应力状态超过屈服表面时,一步radial return approach被采用来修正Cauchy应力张量。
这种方法导致不准确的壳厚度更新和不准确的屈服后应力。
这是dyna平面应力分析中唯一不缺省采用迭代方法的模型。
$1.3 *MAT_018(*MAT_POWER_LAW_PLASTICITY)这是一个考虑率效应的等向塑性模型,采用指数强化。
$1.4 *MAT_024(*MAT_PIECEWISE_LINEAR_PLASTICITY)可以定义任意应力应变曲线的弹塑性材料模型。
$1.5 *MAT_033(*MAT_BARLAT_ANISOTROPIC_PLASTICITY)该模型由Barlat, Lege, and Brem[1991]开发,用来模拟成形过程中的各向异性材料行为。
这个模型的有限元执行由Chung and Shah[1992]详细描述。
它基于六参数模型,适合于三维连续问题。
Barlat, F., D.J. Lege, and J.C. Brem, "A Six-Component Yield Function for Anisotropic Materials,", Int. J. of Plasticity, 7, 693-712, (1991).Chung, K. and K. Shah, "Finite Element Simulation of Sheet Metal Forming for Planar Anisotropic Metals," Int. J. of Plasticity, 8, 453-476, (1992).$1.6 MAT_033_96(*MAT_BARLAT_YLD96)这个模型是由Barlat等人[1997]提出用来模拟成形过程中的各向异性材料行为(尤其适用于铝合金)。
金属橡胶材料恢复力的三维模型
金属橡胶材料恢复力的三维模型刘远方; 白鸿柏; 李冬伟; 王尤颜; 陶帅【期刊名称】《《振动与冲击》》【年(卷),期】2011(030)008【总页数】5页(P203-206,268)【关键词】金属橡胶; 三维模型; 插值拟合【作者】刘远方; 白鸿柏; 李冬伟; 王尤颜; 陶帅【作者单位】军械工程学院石家庄050003【正文语种】中文【中图分类】TB535金属橡胶材料是一种由细金属丝堆叠冲压制成的多孔非线性弹性阻尼材料[1,2],内部作用机理十分复杂,关于其恢复力的认识和表征,一直以来缺乏严密准确的模型。
现有非线性弹性阻尼材料力学研究,在国外比较有代表性的是:双线性恢复力模型[3]、一阶线性微分方程模型[4]和迹法模型[5]等;在国内比较有代表性的是,上海交大博士龚宪生[6]认为,钢丝绳的恢复力具有非线性迟滞特性(其特性与金属橡胶基本相同),其恢复力是动刚度和阻尼的函数,而其动刚度和阻尼又是振幅和频率的非线性函数。
文献[7]对当前非线性弹性阻尼元件恢复力的建模和参数辨识给予了概括地介绍和整理,事实上现有恢复力模型对材料恢复力进行定性分析有一定成效,但是由于材料刚度和阻尼非线性性质的复杂和作用机理的差异,定量研究的模型多数存在模型过于抽象和参数辨识复杂的问题,对于具体的科学实践来说缺乏针对性和操作性。
本文以Matlab软件为平台,以大量试验数据分析为基础,对一组离散谐波激励条件下获得的位移和恢复力数据进行整合处理,通过合理的插值拟合,结合金属橡胶实际作用机理,设计拟合方法和模型结构形式,分别应用曲线和曲面拟合的最小二乘法,拟合恢复力关于位移和速度的二元解析方程。
摒弃了现有模型在建立和应用时粗糙的线性简化处理方法,解决了恢复力表征方法依赖谐波激励振幅和频率的弊端,实现了对金属橡胶等非线性弹性阻尼材料恢复力解析表达的突破。
1 恢复力三维模型的一般形式在非线性振动的微分方程中,惯性力、阻尼力或弹性力并不分别与加速度、速度及位移的一次方成正比[8],文献[9]也提到了非线性刚度和非线性阻尼的有关特征,在获得试验结果之前,概括性地认为金属橡胶恢复力由对应状态的位移和速度所决定:其中z为恢复力;x为位移;y为速度;f为函数关系。
几种典型的橡胶材料超弹性本构模型及其适用性
⼏种典型的橡胶材料超弹性本构模型及其适⽤性橡胶材料具有良好的粘弹性,被⼴泛⽤作密封、减振部件。
橡胶作为⼀种超弹性材料,其物理化学性能与⾦属材料有很⼤差别。
橡胶材料的主要特点不可压缩性:橡胶材料的泊松⽐µ⼀般在0.45~0.4999范围内变化,接近于液体的泊松⽐(1) 不可压缩性:0.5,因此橡胶可以看作是⼀种体积近似不可压缩的材料。
⼤变形特性:橡胶⾼分⼦材料变形很⼤,⽽其弹性模量与⾦属材料相⽐却⼩很多。
橡胶材料(2) ⼤变形特性:的变形范围⼀般在200%~500%,甚⾄能够达到1000%,很多⾦属材料的变形则不⾜0.5%。
(3) ⾮线性:⾮线性:橡胶材料具有三重⾮线性,即⼏何⾮线性、材料⾮线性和边界⾮线性。
橡胶材料的应⼒-应变关系具有明显的⾮线性,其⼒学性能与环境条件、应变历程、加载速率等因素有很⼤关联,且随时间延长⽽不断变化。
本构模型及其适⽤性从20世纪40年代⾄今,国内外许多学者提出了许多橡胶材料的本构模型,⼤致可分为两⼤类:基于应变能函数的唯象模型和基于分⼦链⽹络的统计模型。
基于应变能函数的唯象模型⼜可分为两类。
⼀类是以应变不变量表⽰的应变能密度函数模型,这类模型在处理橡胶弹性时,可以把橡胶材料的变形看成是各向同性的均匀变形,从⽽将应变能密度函数表⽰成变形张量不变量的函数,⽐如:Mooney-Rivlin模型、Yeoh模型等。
另⼀类是以主伸长表⽰的应变能函数模型,⽐如:Valanis-Landel模型、Ogden模型等。
基于分⼦链⽹络的统计模型按照分⼦链的统计特性可分为两类:⾼斯链⽹络模型和⾮⾼斯链⽹络模型。
其中最具代表性的分⼦统计学模型包括Treloar模型以及Arruda-Boyce的8链模型。
下⾯对⼏种常见的本构模型进⾏简要介绍:Mooney-Rivlin模型Mooney-Rivlin模型是⼀个⽐较常⽤的模型,⼏乎可以模拟所有橡胶材料的⼒学⾏为。
其应变能密度函数模型为:对于不可压缩材料,典型的⼆项三阶展开式为:式中:N、Cij和dk为材料常数,由实验确定。
橡胶输送带迟滞特性分析与恢复力模型参数预测
橡胶输送带迟滞特性分析与恢复力模型参数预测陈洪月;王鑫;钟声;张瑜【摘要】橡胶输送带非线性恢复力模型的建立与参数识别是研究输送带动力学特性的关键,采用椭圆函数描述输送带的非线性阻尼力,采用傅里叶级数描述其非线性弹性恢复力,通过对比不同阶数的弹性恢复力模型拟合结果,选取二阶傅里叶级数描述弹性恢复力;采用果蝇优化算法对RBF网络的扩展参数进行全局优化,再对不同激励下弹性恢复力模型系数进行预测,最后通过实验对神经网络预测结果进行验证,研究结果可为节能型橡胶输送带的研发提供参考.【期刊名称】《煤炭学报》【年(卷),期】2015(040)012【总页数】6页(P2995-3000)【关键词】输送带;迟滞特性;参数识别;果蝇优化算法【作者】陈洪月;王鑫;钟声;张瑜【作者单位】辽宁工程技术大学机械工程学院,辽宁阜新123000;辽宁工程技术大学国家地方联合矿山液压技术与装备工程研究中心,辽宁阜新123000;辽宁工程技术大学机械工程学院,辽宁阜新123000;北京天地玛珂电液控制系统有限公司,北京100013;辽宁工程技术大学机械工程学院,辽宁阜新123000【正文语种】中文【中图分类】TD528橡胶输送带是由橡胶覆盖层和内部纤维组成的复合材料,其具有橡胶与增强纤维双重的物理力学特性,当输送带受到交变的工况载荷作用时,由于应变与应力不同相而呈现迟滞效应,产生能量耗散[1]。
据资料显示,输送带的迟滞能耗占长距离带式输送机运行能耗的50%左右[2],因此,对橡胶输送带迟滞特性进行分析,建立其非线性恢复力模型已成为开发节能型输送带的一个重要理论基础。
国内外对橡胶及其类似材料的迟滞特性和辨识模型的研究有:文献[2]对输送带的动力学参数进行测试;文献[3-4]建立了橡胶传送带的一维动态流变模型,比较了Kelvin,GHM和五元素流变学模型的特点和参数化方法;文献[5]对丁基橡胶黏弹性材料进行了不同温度、不同载荷下的蠕变实验,分析材料的非线性蠕变行为;文献[6]以Winkler黏弹性假设为基础,建立了橡胶输送带二维本构模型;文献[7-8]将黏弹性材料动态恢复力视为由非线性弹性恢复力和非线性阻尼力叠加而成的,并提出钢轨扣件减振橡胶的动态力学模型;文献[9-10]提出了一种金属橡胶的广义恢复力模型,并通过实验对模型中的参数进行了辨识;文献[11]建立了金属橡胶与弹簧组合型隔振器弹性迟滞回线的数学模型,通过对最初加载曲线及一个循环周期的弹性迟滞回线进行变换,得到隔振器的任意加载和卸载过程的弹性迟滞回线;文献[12]采用泊松分布来描述金属橡胶材料内部金属丝之间的接触点运动状态,并针对不同振幅下金属橡胶力学本构关系中的参数进行了求解;文献[13]采用Yeoh超弹性模型和Bergstro模型研究了橡胶的力学性能,并利用ABAQUS对迟滞特性进行分析;文献[14]基于 ADINA,采用引入微动力阻尼系数的非线性Full Newton-Raphson 方法,进行了节点滞回承载能力数值分析。
恢复力模型
恢复力是指结构或构件在外荷载去除后恢复原来形状的能力。
恢复力模型建立在3个层次上:材料恢复力模型、构件恢复力模型和结构恢复力模型。
恢复力模型包括骨架曲线和滞回规则两个部分。
骨架曲线应确定关键参数,且能反映开裂、屈服、破坏等主要特征;滞回规则一般要确定正负向加、卸载过程中的行走路线及强度退化、刚度退化和滑移等特征。
确定恢复力模型的方法有试验拟合法、系统识别法、理论计算法。
恢复力模型分曲线型和折线型,折线型因应用简便而被普遍采用,目前提出的折线型恢复力模型主要有双线型、三线型、四线型、退化双线型、退化三线型、定点指向型和滑移型等。
若仅用于静力非线性分析,恢复力模型一般是指力与变形关系骨架曲线的数学模型;而如果是用于结构的动力非线性时程分析,恢复力模型不仅包含骨架曲线,同时也包括各变形阶段滞回环的数学模型。
1887 年,德国Bauschinger 通过对钢材的拉压试验,指出当钢材在一个方向加荷超过其弹性极限后,对其进行反向加荷的弹性极限将显著降低。
此后钢材的这种现象就称作“包辛格效应”。
Penizen(1962)提出了一种适用于钢材的双线性恢复力模型,考虑了钢材的包辛格效应和应变硬化。
混凝土在重复循环荷载作用下的应力—应变滞回关系,是钢筋混凝土结构抗震研究中的一个最基本的课题.在钢筋混凝土结构中,混凝土主要是承受压力,因此混凝土的应力—应变滞回关系的研究主要是针对混凝土在重复压力作用下的性能。
八十年代以来,考虑到地震作用下混凝土受到较高的应变速率的影响,混凝土本构关系的研究重点主要是对约束混凝土在不同应变速率下的应力—应变全过程进行试验研究,并致力于建立考虑应变速率影响的约束混凝土的应力- 应变关系的数学模型.在结构的弹塑性地震反应分析中应用最为广泛的是双线性(Bi - linear)模型.该模型首次由Penizen(1962)根据钢材的试验结果提出,考虑了钢材的包辛格效应和应变硬化.由于其简单实用,因而也广泛用于钢筋混凝土结构的弹塑性分析.实际应用中,双线性模型又可进一步分为正双线性、理想弹塑性和负双线性三种情况。
橡胶材料的基本实验及本构关系模型
第3章:橡胶材料的基础实验及本构模型作为一种具有良好弹性性能的工程材料,硫化橡胶早在19世纪就被广泛应用于密封、承载、减振降噪等工业领域。
而橡胶轨道减振器的使用则是最近20年来的事情,然而,不同于金属材料仅需要几个参数描述其材料特性,橡胶的行为复杂,材料本构关系是非线性的。
它的力学行为对温度,环境,应变历史,加载的速率都非常敏感,这样使得描述橡胶的行为变得更为复杂。
而橡胶的制造工艺和成分也对橡胶力学性能有显著的影响。
简单依赖单向拉伸性能实验并不能完全描述材料包括压缩及剪切在内的所有力学行为,这也意味着对橡胶轨道减振器进行有限元分析和结构模拟,必须对橡胶材料进行包括拉伸、压缩,剪切及体积实验等在内的全部基础实验。
3.1 橡胶基础实验简介描述橡胶材料的基础实验有8种(如图3-1):单轴拉伸和压缩实验,双轴拉伸和压缩实验,平面拉伸和压缩(纯剪)实验以及测定体积变化的实验(拉或压)。
在长期的研究和实验,发现从单轴拉伸,双轴拉伸,平面拉伸及体积压缩实验中能够获得足够精确的实验数据。
因此,目前国际上定义橡胶材料力学行为的实验为:单向拉伸、双向拉伸、平面剪切及体积压缩。
图3-1 橡胶材料的8种基础实验对有限元分析所用的实验数据,一个重要的要求是,实验时实验试样应能达到“纯”的应变状态,这样得到的应力应变曲线是我们期望的能代表橡胶的行为特性的状态。
有限元程序通常需要输入的应力应变实验数据范围应大于要分析结构的预期的最大应力应变范围。
通常,理想状态应该是测得在几种准静态荷载模式下的应力应变曲线,这样可以选择出最合适的材料的本构模型以及反映这种模型的参数。
图3-2是本课题研究工作中所用到的一组橡胶材料数据,该实验在美国AXEL实验室完成,材料是公司生产轨道减振器产品所用配方。
图3-2 橡胶基础实验数据3.2 橡胶材料的基础实验3.2.1单轴拉伸实验单轴拉伸实验是最常用到的一种实验,有很多种橡胶拉伸的实验标准。
但是为有限元分析的实验要求比标准的实验方法还要高些,最为明显的是实验要达到一个纯的拉伸状态,也就是实验应该尽量减小对试样侧面的约束。
金属橡胶材料干摩擦阻尼的产生机理及力学模型
金属橡胶材料干摩擦阻尼的产生机理及力学模型李宇燕;王炜【摘要】Mechanism of dry-friction damping and nonlinear stiffness for metal ic rubber is a more complex problem. Lots of dry-fric-tion contact exist inside the material. Lots of vibration energy is dissipated by the friction and contact between spiral metal wires. The dry-friction damping is closely related to microstructure of object surface. In the paper, the mechanism of the dry-friction damp-ing for the metal ic rubber is analyzed from microcosmic point of view. In order to show vibration-reduced regularity of dry-friction damping, mathematics models, describing dry-friction regularity, must be put forward correctly. Because of non-smooth nonlinear constitutive relationship of the metal ic rubber, it is difficult to compute response of metal ic rubber structure with dry-friction seg-ment. In this paper, four mathematics models for dry-friction problem between two solid surfaces are introduced, that is, Sgn fric-tion model, hysteresis model, numerical calculation model of dry-friction inside dynamic system, three nonlinear viscous damped bilinear hysteretic model. The four mathematics models lay a solid foundation for further study of later generations in the field of me-tal ic rubber.%金属橡胶材料干摩擦阻尼、非线性刚度的产生机理是一个较为复杂的问题,其内部存在大量的干摩擦接触,通过螺旋型金属丝相互摩擦接触来损耗振动能量。
各材料的恢复系数
各材料的恢复系数计算值Metals and Ceramics:Predicted COR, eSilicon硅 1.79Alumina 氧化铝0.45 to 1.63 silicon nitride 氮化硅0.38 to 1.63 silicon carbide 碳化硅0.47 to 1.31highest amorphous metal 最高的非晶态金属1.27tungsten carbide 碳化钨0.73 to 1.13 stainless steel 不锈钢0.63 to 0.93 magnesium alloys 镁合金0.5 to 0.89 titanium alloy grade 5 5级钛合金0.84 aluminum alloy 7075-T6 铝合金 7075-T60.75glass (soda-lime) 玻璃碱石灰0.69glass (borosilicate) 玻璃硼硅酸盐0.66nickel alloys 镍合金0.15 to 0.70 zinc alloys 锌合金0.21 to 0.62 cast iron 铸铁0.3 to 0.6copper alloys 铜合金0.15 to 0.55 titanium grade 2 2级钛0.46Tungsten 钨0.37aluminum alloys 3003 6061, 7075-0 铝0.35合金Zinc 锌0.21Nickel 镍0.15Copper 铜0.15Aluminum 铝0.1Lead 铅0.08塑料和橡胶不是理想材料,会高于实际值。
以下仅供参考。
高分子材料:聚丁二烯 (高尔夫球壳) 11.8丁基橡胶 6.24EVA 4.85弹性聚硅酮类 2.80聚碳酸酯 1.46尼龙 1.28聚乙烯 1.24聚四氟乙烯 1.21聚丙烯 1.14ABS 1.12丙烯酸 1.06PET 0.95聚苯乙烯 0.87PVC 0.86注意:当速度小于10-6m/s时,恢复系数为1。
铅芯橡胶隔震支座恢复力模型的分析方法
铅芯橡胶隔震支座恢复力模型的分析方法熊世树;周正华;王补林【摘要】在综合Spacone关于梁柱的纤维模型和铅芯橡胶隔震支座剪切变形特点的基础上,提出了采用纤维单元有限元模型来分析隔震支座在竖向和横向荷载作用下的滞回模型.结果表明,采用纤维单元模型的模拟结果与试验曲线基本吻合,它既可用于分析隔震支座的基本参数,也可用于隔震建筑的动力响应分析.【期刊名称】《土木工程与管理学报》【年(卷),期】2003(020)002【总页数】4页(P28-31)【关键词】铅芯橡胶隔震支座;纤维模型;滞回曲线【作者】熊世树;周正华;王补林【作者单位】华中科技大学,土木工程与力学学院,湖北,武汉,430074;华中科技大学,土木工程与力学学院,湖北,武汉,430074;华中科技大学,土木工程与力学学院,湖北,武汉,430074【正文语种】中文【中图分类】TU352.1+2基础隔震,通常是在上部建筑与下部基础之间设置隔震支座[1].目前,国内外已提出了各种材料组成及不同组合方式的隔震支座,铅芯橡胶支座是目前应用比较广泛的一种隔震系统,具有良好隔震效果.衡量隔震支座隔震性能的指标主要是等效刚度和等效阻尼,这两个指标一般是通过荷载-位移的滞回曲线计算获得.目前,精确的方法是直接对隔震支座进行加载试验,由传感器分别记录加载过程中荷载和相应的位移来获取隔震支座的滞回曲线.有学者对隔震支座进行了有限元分析,针对隔震支座的力学性能及材料组成,提出了Bilinear模型(双线性模型)和Ramberg-Osgood模型等[2].Spacone提出了一种纤维梁柱模型,对钢筋混凝土框架进行非线性分析,但是忽略了剪切变形[3].作者提出一种考虑了剪切变形的纤维模型来分析铅芯橡胶隔震支座.1 铅芯橡胶支座铅芯橡胶支座[4]构造如图1所示.橡胶支座由橡胶板和薄钢板堆叠经热硫化而成,在其中间竖直地灌入适当直径的铅棒,铅芯必须紧固在孔中,并稍微挤进橡胶层中.因此,铅芯的体积往往比中心孔的体积大一些,使铅芯能牢固地压入孔中,当橡胶支座发生水平变形时,整个铅芯由于被钢板约束而强迫发生剪切变形.图1 铅芯橡胶隔震支座铅芯橡胶支座的力学性能主要取决于橡胶和铅芯两种材料的性质及组合性能.作为一种金属,铅芯在简单拉伸时的应力-应变曲线如图2.在屈服前的弹性阶段,应力σ与应变ε成正比,比例常数就是弹性模量E,可用σ=Eε表示.相应的剪应力与应变之间的关系为τ=Gγ,式中,G为剪切模量.应力达到屈服后,铅芯的塑性段曲线接近水平(即塑性段的斜率几乎为零).图2 铅的应力—应变曲线橡胶材料具有不可压缩性,同时又具有较好的弹性,橡胶的拉伸实验表明,橡胶比铅芯具有较高的屈服极限.根据铅和橡胶材料的上述力学性能,可以认为,在一定的荷载范围之内,隔震支座在循环荷载作用下,铅芯发生理想弹塑性变形,而橡胶则是始终保持弹性变形.基于这种假定,可以推出一个具有一段初始弹性刚度的双线性滞回曲线.同时,为了保证铅芯和橡胶板在竖向荷载作用下轴向位移的一致性,这里假定铅芯和橡胶板具有相同的轴向刚度,即轴向变形模量一致.2 模型选取2.1 纤维单元铅芯橡胶支座具有较大的竖向刚度和较小的水平刚度,在荷载的作用下主要发生横向剪切变形.根据这一特点,作者提出一种纤维模型,这个模型在竖向荷载作用下几乎不发生变形;而在水平荷载作用下,却有如弹簧一样,能够发生很大的变形,符合隔震支座的变形特点.纤维模型中,一个纤维单元可以按照一定的原则细分成若干个纤维,图3是一个纤维单元的节点受力情况以及单元某个截面的受力情况. 图3 纤维单元单元节点荷载向量Q={Q1,…,Q12}T;单元变形向量q={q1,…,q12}T;截面荷载向量D(x)={N(x) My(x) Mz(x) Vy(x) Vz(x)}T;截面变形向量d(x)={ε(x) χy(x) χz(x) γy(x) γz(x)}T.2.2 截面刚度矩阵截面刚度矩阵k(x)与相应的截面变形d(x)有关.根据平截面假定,某个截面x处的应变为ε(x,y,z),表示为ε(x,y,z)=(l(y,z)+ly+lz)d(x),式中,l(y,z),ly和lz分别是相应于轴向变形和剪切变形的变形函数,表示为l(y,z)={1 z -y 0 0}; ly={0 0 0 1 0}; lz={0 0 0 0 1}.于是,根据虚功原理,可求得式中,E(x,y,z)和G(x,y,z)分别是坐标x处的纤维弹性模量和剪切模量.2.3 单元刚度矩阵单元刚度矩阵ke由不同截面的截面刚度矩阵k(x)组合而成的.实际运用中,直接由截面刚度矩阵求单元刚度矩阵比较困难,这里采用Spacone借助于柔度矩阵间接求得单元刚度矩阵的方法.截面柔度矩阵fx为kx的逆矩阵,引进插值函数bx,与单元的长度l和截面坐标x有关,有下面求单元柔度矩阵F,令则F=f(x)dx.(1)由于被积函数f(x)较复杂,难以直接积分,用Gauss-Lobatto积分[5]对式(1)进行数值积分得F=f(x)dx=f(ξ)dξ=式中,Hi为与积分点ξi相对应的权函数,可查表得到.截面坐标x和积分点ξi的关系为x=1/2(ξi+1),由上式可知,当x∈[0,l]时,ξi∈[-1,1],满足了Gauss-Lobatto积分的积分限要求.对上面求得的柔度矩阵F求逆,得逆矩阵k.但是,此时的k还不是单元刚度矩阵,仅是一个过渡矩阵,引进一个转换矩阵R,R是一个仅与单元长度l有关的5×12维的矩阵.因此,未考虑扭转的单元刚度矩阵可表示为下面考虑扭转影响.对于圆截面,极惯性矩J=πd4/32;而对于矩形截面,假定边长分别是a和b,有如下经验公式,J=(1-0.63b/a)ab3/3 a>b; J=(1-0.63a/b)a3b/3 a<b.所以,纤维单元的单位扭转刚度把kJ叠加到中相应的位置,就得到一个考虑了扭转影响的单元刚度矩阵ke.3 恢复力模型的分析方法采用纤维有限元模型来计算铅芯橡胶隔震支座在竖向荷载和水平循环荷载作用下的荷载-位移滞回曲线.根据目前的测试环境及条件,认为隔震支座的一端固定,另一端自由,承受竖向荷载,水平方向由于截面的对称性,只在某一个方向承受水平循环荷载,而另一个方向则不承受荷载,图4所示为一端固定,一端自由的二结点单元.图4 支座纤维单元分析模型由于支座是由铅和橡胶板不同材料组成的,根据不同的材料特性以及截面形状,铅芯橡胶支座可以划分为若干个纤维单元,每个纤维单元的位置取在单元截面的质心(图5).把支座截面分割成4块,每块两个单元,按材料的不同分别是铅和橡胶板,共划分出8个纤维单元,每个纤维单元还可沿竖向按橡胶层继续细分.图5 计算模型的单元划分铅芯橡胶支座在荷载作用下的基本方程为KU=P,(2)式中,K为整体刚度矩阵,由单元刚度矩阵ke组装而成;U为节点位移列阵;P 为荷载列阵.方程(2)是一个非线性方程,这里采用增量切线刚度法.其基本思路是:将作用于结构上的荷载划分为若干小的荷载增量(每级荷载增量不一定要相同),对每级荷载增量采用Newton-Raphson(N-R)迭代法[6]进行迭代,直到满足要求为止.a.施加第一级荷载增量ΔP1(该级荷载增量应尽量小,以确保结构完全处于小变形状态),对方程(2)按弹性问题求解,所得结果U1作为下级增量迭代之初值.b.增加下一级荷载增量ΔPn,按下列迭代公式进行迭代,直到本级荷载增量下收敛为止,即式中,ΔPn为第n级荷载增量;为第n级荷载增量中第i次迭代时单元应力力向量,当i=1时,为上一次迭代完成后的切线刚度.c.根据上述迭代完成后的位移值,作为第n+1级荷载增量下的迭代初始值,重复步骤b,如此反复迭代下去,直到所有荷载荷载增量全部施加上去,并满足收敛准则为止.作者选取结点不平衡力小于某一给定值作为收敛条件.4 算例为了便于和试验结果作比较,选用了一种铅芯橡胶支座[7].该支座橡胶直径650 mm,铅芯直径170 mm,高度197 mm.橡胶弹性模量和剪切模量分别为EL=356 MPa, GL=130 MPa,ER=EL;GR=1.12 MPa,橡胶层厚度140 mm.图6为采用纤维有限元模型进行模拟计算的结果,图中实线是纤维单元模型的理论计算值,虚线是支座的试验值.图6 铅芯橡胶隔震支座滞回曲线5 结论a.采用纤维单元有限元模型能较好地模拟铅芯橡胶隔震支座在竖向荷载和水平循环荷载作用下的荷载-位移曲线,可以用于分析这类支座的恢复力特性,也可用隔震建筑的有限元分析.因此,纤维单元有限元模型对于指导隔震力学性能参数预测和隔震结构计算分析均具有一定的借鉴价值.b.采用纤维单元有限元模型分析铅芯橡胶支座的滞回曲线时,要求铅芯与橡胶层紧密地结合,同时要求合理选择铅芯和橡胶层的基本参数.参考文献[1] 唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.[2] Masaru Kikuchi, Ian D Aiken. An analytical hysteresis model for elastomeric seismic isolation bearings[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(2):34-39.[3] Enrico Spacone and others. Fiber beam-column model for non-linear analysis of R/C frames (Part I) formulation[J]. Earthquake Engineering and Structural Dynamics,1996,25(7):711-725.[4] 谢礼立等.工程隔震概论[M].北京:地震出版社,1996.[5] 吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992.[6] Bathe K J.工程分析中的有限元法[M].傅子智译.北京:机械工业出版社,1991.[7] W H Robinson. Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes[J]. Earthquake Engineering and Structural Dynamics,1982,10(4):593-604.。
恢复力模型的计算方法
恢复力模型的计算方法
恢复力模型是指材料或结构在受到外部作用后能够恢复原状的能力。
在工程和材料科学领域,恢复力模型通常用于描述材料的弹性行为。
计算恢复力模型的方法可以根据具体的材料特性和受力情况而有所不同,以下是一些常见的计算方法:
1. 弹簧模型,弹簧模型是最简单的恢复力模型之一,它假设材料的恢复力与受到的应力成正比。
根据胡克定律,恢复力与形变之间的关系可以用线性方程描述。
计算方法包括确定弹簧的弹性系数和形变量,然后利用胡克定律进行计算。
2. 有限元分析,有限元分析是一种数值计算方法,可以用来模拟材料受力后的变形和恢复过程。
通过将结构或材料分割成有限数量的小元素,然后利用数值方法求解每个元素的受力和变形情况,最终得到整体的恢复力模型。
3. 统计力学方法,统计力学方法可以用来描述材料微观结构和原子间相互作用对恢复力的影响。
通过统计力学的理论和方法,可以计算材料在受力后的微观结构变化以及恢复力的大小。
4. 实验测定,最直接的方法是通过实验测定材料在受力后的恢
复力。
通过施加不同的应力并测量材料的变形和恢复情况,可以得
到恢复力模型的实际数据,进而进行计算和分析。
综上所述,恢复力模型的计算方法可以从理论模型、数值模拟、统计力学和实验测定等多个角度进行研究和计算,以全面理解材料
的弹性行为和恢复力特性。
金属橡胶阻尼元件的力学模型及减振特性研究
翻嗣 镝囊蕈站建壤术 嘲.
金 属橡 胶 阻尼元 件 的力 学模 型 及减振 特性研 究
张芳萍 , 文欣, 樊 梁 佳
( 北 大 学 振 动冲 击 噪 声 研 究所 , 中 山西 太 原 0 0 5 ) 3 0 1
摘 要 : 通过 试验 和理论 相结合 的方 法 , 立 了金 属橡胶 材 料 的 力学模 型 , 究 了一 种金 属 橡胶 材料 建 研
曲线 , 总结 了不 同加速 度激励 水平 、 同广义 密度 、 同配 重对其振 动性 能 的影响 。结果表 明 , 不 不 随着激励 力
和 负载 的 增 加 , 减 振 效 果 更 好 。 其
关键 词 : 属
中图分类 号 : G 117 T 1 . 文献标志 码 : A
动 和 冲 击 的 抑 制 问 题 。依 靠 控 制 机 器 内 产 生 动 力 的
1 金 属 橡 胶 阻 尼 元 件振 动 的理 论 模 型 研 究
1 1 数 学 模 型 的 建 立 .
应用 于振 动系统 中 的非线性 元件往往 具有 非常
复杂 的本构关 系 。金 属橡 胶 材 料 减 振 系统 的位 移一
任何一 种 阻尼都 不能有效 地描 述阻 尼力 的特征 。
所 以笔者 把 总 的迟滞 恢 复 力 F分 为 弹性 力 F
和阻尼 力 F
F—F +F F 一∑K2 。 F 一c 主l g ( ) l r ; l 。 n x - s
i l —
式中: c为等效 阻 尼 系 数 ; a为 阻 尼敏 感 指 数 。 由上 式可 知道 , a越 大 , 阻尼 力 对 速 度 的变 化 越 敏感 , 所 以指 数又 反映 阻尼 的组 成 , 阻尼 成 分 的 函数 。当 为
金属橡胶非线性干摩擦副的接触作用机理及其仿真结果分析
触, 进而对金 属橡胶元件在不 同载荷下 的滞 环 回线进
行 深入 地分 析和研 究 。 由于干 摩擦 元件 客 观存 在 不 光滑 的非线 性 泛 函本
基金项 目:国家 自然科学基 金资助(0 0 12 5 85 1 ) 收稿 日期 :2 1 0 0—0 O 修改稿收到 日期 :00— 5— 5 3一 1 2 1 0 2 第一作者 李宇燕 女 , 博士 , 副教授 ,94年生 17
们 既表 示 了金 属 丝 之 间 的
摩擦 特性 , 同时也表 示 了螺
动 、 摩擦 系 数不 是 严 格 的相 等 且 滑 动 摩 擦 系 数 依 赖 静 于两 固体 接触 面 相 对 运 动 速 度 , 因此 该 模 型 具 有 一 定 的局 限 性 。1a 、age w n Cuhy等 提 出 了著 名 的双 线性 滞 迟恢 复 力模 型 。由于这一 模 型 既 简单 又 揭示 干 摩擦 交 接 面 的实 际特性 , 振 动 工程 中 可 以用 来 描 述 一 大类 在 干摩擦 问题 , 是 双 线 性 滞 迟模 型 只是 实 际情 况 的一 但还 型 。 白鸿柏 、 协 清 ~’ 出 了 三 次 非 线 性 粘 性 阻 尼 黄 提 双线性 滞迟 模 型 , 代 表 了简 化 为 集 中 质量 的设 备 与 它 诸 如钢 丝绳 等干 摩擦非 线 性 减振 器 相联 并 固定 在 刚性 基础 之上 时 的隔 振 问 题 , 是 三 次 非 线 性 粘 性 阻 尼 双 但 线性滞 迟模 型完 全是 从现 象 学 的角 度 建立 金 属橡 胶 材 料 的力学 模 型 , 然 存 在 一些 局 限性 。张 有 强 建 立 仍 了含干摩 擦对 称 间 隙 的两 自由度碰 撞 振 动系统 的非 线
深入研究 了线 匝的摩擦接触 , 通过对结构单元组 成系统的计算机模 拟仿真 , 对金属 橡胶元件在 不同载荷作 用下 的滞 迟 回 线进行 了深入 地分析和研究 , 在静态载荷作 用下 , 了结构单元 的摩擦 系数 、 研究 结构单元 的摩擦 角对 金属 橡胶 结构摩擦耗 能 的影 响, 在动态载荷作用下 , 究了载荷的幅值 、 的频率 、 的初始相位对摩擦 耗能的影响 , 研 载荷 载荷 此项研究工作 大大减
橡胶材料的弹性恢复性
橡胶材料的弹性恢复性作为一种重要的工程材料,橡胶材料以其出色的弹性恢复性备受瞩目。
它在各个领域都有广泛的应用,如汽车制造、电子产品、建筑材料等。
本文将探讨橡胶材料的弹性恢复性,包括其定义、原理、测试方法以及影响因素等方面。
橡胶材料的弹性恢复性是指材料在受力后能够恢复到原始形状的能力。
这种能力使橡胶材料具有很高的可扩展性和耐久性,能够在承受压力或变形后迅速恢复原状。
橡胶材料的弹性恢复性源于其特殊的化学结构和分子排列方式。
在橡胶材料中,聚合物链通过共价键或物理交联结构相互连接,形成了均匀的网络结构。
这种网络结构使得橡胶材料具有高度的延展性和可塑性。
当外力施加在橡胶材料上时,聚合物链或物理交联结构会发生变形,但仍保持相对稳定的连接关系。
一旦外力消失,这些连接关系将迅速恢复到原始状态,使橡胶材料重新回到初始形状。
为了测试橡胶材料的弹性恢复性,可以使用不同的方法。
其中最常用的方法是弹性恢复率测试和回弹测试。
弹性恢复率测试是通过测量拉伸或压缩橡胶材料后,材料恢复到其原始长度或厚度的程度来评估其弹性恢复性。
回弹测试则是通过测量材料在受力后恢复到原始形状所花费的时间来评估其弹性恢复性。
橡胶材料的弹性恢复性受到多种因素的影响。
首先是材料的化学成分。
不同类型的橡胶材料具有不同的化学成分和分子结构,因此其弹性恢复性也会有所差异。
例如,天然橡胶具有较高的弹性恢复性,而合成橡胶则具有更好的耐磨性和耐老化性能。
其次是材料的硬度和温度。
硬度是指材料的抗压能力,硬度越高,材料的弹性恢复性也会增加。
温度对橡胶材料的弹性恢复性同样起着重要作用。
在较低温度下,橡胶材料的分子活动减慢,导致弹性恢复性下降,而在较高温度下,橡胶材料的分子活动增强,弹性恢复性提高。
此外,外界环境因素,如湿度和氧气含量也会对橡胶材料的弹性恢复性产生影响。
高湿度环境下,橡胶材料易受到水的浸泡和侵蚀,从而影响其弹性恢复性。
氧气含量高会使橡胶材料在受力后发生氧化反应,破坏分子链的连接,导致弹性恢复性降低。
SMA-橡胶支座恢复力的实用模拟
SMA-橡胶支座恢复力的实用模拟庄鹏;薛素铎【摘要】SMA-橡胶支座是一种可利用记忆合金超弹性滞回进行耗能的隔震装置.在概念设计的基础上,进行了SMA-橡胶支座的拟静力试验,证实了这一支座具有良好的隔震耗能特性.为了使SMA-橡胶支座的性能特点便于结构工程师所掌握,将线性最小二乘数据拟合技术和结构分析软件中常见的微分型恢复力模型用于模拟其水平力,数值计算所得到的恢复力-位移滞回曲线及支座性能参数值与试验结果吻合良好.可见,引入上述实用模拟方法有助于利用现有结构分析软件建立SMA-橡胶支座隔震单元,从而促进了这种隔震支座在实际工程中的应用.%SMA-rubber bearing is a type of seismic isolation device dissipating energy with hysteretic effect of superelasticity of shape memory alloy ( SMA) material. Based on an isolator's concept design, a series of pseudo-static tests for a SMA-rubber bearing were conducted and its excellent seismic isolation and energy dissipation performances were verified with the test results. For structural engineers to gain the mastery of seismic isolation characteristics of SMA-rubber bearings, the linear least square data fitting technique and the differential restoring force model commonly known in structural analysis software were used to simulate horizontal force of an isolator. Then, its restoring force-displacement hysteresis loop and performance parameters were compared with those of the test data. It was found that the test results match closely with those obtained from the above-mentioned simulation. Thererfore, the proposed simulation method was helpful for establishing an SMA-rubber isolator element with the existingstructural analysis software and application of SMA-based isolation bearings in engineering structures.【期刊名称】《振动与冲击》【年(卷),期】2013(032)008【总页数】9页(P204-212)【关键词】形状记忆合金(SMA);隔震支座;微分型恢复力模型;数据拟合;数值模拟【作者】庄鹏;薛素铎【作者单位】北京工业大学建筑工程学院,北京100124【正文语种】中文【中图分类】TU352.1;TU317.1结构振动控制技术是提高工程结构防震减灾性能的一种有效手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e a tc f r e wi o ii e t f e s h o ln a a i g f r e a d t e n n ln a l si o c t g tv sif e s l si o c t p stv si n s ,t e n n—i e r d mp n o c n h o —i e r ea t f r e wih ne ai e tfn s h f c wh c s r lt d t h q r fv l ct . Th y i a a i g ft e t r e c mp n n s we e d s u s d Ex e i n a ih i e ae o t e s ua e o eo iy e ph sc lme n n s o h h e o o e t r ic s e . p rme tl r s ls i d c t h tt r p s d mo lc n d s rbe a d a a y e t e trn o c fme a b r mo e it iie y a d e u t n i ae t a he p o o e de a e c i n n ls he r so i g f r e o tlr be r n u tv l n u e at x cl Th d s d a tg t t h c n e to a mo es r smp e n o r , n v rh e s o lc t d n a a t r y. e ia v n a e ha t e o v n i n l d l a e i l i f m e et l s c mp i ae i p r mee s
复力数据进行整合处理 , 通过合理的插值拟合 , 结合金
属橡 胶实 际作 用机 理 , 计 拟 合 方法 和 模 型结 构 形 式 , 设 分别 应用 曲线 和 曲 面拟 合 的最 小 二 乘 法 , 合恢 复 力 拟 关 于位 移 和速 度 的二元 解 析方 程 。摒 弃 了现 有模 型 在 建 立 和应 用 时粗 糙 的线 性 简 化 处 理 方 法 , 决 了恢 复 解
振
动 j } 。 I iห้องสมุดไป่ตู้l 1
第 3 卷第 8 O 明
J OURN 0F VI RA ON AND H0CK AI B TI S
金 属 橡 胶 材 料 恢 复 力 的 三 维 模 型
刘远方 ,白鸿柏 ,李冬伟 ,王尤颜 ,陶
( 械工程学 院, 家庄 军 行 000 ) 50 3
非 线性 性质 的 复杂 和作 用 机 理 的差 异 , 量研 究 的 模 定 型多数 存在 模 型过 于抽 象 和参 数 辨 识 复 杂 的 问题 , 对
于具 体 的科 学 实践来 说 缺乏 针对性 和操 作性 。
本文 以 Ma a 件 为平 台 , t b软 l 以大量 试 验 数 据 分 析 为基 础 , 一 组 离 散 谐 波 激 励 条 件 下 获 得 的 位 移 和 恢 对
根据试件的使用场合 ( 工作 的位移和速度限定 即: 范 围 )在保 证各 位 移和速 度 曲线 在投 影 面分 布 均 匀 ,
充足 的前 提下 , 了便 于 理论 研 究 , 计 如表 1所 尔多 为 设 种谐 波激 励试验 , “v” 记 的情况需 要 进行试 验 。 有 /标
2 2 数据 的预 处理 .
i e tf ai n i v r o d n i c t So e c me. i o Ke y wor ds: mea bb r t r e d m e so a d l it r oai n f tn tlr u e ; h e — i n i n lmo e ; n e p l t ti g o i
其 中 为恢复 力 ; 位移 ; 为 y为速 度 i为 函数关 系 。 厂 不 同于现 有 二 维 模 型 的恢 复 力 只 以位 移 为 变 量 , 也不 同 于 以谐波 振 幅和频 率 为 自变 量 的伪 三维 恢 复力
模型, 本模 型 中恢复 力表 示 为位 移 和 速 度 的二 元 函数 ,
力表 征方 法依 赖 谐 波 激 励 振 幅 和频 率 的 弊端 , 现 了 实 对 金 属橡胶 等 非线性 弹性 阻尼 材 料恢 复力 解 析表 达 的
突破 。
性 的是 , 上海交 大博 士 龚宪 生 认 为 , 丝 绳 的恢 复 力 钢 具 有 非线性 迟 滞 特 性 ( 其特 性 与金 属 橡 胶 基 本 相 同 ) , 其恢 复力 是 动 刚 度 和 阻 尼 的 函数 , 其 动 刚 度 和 阻 尼 而 又是振 幅和频 率 的 非 线 性 函数 。文 献 [ ] 当 前非 线 7对
=
的 中空 圆柱 形 金 属 橡 胶试 件 , 照 边 缘 崮支 的 悬 臂 梁 按 方式夹 持 , 中心孔 处 施 加 垂 直 于 圆形 端 面 的 位 移 潴波
- ,) 厂 Y (
() 1
激励 , 件 产 生 剪 切 和 弯 曲 变 形 ( : 模 型 ) 以 试 注 本 。 100H 的采样 频率 对 试 件 的位 移 和 恢 复力 进 行 数 据 0 z 采样 , 储存 为一组 t 格式 的文 本文 件 。 x t
Ab tac Ba e n t e a ay i fa g e td a fe pe i n a aa, to o sa ihig t r e di nso a s r t: s d o h n l ss o r a e lo x rme t ld t a meh d f r e tbl n h e — me i n l s d n mi d lo e t rn o c fmea ub e tra s p e e e Th o g n e p lt n f tn fe p rme t ld t y a c mo e fr so i g f r e o t lr b rma e ilwa r s ntd. r u h i t r oa i ti g o x e i n a aa o i a d t e r tc l a l ss, a n l tc q ai n n h o ei a nay i n a ay i e u t wa b it n o s u l ,i whih t e e ai n hp ewe n e o iy, ip a e n n c h r lto s i b t e v lc t d s lc me t a d
LU Y a - n I u n a g,B I o g b ,L o gw i A o —a ,T O S u i f A n —o 1 n —e ,W NG Y uy n A h a H D
( rn neE g er gC l g ,S iah ag0 00 , hn ) O d ac n i ei oee h i un 5 0 3 C ia n n l jz
关键词 :金属橡胶 ; 三维模型 ; 插值 拟合
中图 分 类 号 :T 5 5 B 3 文 献 标 识 码 :A
Th e a e i na o e f r s o i o c f m e a u e t ra r e di m nto lm d lo e t rng f r e o t lr bb r ma e i l
(X C 0 ) J G 0 4
1 恢 复 力 三 维 模 型 的 一 般 形 式
在 非线 性振 动 的微 分方 程 中 , 性力 、 惯 阻尼 力 或 弹
收稿 日期 :2 1 0 2 修 改 稿 收 到 ¨期 :0 0—0 0 0— 4— 6 21 8—0 2 第 一 作 者 远 男 , t l,9 1 - c 硕 / !18 t qi
具体模 型结构将在数据处理之后 , 根据数据特征 给出
具体 形式 。
众所 周知 , 速度 是位 移 的导 数 , 般 不 能认 为 位 移 一 和速 度是 两个 独 立 变 量 , 是 因研 究 问题 的具 体 情 况 但 和空 间形 式 等原 因 , 移 和速 度 在 某 些 场 合 也 可 以作 位
帅
摘 要 :以大量试验数据分析为基础, 提出了一种构建金属橡胶弹性恢复力一维模型的方法 通过刈试验数据插
值拟合处理 与理论 分析的方法 , 到了恢 复力关于位移和速度 的二元解 析方 程 , 得 认为恢复 力由线性 止刚度弹性 力 、 作线性 阻尼力和与速 度平方有 关的非线性负刚度 弹性力 三部分组 成 , 并对 这_ 部 分 的实际物理 意 义进 行 r 析。 试验结 果 表 三 分 明, 本模 型对 金属橡胶弹性恢复力 的表述更加 直观 , 分析更加 准确 , 克服 了现有模 型简单 和参数辨识复杂的缺点。
性 力并 不 分 别 与 加 速 度 、 度 及 位 移 的 一 次 方 成 正 速
比 , 文献 [ ] 9 也提 到 了非线 性 刚度 和非线 性 阻尼 的有
24 0
振 动 与 冲 击
2 1 年第 3 0 1 O卷
关 特征 , 获得试 验结果 之前 , 括 性 地认 为 金 属橡 胶 在 概 恢 复力 由对 应状 态 的位 移 和速度 所决 定 :
为两个 独 立 变量 来 处 理 。如 图 1所 示 , 以位 移 和 速 度
由于 受到试 验 中传感 器 精 度 、 备 洪差 、 装 洪差 设 安 和文 献 [0 所提 到 的干摩擦 运 动 的跃动 现 象等 因素 的 1] 影 响 , 始数 据 不 可 避 免地 会 出现 对 称 性 和 光 滑 度 不 原